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Abstract: This paper describes methods for diffeomorphic matching of curves on brain surfaces. Distances
between curves are defined by Frenet representation via speed, curvature, and torsion. The curve-
matching algorithm is based on bipartite graph matching, with weights defined by the Frenet distance over
diffeomorphic maps of one curve onto the other (Sedgewick [1983]: Algorithms). We follow Khaneja
([1996]: Statistics and Geometry of Cortical Features) and define fundus curves on the brain surfaces as
extremal curvature lines generated using dynamic programming. Examples are shown for fundus curve
matchings on macaque brain surfaces. Hum. Brain Mapping 6:329–333, 1998. r 1998Wiley-Liss,Inc.
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INTRODUCTION

The most striking gross morphological features of
the cerebral hemisphere in mammals are the diverse
and complex arrangement of the sulcal fissures and
gyral prominences visible on the cortical surface of a
mammalian brain. Despite their anatomic and func-
tional significance, even the gyri and sulci that consis-
tently appear in all normal anatomies exhibit pro-
nounced variability in size and configuration [Welker,
1990]. Methods are beginning to appear for characteriz-
ing their variation [Thompson et al., 1996]. A quantita-
tive study of these anatomical features requires devel-

oping mathematical models for characterizing their
shape and geometry, and for accommodating the
variability present across an anatomic population.
Anatomical features such as sulci and gyri are being
defined precisely in terms of the geometrical proper-
ties of the cortical surface, using the notions of ridge
curves and crest lines corresponding to extreme points
of curvature. From two-dimensional surface represen-
tations of the neocortex [Joshi et al., 1995a], automated
algorithms now exist for generating such geometric
features automatically. Such features as gyral crowns
and sulcal curves define natural high-dimensional
landmark correspondences between anatomies. They
have been proposed by our group as defining land-
mark correspondences which are used in a heirarchical
mapping procedure, bringing brain anatomy into reg-
ister first at a coarse level defined through the dimen-
sions of the landmarks and successively refined by the
high-dimensional information provided by the images
themselves [Joshi et al., 1995b; Miller et al., 1997]. To
fully automate such a procedure, automated methods
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for matching such curves must be established. This
paper describes methods for matching curves on brain
surfaces. Distances between curves are defined by
Frenet representation via speed, curvature, and tor-
sion. The particular matching algorithm used is bipar-
tite matching [Sedgewick, 1983]. We follow Khaneja
[1996] to define fundus curves on the brain surfaces as
extremal curvature lines (crest lines) generated using
dynamic programming. These fundus curves are then
matched across brain surfaces. The results are pre-
sented in Figure 1.

MATCHING CURVES ACROSS
DIFFERENT BRAINS

Given a curve a(t), t [ [0, 1], the Frenet equations
provide the differential geometric characterization of a
in three dimensions (3-D) based on its speed, curva-
ture, torsion, and the orthogonal frame (T, N, B):

Here T is the unit tangent vector field, N is the unit
normal vector field, B is the unit binormal field on a,
and the speed, curvature, and torsion parameters are
given by: n 5 00a8 00, k 5 00a8 3 a9 00/00a8 003, t 5 (a8 3 a9) ·
a8”/00a8 3 a9 00. F(t) describes the flow of the orthogonal
frame through its tangent space. See O’Neill [1966] for
a detailed discussion on the Frenet representation.

Given two simple curves a(t) and b(t) and their
orthogonal frames Fa(t), Fb(t) parameterized on the
unit interval [0, 1], define the set of diffeomorphisms
the index set [0, 1] to itself as

F 5 5f: [0, 1]& [0, 146. (1)

We define the distance r(a, b; f) by using the
Frobenius norm between any 2 333 matrices A and B
by: trace (A 2 B) (A 2 B)T.

Definition

The distance r between the curves a and b is:
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Figure 1.
A,B: Two macaque brains (87A and 93I) taken from David Van
Essen’s laboratory with the fundus curves generated using dynamic
programming. [Khaneja, 1996] C: The bifuracating sylvian fissure in
the Visible Human, illustrating how the start and end points control

the solution of dynamic programming. Bottom: Superior tempo-
ral sulcus of the target macaque brain (87A) matched to the
superior temporal sulcus of the template brain (93I) based on
speed (A), curvature (B), and torsion (C).
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Due to the properties of the Frenet representation,
the distance r is inherently invariant to spatial position
and orientation. The problem of matching curves
across different brains is now defined as one of finding
the particular diffeomorphism that minimizes the above
distance. This is akin to the work of Younes [1998].

Problem statement

Given two curves a(t), b(t), t [ [0, 1] and the set of
diffeomorphisms F 5 5f:f(a(t)) 5 b(t)6, matching the
two curves is equivalent to finding the diffeomor-
phism that minimizes the above distance with a
penalty on the velocity field:

f̂(a, b)

; argminf[F1e0

1
0 0nb(f(t)) 2 na(t) 0 02dt 1 r(a, b; f)2. (2)

Introducing the simple norm-square function
00nbf

2 na 002 in the matching gives the anatomist control
over local scale. For generating the lowest cost diffeo-
morphism, we define the cost function rD as the
discrete approximation to the distance and then use
the bipartite matching algorithm to reduce the complex-
ity of the problem. Representing the curve as a linear
array of straight line segments and assuming that
curvature and torsion are piecewise constant, the
distance assigned to the correspondence becomes:

rD(a, b; f) 5 a o
j

[na(j) 2 nb(f(j))]2Dj 1 b o
j

[na(j)ka(j)

2 nb(f(j))kb(f(j))]2 1 c o
j

[na(j) ta(j)

2 nb(f(j))tb(f(j))]2 Dj

where a, b, and c are coefficients picked by the
anatomist to adjust the weight of the matching based
on the speed, curvature, or torsion terms. Choosing to
match based on speed (a Þ 0, b 5 c 5 0) emphasizes
uniform streching of the curves. Matching based on
curvature (b Þ 0, a 5 c 5 0) emphasizes the turning of
the curves in the plane. Matching based on torsion
(c Þ 0, a 5 b 5 0) emphasizes twisting of the curves
out of the plane. Matching based on a weighted combina-
tion of these criteria is also possible. The bipartite match-
ing algorithm is presented in the Appendix.

GEOMETRIC REPRESENTATION AND
GENERATION OF FUNDUS CURVES

We follow Khaneja [1996] for generating fundus
curves. The deepest valleys of sulcal beds (fundus) are

analogous to curves of extremal positive curvature
resembling crest lines. We define the problem of
tracking the fundus as a control/optimization problem
of searching for a curve that passes through regions of
highest maximal curvature and joins the manually-
specified start and end points.

Near a point p in the surface, we express the surface
as the graph of a function z 5 f(x, y), such that (x, y) =
f(x, y) is locally quadratically approximated by f(p) 5

0, fx(p) 5 fy(p) 5 0, with f(x, y) 5 1⁄2 (fxxx2 1 2fxyxy 1

fyyy 2). Define the 2 3 2 shape operator Sp 5 1fxx fxy

fxy fyy2;
the maximum and minimum eigenvalues k1, k2 of Sp

are called the principal curvatures at p. The unit vector
directions t=1 and t=2 in which these extreme values occur
are called the principal directions. Then we define the
fundus as the curve a(t), u [ [0, 1] that minimizes ea

(km(t) 2 K)2 dt, where K is the largest maximal curva-
ture of the surface (the largest of the maximum
eigenvalues of Sp evaluated over the entire surface)
and km is the principal curvature with the highest
absolute value at each point on the curve (with its sign
retained). This choice of km steers the algorithm away
from points of high negative curvature such as those
on gyral curves, for which both the principal curva-
tures are negative. Using the corrected trapezoid ap-
proximation to this integral, the problem of extracting
the fundus is reduced to finding the curve that mini-
mizes:

H(a) 5 o
j51

N21

1(km(xj) 2 K)21 (km(xj11) 2 K)2

2

1
(km(xj11) 2 km(xj))2

6 200xj 2 xj11 00

over the triangulated surface where x0 5 s and xN 5 t
are the predefined start and end points of the fundus.
For nodes s and t on the triangulated surface, consider
the collection of all curves a(s, t) connecting (s, t), and
define the discrete fundus between (s, t) as â(s, t) ;
argmina(s,t)H(a). Assuming the triangulated surface is a
finite state space of size N and the optimal path has no
more than K nodes, there are NK paths between the
points x0 and xN. The brute-force algorithm would
require generating all the NK paths to find the optimal
one, but since the cost is additive over the length of the
path, we use dynamic programming to reduce the
complexity to the order of KN2. See Khaneja [1996] for
details of the dynamic programming algorithm.
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RESULTS AND DISCUSSION

We extracted various fundus curves from the ma-
caque brains labeled 87A and 93I using the dynamic
programming algorithm, and then matched these fun-
dus curves using the induced Frenet distances. Shown
in the top row of Figure 1 are the different fundus beds
on the two brains 87A and 93I generated by the
dynamic programming algorithm (Fig. 1A, B). Shown
in Figure 1C is a demonstration of the dynamic
programming algorithm handling the bifurification of
the Sylvian fissure in the Visible Human with different
sets of start and end points. The bottom row of Figure 1
shows the matching for superior temporal sulcus
between the brains 87A and 93I. The bipartite graph
matching algorithm (Appendix) was used to minimize
the distance rD. The parameters were chosen so that
matching was based on speed for Figure 1A (a 5 1,
b 5 0, c 5 0), curvature for Figure 1B (a 5 0, b 5 1,
c 5 0), and torsion for Figure 1C (a 5 0, b 5 0, c 5 1).
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APPENDIX

BIPARTITE MATCHING

For the implementation, the target curve a is sampled
with n equally spaced points and the template curve b
is sampled with m points (m is approximately N(n 2 1),
where N is the spacing between the samples in the
target). The neighborhood of each point i in the target
curve is defined to be all points j [ b such that 0 i 2 j 0 ,
N. We now have a bipartite weighted graph in which
there are two distinct set of nodes (samples), and all
edges in the graph connect two samples i [ a, j [ b
where j is defined to be a neighbor of i. The weights on
the edges are defined by:

w(i, j) 5 a[na(i) 2 nb(j)]2 1 b[na(i)ka(i)

2 nb(j)kb(j)]2 1 c[na(i)ta(i) 2 nb(j)tb(j)]2.

Let i represent one of the n samples in the target. For
each such sample, there is an associated cost array,
where cost[i, j] 5 w(i, j) if the edge exists (j is in the
neighborhood of i). cost[i, j] 5 ` if the edge does not
exist. There is also a prefer[i, k] array for each sample i
in the target, which contains the indices of the template
samples j sorted by their costs in ascending order. For
example, if minjcost[i, j] 5 j8 then prefer[i, 1] 5 j8, i.e., if
j8 is the template point (among all the template points j)
for which the cost function for the target point i is
minimized, then j8 becomes the first point on point i’s
preference list. We also need to keep track of how far
down each point in the target has progressed in its
preference list. This is handled by the index[i] array,
initialized to 1. The current match in the template
assigned to point i is stored in the array match[i]. The
algorithm proceeds as follows:

1. Initialize: index[i] 5 1 ;i [ 1, . . . n, match[1] 5
prefer[1, 1]

2. for i 5 2 to n do
repeat

isLegal 5 FALSE
match[i] 5 prefer[i, index[i]]
if match[i] . match[i 2 1]

isLegal 5 TRUE
else

find all p and q such that
*p $ index[i 2 1] and q $ index[i] where
(p, q) Þ (match [i 2 1], match[i])
*match[i] # prefer[i 2 1, p], prefer[i, q] #
match[i 2 1] and

di21(p) 5 cost[i 2 1, match[i 2 1]] 2 cost[i 2 1,
prefer[i 2 1, p]
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di(q) 5 cost[i, match[i]] 2 cost[i, prefer[i, q]])
D(p, q) 5 di21(p) 1 di(q)
p* 5 argminpD(p, q)
q* 5 argminqD(p, q)
index[i 2 1] 5 p*
index[i] 5 q*
if i Þ 1 i 5 i 2 1

until isLegal 5 TRUE.

The algorithm assigns each sample in the target the
match with the lowest possible cost. If the match does
not violate the diffeomorphism, the inner loop termi-
nates. If it does, the algorithm finds the next match that
does not violate the diffeomorphism for the last two
points and maintains the lowest cost constraint. It then
steps back to check if the new match violates the
diffeomorphism for the previous points.
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