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Appendix A 

The Chapman-Kolmogorov Example of computing probabilities  

The transition intensities, ( )jk t , often termed the rates or force of transmission for infectious 

diseases, from state j  to k  is defined as  
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where the time interval is defined by ( , )t t t and the transition states take the values 

1,2,3,4,5j  1,2,3,4,5k  and which satisfies these conditions: 0 for all jk
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diagonal entries are defined by conversion as ( ) ( ) for all jj jk
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from state j  to k   is defined by
jkp . Once the transition intensity matrix, ( )jkP t , is known, 

transition probabilities can be estimated by simplifying a set of differential equation known as 

the Kolmogorov-Chapman differential equations defined as: 
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where z is the pass-through state for a transition j  to k  , that is j z k   . 

For this current study, a five-state time homogenous model was assumed of which the states 

were defined based on WHO clinical cut off points for ART initiation. At any given time point, 

the individual state is defined by four CD4 cell counts states or whether the patient is dead (fifth 
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state) as illustrated in Figure 1 of the main manuscript. The four CD4 states are bidirectional, 

meaning a patient can make a backward or forward movement from these states while the fifth 

state is absorbing. Also, an individual can be in any of these states making movements, or some 

may not make any transitions from these states; hence they remain in the same state over time. 

To understand the model formulation, we assumed that between two time points ( , )t t t , a 

transition occurs from state j to state k . Secondly, if a patient makes a transition with a rate of jk  

where 1k j  the patients would have indicated a positive movement as he/she would have 

moved from a bad to a good state. Practically, regarding ART uptake, such transitions can be 

explained by treatment efficacy; hence a patient would have shown immune recovery. This is 

termed backward transition, and it is a good sign for ART efficacy. Reversely, a patient can 

make a transition with a rate of jk  where 1k j  . This forward movement is alarming in ART 

since it is a sign of immune deterioration. This can be a result of ART defaulting, adherence 

issues and treatment failure in some cases. Patients would have moved to a lower CD4 cell 

count, and it is a cause of concern when monitoring ART patients. Not all model states are 

bidirectional, the transition from any of the four states (1, 2, 3, 4)  to state 5 (absorbing) at a rate 

of  jk  where 5k  can occur as well . Lastly, an individual can remain in the same state over 

time at a rate of jj j    . From these background assumptions, the transition rate matrix ( ( ))Q t  

for the prosed model displayed in Figure 1 can be written as: 
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Once there is a complete transition intensity matrix, as shown above, the transition probabilities 

matrix can be estimated using the Chapman-Kolmogorov forward differential equations. These 

equations generally link the relationship between the transition intensities and the transition 

probabilities.   Employing this technique, yield the following set of equations:  
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These displayed equations (3 to 6), represent the transition probabilities and affirms the transition 

scenarios of bidirectional for state 1, 2, 3 and 4 while equation (7) represents the absorbing state 

transitions. 

An example of the Chapman –Kolmogorov equation in relation to this study for a unique 

solution which can be recovered from the transition intensities through the product integration, to 

determine the probability to move from state 1 to state 5, i.e. dying from state 1 will be: 

15( )t xP  at a given age  x  will be:            

15 11 15 12 25 13 35 14 45 15 55( . ) ( . ) ( . ) ( . ) ( . )dt t x t x dt x t t x dt x t t x dt x t t x dt x t t x dt x tP P P P P P P P P P P              (8) 
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since a dead person stays as such, substituting these into equation (8) above gives: 
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Taking the 
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Therefore, 
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can be solved by a separate method and integration factor method and can be simplified in 

Bayesian WinBUGS software.
 
However, using some properties of occupancy and that exit from 

a state is the negation of that, this expression can be shown to be: 
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