S2 Appendix - Construction of the model likelihood function

The data we used in model calibration can be categorized into: time-series data $z_{ts}(t) = [z_{HCC}(t) \ z_{hepc}(t)]'$, (for $t = 0, \dots, 14$) and liver fibrosis distribution data $z_F = [z_{F_0}, \dots, z_{F_4}]'$. We let $\mathbf{z} = [z_{ts}(0)', \dots, z_{ts}(14)', z_F']'$.

The likelihood function $L(M|\mathbf{z}, V)$ is the probability of observing the data vector \mathbf{z} given the parameter vector of unknown parameters M and uncertain parameters V. This likelihood function can be decomposed into a product of likelihood functions for the time series data ($L_{ts}(M|z(0), \dots, z(14), V)$) and for the fibrosis distribution data ($L_F(M|z_{F_0}, \dots, z_{F_4}, V)$). Formally:

$$L(M|\mathbf{z}, V) = L_F(M|z_{F_0}, \cdots, z_{F_4}, V)L_{ts}(M|z_{ts}(0), \cdots, z_{ts}(14), V)$$

To construct L_{ts} , we make use of the definitions of the observables in (6) and (9). We assume that, for each t, $z_{HCC}(t)$ follows a Poisson distribution with mean $y_{HCC}(t)$ and $z_{hepc}(t)$ follows another Poisson distribution with mean $y_{hepc}(t)$. The number of HCC diagnoses $z_{HCC}(t)$ conditional upon $y_{HCC}(t)$ can be assumed to be independent of the number of diagnoses $z_{hepc}(t)$ conditional upon $y_{hepc}(t)$. For the time series data, the likelihood function is

$$L_{ts}(M|z(0), \cdots, z(14), V) = \prod_{t=0}^{14} \left(L_{HCC}(y_{HCC}(t)|z_{HCC}(t), V) \cdot L_{hepC}(y_{hepC}(t)|z_{hepC}(t), V) \right)$$

where, for
$$j = HCC$$
, $hepC$, $L_j(y_j(t)|z_j(t), V) = \frac{y_j(t)^{z_j(t)}}{z_j(t)!} \exp(-y_j(t))$.

To construct L_F , we use the definitions of the observables in (7) and (8). Let $Y_{CHC} = \sum_{t=0}^{14} y_{CHC}(t)$ and let $Y_{F_i} = \sum_{t=0}^{14} y_{F_i}(t)$ for i = 0,1,2,3,4. Given Y_{CHC} and z_{F_i} from S5 Table, we expect that, on average, $z_{F_i}Y_{CHC}$ (±25%) CHC diagnoses at fibrosis level F_i over the years $t = 0, \dots, 14$. The model, conditioned on M and V, estimates Y_{F_i} CHC diagnoses at fibrosis level F_i over the years $t = 0, \dots, 14$. We model Y_{F_i} as being normally distributed around a mean of $z_{F_i}Y_{CHC}$ with variance $\sigma_{F_i}^2$. Taking the ±25% error in the mean

as being equal to two standard deviations, we set $\sigma_{F_i} = \frac{1}{8} z_{F_i} Y_{CHC}$. The contribution to the model likelihood arising from fibrosis distribution data therefore satisfies

$$L_F(M|z_{F_0}, \cdots, z_{F_4}, V) \propto \prod_{i=0}^4 \exp\left(-\left(\frac{Y_{F_i} - z_{F_i}Y_{CHC}}{2\sigma_{F_i}^2}\right)^2\right).$$