S3 Appendix - Details of model fitting algorithm.

Algorithm 1: Algorithm to obtain a distribution of calibration parameter sets M for a single birth cohort. **Input:** Equations (12) and (13). Parameter distributions $P(V)$. Calibration parameter prior distributions $P(M)$. Calibration data in S4 Table and S5 Table. **Output:** Collection of parameter sets S , sampled from $P(M, V|z)$. 1 Initialize K_1 ← 10⁴, K_2 ← 10⁶, K_3 ← 10⁶ 2 // Stage 1 - Obtain posteriors conditioned on V 3 **for** $k = 1$ **to** $k = K_1$ **:** 4 | Initialize $c_k \leftarrow 1$ 5 $|V_k \leftarrow$ Sample from $P(V)$ 6 $M_{k,1} \leftarrow$ Sample from $P(M)$ $\begin{array}{c} 7 \\ 8 \end{array}$ **for** $j = 2$ **to** $j = K_2$ **:**
8 | $M_i \leftarrow$ Sample from **:** //Start Metropolis-Hastings 8 $\parallel M_j \leftarrow$ Sample from proposal distribution $\rho(M_j|M_{k,c_k})$ 9 $|\mid r \leftarrow$ Sample from Uniform(0,1) 10 **if** $a(M_j|M_{k,c_k}) \geq r$: // M_j acceptance test [\(S-1,](#page-1-0) S3 Appendix) 11 $|| \quad c_k \leftarrow c_k + 1$ //Update no. accepted parameter sets 12 $|| \big| M_{k,c_k} \leftarrow M_j$ //Assign accepted sample to M_{k,c_k} 13 // Stage 2 – Marginalization over 14 Initialize $S \leftarrow \emptyset$ 15 **for** $k = 1$ **to** $k = K_3$ **:** 16 V_{k^*} ← Sample $\{V_1, \dots, V_{K_1}\}$ $\{V_{k^*}\}$ from $P(V)$ 17 M_{k^*,c^*} ← Sample ${M_{k^*,c_1}, \cdots, M_{k^*,c_k}}$ //Sample M_{k^*,c^*} from $P(M|z, V_{k^*})$ 18 $\left[\mathcal{S} \leftarrow \mathcal{S} \cup \left[V_{k^*}, M_{k^*,c^*}\right]'\right]$

The Metropolis-Hastings algorithm [7] is implemented in the inner for loop of Algorithm 1. The algorithm is initiated with a vector of calibration parameters $M = M_1 = \begin{bmatrix} m_{11} & \cdots & m_{1j} \end{bmatrix}$ that is obtained by sampling the prior distributions in Table 1. Next, in the inner loop, the algorithm samples a new vector of calibration parameters M_2 from Table 1 conditional upon M_1 . The probability distribution $\rho(M_2|M_1)$ used to propose M_2 when the initial model is M_1 is given by

$$
\rho(M_2|M_1) = \prod_{j=1}^{J} \rho_j(m_{2_j}|m_{1_j})
$$

where $\rho_j(m_{2_j}|m_{1_j})$ is a normal distribution with a domain limited to the parameter's allowable values.

Once model M_2 is proposed, the algorithm accepts it as the next step in the Markov chain with probability $a(M_2|M_1)$. From [7], this acceptance probability is given by

$$
a(M_2|M_1) := \min\left(1, \frac{\rho(M_1|M_2)P(M_2|z, V_k)}{\rho(M_2|M_1)P(M_1|z, V_k)}\right)
$$
 S-1

If the model M_2 is accepted, it is appended to the collection of accepted models under the condition $V =$ V_k . Otherwise M_2 is discarded. A new iteration of the inner loop of Algorithm 1 then begins.