SUPPORTING INFORMATION

(PLoS ONE)

Fatty acid profile of Romanian's common bean (*Phaseolus vulgaris* L.) lipid fractions and their complexation ability by β-cyclodextrin

Ioan David¹[¶], Manuela D. Orboi²[¶], Marius D. Simandi¹, Cosmina A. Chirilă¹, Corina I. Megyesi¹, Laura Rădulescu¹, Lavinia P. Drăghia³, Alexandra T. Lukinich-Gruia³, Cornelia Muntean^{4,5}, Daniel I. Hădărugă⁶, Nicoleta G. Hădărugă^{1*}

¹ Department of Food Science, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timişoara, Timişoara, Romania

² Department of Economics and Company Financing, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timişoara, Timişoara, Romania

³ Centre for Gene and Cellular Therapies in the Treatment of Cancer – OncoGen, Clinical County Hospital of Timişoara, Timişoara, Romania

⁴ Department of Applied Chemistry and Engineering of Inorganic Compounds and Environment, Polytechnic University of Timişoara, Timişoara, Romania

⁵ Research Institute for Renewable Energy, Polytechnic University of Timişoara, Timişoara, Romania

⁶ Department of Applied Chemistry, Organic and Natural Compounds Engineering, Polytechnic University of Timişoara, Timişoara, Romania

* Corresponding author

E-mail: nico_hadaruga@yahoo.com (NGH)

[¶] These authors contributed equally to this work. They are both principal authors.

Gas chromatography – mass spectrometry (GC-MS) data for the derivatized common bean lipid fractions

Figure A. Gas chromatogram from the GC-MS analysis of the derivatized lipid fraction of beans (code CBO-NE, duplicate "a"; raw – top, and encapsulated - bottom)

Figure B. Gas chromatogram from the GC-MS analysis of the derivatized lipid fraction of beans (code CBO-NE, duplicate "b"; raw – top, and encapsulated - bottom)

Figure C. Gas chromatogram from the GC-MS analysis of the derivatized lipid fraction of beans (code CBO-SW, duplicate "a"; raw – top, and encapsulated - bottom)

Figure D. Gas chromatogram from the GC-MS analysis of the derivatized lipid fraction of beans (code CBO-SW, duplicate "b"; raw – top, and encapsulated - bottom)

Abundance

Figure E. MS spectra of myristic acid (methyl ester) from the GC-MS analysis of the derivatized beans lipid fractions (experimental – top and from the NIST database – bottom)

(mainlib) Methyl tetradecanoate

Figure F. MS spectra of petroselinic acid (methyl ester) from the GC-MS analysis of the derivatized beans lipid fractions (experimental – top and from the NIST database – bottom)

Figure G. MS spectra of pentadecanoic acid (methyl ester) from the GC-MS analysis of the derivatized beans lipid fractions (experimental – top and from the NIST database – bottom)

(mainlib) Pentadecanoic acid, methyl ester

101 129 15

Figure H. MS spectra of palmitoleic acid (methyl ester) from the GC-MS analysis of the derivatized beans lipid fractions (experimental – top and from the NIST database – bottom)

Figure I. MS spectra of palmitic acid (methyl ester) from the GC-MS analysis of the derivatized beans lipid fractions (experimental – top and from the NIST database – bottom)

(replib) Heptadecanoic acid, methyl ester

Figure J. MS spectra of margaric acid (methyl ester) from the GC-MS analysis of the derivatized beans lipid fractions (experimental – top and from the NIST database – bottom)

Figure K. MS spectra of linoleic acid (methyl ester) from the GC-MS analysis of the derivatized beans lipid fractions (experimental – top and from the NIST database – bottom)

(replib) 9,12,15-Octadecatrienoic acid, methyl ester, (ZZZ)-

Figure L. MS spectra of α-linolenic acid (methyl ester) from the GC-MS analysis of the derivatized beans lipid fractions (experimental – top and from the NIST database – bottom)

Abundance

m/ z-->

Figure M. MS spectra of oleic acid (methyl ester) from the GC-MS analysis of the derivatized beans lipid fractions (experimental – top and from the NIST database – bottom)

Figure N. MS spectra of elaidic acid (methyl ester) from the GC-MS analysis of the derivatized beans lipid fractions (experimental – top and from the NIST database – bottom)

(replib) Octadecanoic acid, methyl ester

Figure O. MS spectra of stearic acid (methyl ester) from the GC-MS analysis of the derivatized beans lipid fractions (experimental – top and from the NIST database – bottom)

Figure P. MS spectra of arachidic acid (methyl ester) from the GC-MS analysis of the derivatized beans lipid fractions (experimental – top and from the NIST database – bottom)

Figure Q. MS spectra of behenic acid (methyl ester) from the GC-MS analysis of the derivatized beans lipid fractions (experimental – top and from the NIST database – bottom)

Abundance

100-) O (replib) Tricosanoic acid, methyl ester

Figure R. MS spectra of tricosanoic acid (methyl ester) from the GC-MS analysis of the derivatized beans lipid fractions (experimental – top and from the NIST database – bottom)

Figure S. MS spectra of lignoceric acid (methyl ester) from the GC-MS analysis of the derivatized beans lipid fractions (experimental – top and from the NIST database – bottom)

Fourier transform infrared spectroscopy (FTIR) analysis of β-cyclodextrin/common beans oil complexes

Figure T. Fourier transform infrared spectroscopy (FTIR) data for CBO-NE (blue), β-CD (red) and β-CD/CBO-NE complex (green) (duplicates "b")

Figure U. Fourier transform infrared spectroscopy (FTIR) data for CBO-SW (blue), β-CD (red) and β-CD/CBO-SW complex (green) (duplicates "b")

Powder X-Ray diffractometry (PXRD) analysis of β-cyclodextrin/common beans oil complexes

Figure V. Powder X-Ray diffractometry (PXRD) data for β-CD (blue), β-CD/CBO-NE complex (green), β-CD + CBO-NE physical mixture (red) (duplicates "b")

Figure W. Powder X-Ray diffractometry (PXRD) data for β -CD (blue), β -CD/CBO-SW complex (green), β -CD + CBO-SW physical mixture (red) (duplicates "b")

Thermogravimetry-Differential Thermogravimetry (TG-DTG) data of β-cyclodextrin/common beans oil complexes (duplicates "b")

Figure X. Thermogravimetry-differential thermogravimetry (TG-DTG) analysis of β-cyclodextrin (β-CD, duplicate "b")

Figure Z. Thermogravimetry-differential thermogravimetry (TG-DTG) analysis of β-cyclodextrin / common beans (South-West) oil complex (β-CD / CBO-SW, duplicate "b")

Differential Scanning Calorimetry (DSC) data of βcyclodextrin/common beans oil complexes (duplicates "b")

Figure AA. Differential scanning calorimetry (DSC) analysis of β-cyclodextrin (β-CD, duplicate "b")

Figure AB. Differential scanning calorimetry (DSC) analysis of β-cyclodextrin / common beans (North-East) oil complex (β-CD / CBO-NE, duplicate "b")

Figure AC. Differential scanning calorimetry (DSC) analysis of β-cyclodextrin / common beans (South-West) oil complex (β-CD / CBO-SW, duplicate "b")