Pd-Catalyzed arylation of linear and angular spirodiamine salts under aerobic conditions

Sean W. Reilly,^a Nikaela W. Bryan,^b Robert H. Mach^a*

^aDepartment of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA ^bDepartment of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA. Supporting Information

Table of Contents

I.	General Details	S1
II.	Characterization of Arylspirodiamine Compounds	
III.	References.	
IV.	Spectroscopic Data	S9-99

I. General Details

All chemical compounds were purchased and used without further purification. NMR spectra were taken on a Bruker DMX 500 MHz. Mass spectroscopy data were acquired using ESI technique on 2695 Alliance LCMS. All other commercial reagents were purchased and used without further purification. Purification of organic compounds were carried out on a Biotage Isolera One with a dual-wavelength UV-VIS detector. Chemical shifts (δ) in the NMR spectra (¹H and ¹³C) were referenced by assigning the residual solvent peaks.

General procedure for all reactions: On a bench top, a 40 mL reaction vial was charged with substrate (0.50 mmol), spirodiamine alkane (0.55 mmol), base (3.0 mmol), $Pd_2(dba)_3$ (0.005 mmol), RuPhos (0.01 mmol), and dioxane (1.50 mL). The vial was then closed and sonicated for approximately 1 minute. The vial was then placed in a preheated 100 °C oilbath and stirred vigorously for 20 min. After the allotted reaction time, the reaction vessel was taken out of the oil bath, and solvent was removed under reduced pressure resulting in a crude oily residue. The crude product was purified by flash chromatography on silica gel eluding with a 10-60% gradient of hexanes and EtOAc. Products from Scheme 2, 4a-i, were eluded with a 20-80% gradient of hexanes and EtOAc. It should be noted, optimal yields of the catalytic products were obtained when using a fresh bottle of NaO-*t*Bu.

II. Characterization Data of Piperazine Compounds

CDCl₃)
$$\delta$$
 156.0, 11:
28 4: FSLMS (m/z)

Yield: 0.129 g (75%); white solid¹

. . . .]

¹**H** NMR (500 MHz, CDCl₃) δ 7.10 (dt, J = 1.36, 8.53, 1H), 7.05 (d, J = 7.42, 1H), 6.81 (d, J = 8.00, 1H), 6.76 (t, J = 7.37, 1H), 4.60 (d, J = 10.19, 2H), 4.05 (t, J = 7.00, 2H), 3.96 (d, J = 10.32, 2H), 2.45 (t, J = 6.94, 2H), 2.32 (s, 3H), 1.48 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 156.5, 145.7, 132.7, 126.8, 125.0, 119.4, 114.3, 79.8, 66.2, 59.4 (bs), 50.4, 31.1, 28.5, 20.3; ESI-MS (m/z): 289.13 [M+H]

6a

6b

6c

6d

6f

6g

BocN

Yield: 0.101 g (32%); beige white solid ¹H NMR (500 MHz, CDCl₃) δ 6.85 (dt, J = 3.67, 8.93, 2H), 6.54 (dt, J = 3.64, 8.98, 2H), 4.48 (dd, J = 0.78, 10.02, 2H), 3.95 (d, J = 10.18, 2H), 3.76 (s, 3H), 3.66 (t, J = 6.88, 2H), 2.47 (t, J = 6.78, 2H), 1.47 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 156.5, 152.7, 141.3, 115.2, 113.5, 79.7, 65.0, 59.3 (bs), 55.8, 46.4, 29.5, 28.5; ESI-MS (m/z): 305.28 [M+H]

Yield: 0.217 g (77%); beige white solid

¹**H** NMR (500 MHz, CDCl₃) δ 6.96 (dt, J = 1.53, 8.82, 2H), 6.50 (m, 2H), 4.47 (d, J = 10.11, 2H), 3.95 (d, J = 10.12, 2H), 3.66 (dt, J = 1.34, 6.84, 2H), 2.47 (t, J = 7.00, 2H), 1.46 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 157.3 (d, $J_{CF} = 236.61$), 156.5, 143.4 (d, $J_{CF} = 1.48$), 116.1 (d, $J_{CF} =$ 22.27), 113.0 (d, $J_{CF} = 7.45$), 79.9, 65.0, 59.3 (bs), 46.5, 29.4, 28.5; ESI-MS (m/z): 293.13 [M+H]

Yield: 0.283 g (93%); clear viscous oil

¹**H** NMR (500 MHz, CDCl₃) δ 7.12 (t, J = 7.24, 2H), 6.86 (m, 2H), 3.90 (q, J = 8.62, 12.24, 4H), 3.34 (s, 2H), 3.25 (t, J = 6.82, 2H), 2.31 (s, 3H), 2.15 (t, J = 6.92, 2H), 1.47 (s, 9H). ¹³**C** NMR (125 MHz, CDCl₃) δ 156.4, 148.6, 131.8, 129.1, 126.5, 121.1, 116.0, 61.42, 59.8 (bs), 50.1, 39.7, 36.7, 28.5, 20.3; **ESI-MS** (m/z): 303.27 [M+H]

Yield: 0.164 g (54%); white solid

¹**H** NMR (500 MHz, CDCl₃) δ 6.86 (dt, J = 3.78, 8.93, 2H), 6.51 (dt, J = 3.65, 9.04, 2H), 3.91 (d, J = 8.67, 2H), 3.85 (d, J = 8.67, 2H), 3.75 (s, 3H), 3.40 (s, 2H), 3.31 (t, J = 6.86, 2H), 2.18 (t, J = 6.85, 2H), 1.45 (s, 9H). ¹³**C** NMR (125 MHz, CDCl₃) δ 156.3, 151.3, 142.6, 115.1, 112.6, 79.5, 59.3 (bs), 58.3, 56.0, 47.2, 39.9, 36.3, 28.4; **ESI-MS** (m/z): 319.29 [M+H]

Yield: 0.273 g (86%); white solid

¹**H** NMR (500 MHz, CDCl₃) δ 6.94 (dt, J = 3.73, 8.83, 2H), 6.44 (m, 2H), 3.92 (d, J = 8.63, 2H), 3.86 (d, J = 8.63, 2H), 3.40 (s, 2H), 3.32 (t, J = 6.79, 2H), 2.19 (t, J = 6.82, 2H), 1.45 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 156.3 (d, $J_{C,F}$ = 261.87), 156.1, 144.3 (d, $J_{C,F}$ = 1.30), 115.7 (d, $J_{C,F}$ = 22.02), 112.2 (d, $J_{C,F}$ = 7.24), 79.6, 59.3 (bs), 58.1, 47.1, 39.9, 36.3, 28.4; **ESI-MS** (m/z): 307.28 [M+H]

Yield: 0.146 g (48%); clear oil

¹**H NMR** (500 MHz, CDCl₃) δ 7.13 (m, 2H), 6.87 (m, 2H), 3.35 (m, 6H), 3.25 (m, 2H), 2.33 (s, 3H), 1.95 (m, 2H), 1.89 (m, 2H), 1.48 (s, 9H). ¹³**C NMR** (125 MHz, CDCl₃) δ 154.9, 148.8, 131.9, 129.2, 129.1, 126.6, 121.0, 116.1, 79.4, 79.3, 60.8, 60.6, 56.5, 55.9, 53.6, 50.4, 48.6, 47.8, 45.5, 36.5, 35.8, 35.5, 35.4, 28.7, 20.5; **ESI-MS** (m/z): 317.28 [M+H]

Yield: 0.073 g (22%); clear oil

¹H NMR (500 MHz, CDCl₃) δ 6.85 (m, 2H), 6.51 (m, 2H), 3.75 (s, 3H), 3.49 (m, 2H), 3.37 (m, 3H), 3.31 (m, 1H), 3.20 (m, 2H), 1.96 (m, 3H), 1.88 (m, 1H), 1.47 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 154.7, 151.1, 142.8, 115.1, 112.4, 79.3, 57.7, 56.0, 55.2, 53.4, 48.8, 48.0, 47.6, 45.3, 45.0, 36.0,

¹**H NMR** (500 MHz, CDCl₃) δ 6.94 (m, 2H), 6.44 (m, 2H), 3.47 (m, 2H), 3.42 (m, 3H), 3.28 (m, 1H), 3.18 (m, 2H), 2.02 (m, 1H), 1.94 (m, 2H), 1.82 (m, 1H), 1.47 (s, 9H). ¹³**C NMR** (125 MHz, CDCl₃) δ 156.0 (d, $J_{C,F}$ = 234.25), 154.6, 144.5, 115.7 (d, J_{CF} = 22.18), 112.1 (d, J_{CF} = 7.21), 79.4, 79.3, 57.5, 55.8, 55.1, 48.9, 48.0, 47.5, 45.3, 45.0, 35.8, 35.1, 34.9, 28.6;

¹**H NMR** (500 MHz, CDCl₃) δ 7.10 (dt, J = 1.09, 8.47, 1H), 7.03 (d, J =7.47, 1H), 6.75 (dt, J = 0.85, 7.39, 1H), 6.48 (dd, J = 0.44, 7.89, 1H), 3.68 (s, 4H), 3.41 (t, *J* = 5.65, 4H), 2.23 (s, 3H), 1.78 (t, *J* = 5.65, 4H), 1.47 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 154.9, 152.5, 142.3, 115.0, 114.7, 79.8, 68.5, 67.2, 55.8, 45.5, 41.1 (bs), 34.8, 28.6, 27.7; ESI-MS (m/z):

¹**H NMR** (500 MHz, CDCl₃) δ 6.83 (dt, J = 3.47, 8.87, 2H), 6.43 (dt, J = 3.37, 8.91, 2H, 3.91 (d, J = 8.67, 2H), 3.75 (s, 3H), 3.40 (s, 2H), 3.39 (m, 4H), 1.76 (m, J = 6.85, 2H), 1.46 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 154.9, 152.1, 146.5, 114.8, 112.5, 79.5, 62.1, 55.8, 41.2 (bs), 35.7, 34.6, 28.5; ESI-MS (m/z): 277.26 [M-CCH₃+H], 333.30 [M+H]

¹**H NMR** (500 MHz, CDCl₃) δ 6.91 (dt, J = 2.21, 8.75, 2H), 6.36 (m, 2H), 3.58 (s, 4H), 3.39 (t, J = 5.66, 4H), 1.77 (t, J = 5.70, 4H), 1.46 (s, 9H). ¹³C **NMR** (125 MHz, CDCl₃) δ 156.9 (d, $J_{C,F}$ = 233.97), 154.9, 148.4 (d, $J_{C,F}$ = 1.73), 115.6 (d, J_{CF} = 22.22), 112.2 (d, J_{CF} = 7.73), 79.6, 62.0, 41.0 (bs),

¹**H NMR** (500 MHz, CDCl₃) δ 7.06 (t, J = 7.86, 2H), 6.87 (d, J = 7.84, 1H), 6.78 (t, J = 7.35, 1H), 4.09 (bs, 2H), 3.99 (t, J = 6.87, 2H), 2.72 (bs, 2H), 2.33 (s, 3H), 2.10 (t, J = 7.32, 2H), 1.98 (bs, 2H), 1.80 (d, J = 12.19, 2H), 1.46 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 154.8, 146.3, 132.0, 128.6, 126.0, 120.3, 117.9, 79.6, 70.5, 47.5, 40.8 (bs), 34.7, 28.5, 27.9,

¹**H NMR** (500 MHz, CDCl₃) δ 6.78 (dt, J = 3.53, 8.97, 2H), 6.46 (dt, J = 3.47, 8.90, 2H), 4.11 (bs, 2H), 3.73 (s, 3H), 3.66 (t, J = 7.10, 2H), 2.71 (m, 2H), 2.11 (t, J = 6.94, 2H), 2.04 (m, 2H), 1.70 (d, J = 12.47, 2H), 1.47 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 154.9, 150.1, 131.5, 126.5, 124.8, 119.2, 112.7, 79.6, 63.0, 40.9 (bs), 35.7, 34.2, 28.5, 19.7; ESI-MS (m/z):

III. References

- 1. J. Burkhard and E. M. Carreira, *Org. Lett.*, 2008, **10**, 3525.
- 2. A. B. Pinkerton, P. M. Hershberger, S. Peddibhotla, P. R. Maloney and M. P. Hedrick, "Small molecule agonists of neurotensin receptor 1," WO2015200534A3, 2016.
- 3. K. Yamamoto, S. Aratake, K. Hemmi, M. Mizutani and Y. Seno, "Chemokine receptor activity regulator," EP2781216A1, 2014.
- 4. T. Harrison, G. Trevitt, P. R. Hewitt, C. R. O'dowd, F. Burkamp, A. J. Wilkinson, S. D. Shepherd and H. Miel, *"Pyrimidopyrimidinones useful as wee-1 kinase inhibitors,"* WO2015092431A1, 2015.
- 5. T. Endo, R. Takahashi, H. Tanaka and T. Kunigami, "Diazaspiroalkane derivative," WO2010123018A1, 2010.
- 6. C. L. Cioffi, N. Dobri, E. E. Freeman, M. P. Conlon, P. Chen, D. G. Stafford, D. M. C. Schwarz, K. C. Golden, et al., *J. Med. Chem.*, 2014, **57**, 7731.
- 7. S. Schunk, M. Reich, S. Oberborsch, M. Engels, T. Germann, R. Jostock and C. Kneip, "Substituted spiro-amide compounds," WO2010108651A1, 2010.

IV. Spectroscopic Data

180	
170	
160	
150	148.868
140	
130	
120	126.388 120.768 116.017
110	110.017
100	
90	
80	79.347
70	
60	61.584
50	
40	41.382 40.280
30	28.514
20	
10	
0 ppm	

