Supplementary Table 1: Differences in deuteration levels (% of maximal deuteration) of LXRα and LXRβ peptides upon ligand binding. Related to Figure 2

Deuterium uptake values for all peptides were corrected to back exchange using the fully deuterated controls. Missing peptides are shown in dark grey. HDX-MS measurements were performed in triplicates and the average values are shown. Color scheme is identical to F 10.091317 WAT25401 GN3965 A2876 26 22 j23 24 N2 2 <u> ۲</u> BNSI ΔHDX (apo - ligand), % Secondary Structure 30 sec 600 sec 3 Peptide LXRo 200-210 H1 3,7 -1,9 2,3 -3,5 2.3 4,9 0.2 5.3 -3,3 0.7 4.8 -2.0 -1,4 -1,7 -2,1 7.5 2.3 -12,1 -4.3 1.5 -0.3 9,1 2.3 -1.6 7. 200-213 H1 0,0 0,9 -3.2 -2,0 -4,7 -5,4 -0.2 -0,7 -1.6 -3,1 4,1 1,4 6.3 2. -1,4 -1,7 -7,3 -3,3 2,9 0, 2,4 0,9 -2,0 -2,0 8 204-213 H1 -1.6 2.0 -2.9 0.9 -0,5 -2,1 -3,5 1.4 1.0 1.3 2.7 2.0 4,9 4.5 -2,4 -0,1 -5,6 -2,8 2,3 0.7 7,5 10,7 -2,2 -1,9 6 207-213 H1 3.8 9.9 -11.0 -3.3 -1.3 0.8 -5.3 -11,3 -12,4 -11.7 -11.0 4.7 3.0 -4.3 -2.1 -6.9 -2,5 2.0 -5.2 -7.0 2.7 6.6 0.3 1.3 9 208-213 H1 -5.7 -2,2 -7,7 -8,8 -47 -0,5 -6.3 -6.4 -7.5 -8,4 1.5 2,7 -5,2 -1,9 -4,2 -2,2 0.7 08 -5.1 -3,8 -6.9 -1.1 11 6.8 5 -12,0 -36,7 -24,7 -13,1 214-219 H1 -10,4 -27,8 -1.6 -14.5 -30,9 -15.4 -12,6 -29,7 -12.0 -27,0 -8.2 -18.2 -8.6 10,0 6,9 -8.4 -7.6 -18,1 -6.7 -10,2 -4 214-233 H1 -8,8 -5,7 -3,6 -4,4 -9,7 -8,5 -12,2 -13,2 -6,2 -11,5 -9,8 -7,9 -7,3 -5,7 -12.6 -11,2 1.8 0,0 -4,5 -2,6 -11,6 -8.2 -6,8 -4,7 -3, 220-233 H1 -2.5 -0.3 03 -39 -27 -70 -20 -13 -67 -49 -39 -3. -1.4 1.1 -20 19 -1.4 1 ' 04 1.4 -20 -47 -1.6 -2.1 -4.4 221-233 H1 -0,5 1,8 -0,3 0,8 0,1 2,2 0,0 1,9 -0,2 -6,0 -5,6 -1,3 -0,2 0,5 -5,2 -4,6 -3,1 -5, 1.1 2.0 1.4 0.0 -0.2 0.6 -1.3 4,3 -2,2 1,6 2,9 -1,0 -2,8 -3,8 226-233 H1 2.8 -1.0 0.9 -0.2 -3.2 -5.0 -4.3 -3,1 -6.0 -3.2 -2.0 -0.9 -2,3 -8.5 -9.1 -14.7 -14.6 -4 234-240 -2,2 -0,2 -8,2 -4,8 -5,5 -4,1 -4,9 -3,9 -3,2 -2,1 -2,9 -3,0 -2,4 -2,4 -2,9 -3,3 0,3 0,5 -0,1 -3,2 -4,5 -0,5 loop H1-H3 -1.6 -1.9 -1. -13.4 234-248 loop H1-H3 4.5 2,9 -2,9 -3.4 -3,1 1,8 -9.9 0.1 -1,1 0.9 -7,4 -3.0 -9,2 -1.8 -11,7 -4.7 -1.9 -1.8 2.3 1.3 -8.7 -5.6 -8.4 -1. 234-254 loop H1-H3, H3 1.7 -8.0 -0.1 -4,7 -0.6 -5.2 -2.6 -9.1 -5.3 -0.4 -3.5 -5.0 -13.9 -19,7 3.4 -3.2 -1.0 -5.4 1.0 -0.1 0.9 -6.3 3.4 1.1 -1. 234-257 loop H1-H3, H3 -6.8 2.7 -7.6 -2.8 -6.1 0,7 -15,0 -0.6 -2,8 -0,5 -9.7 -0,5 -8.7 -2.8 -12.8 -4.8 -8,0 -2,4 0.5 2,1 -10.5 -4.6 -9,0 -7.3 -4, 239-257 loop H1-H3, H3 -6,9 5,5 -9,5 -2,2 -4,2 5,9 -14,0 -0,9 -6,3 -2,0 -16,2 -4,1 -11,1 -5,0 -13,4 -5,5 -10,3 -2,9 0,9 2,9 -10,7 -5,7 -7,5 -1, -9.0 -3.8 0.8 2.0 -2.6 -2.2 -3.8 -10 7 -3.0 -2.8 -2, 241-257 loop H1-H3, H3 0.5 3.5 -3.0 -0.4-0.9 -5.0 -2.8 -3.7 -6.7 -5.7 2.2 0.9 -7.8 -7.1 -2.8 -6.7 -8.9 -2.2 241-259 -01 29 -8.8 -0.8 -4 8 -13 -22 -38 -38 -14 0 -0.9 -16 -02 -0.9 08 -2 loop H1-H3 H3 -51 -31 -44 -15 249-257 H3 -15,6 4 9 -15,6 -6,1 -9,6 0,1 -25,4 -0,2 -7,9 3,1 -16,4 -2,2 -13,0 -3,0 -19,2 -6,6 -18,5 -6,0 -20 3,1 -14,7 -5,6 -15,3 -11,0 -6,1 260-265 H3 -34,5 -42,6 -28,8 -44,3 -41,7 -45,6 -31,3 -46,0 -27,6 -24,3 -24,8 -23,3 -32,1 -27,7 -34,3 -29,9 -31,3 -49,5 -44,9 -77 -31,7 -9,1 -42,9 -34,0 -17, -44 9 261-267 H3 -31 5 -40 3 -267 -40.3 -35.0 -38.3 -31.6 -42 4 -22.7 -35.3 -212 -20 2 -32.9 -28.8 -32.6 -31.9 -307 -40 7 -68 9 -29.0 -18.8 -36 1 -31.7 -20 -32.2 -20. 264-269 H3 -36.0 -31.0 -37.5 -34.2 -34.6 -35.1 -38.1 -25.2 -31.1 -24.0 -15.6 -35.5 -24.9 -35.3 -28.6 -34.1 -34.6 -50.1 -69.5 -30.3 -15.4 -40.3 -30.9 270-275 H3 -32,2 -26,0 -11,9 -27,2 -17,2 -38,1 -27,4 -28,7 -20,7 -25,6 -8,3 -29,4 -18,0 -30,1 -22,1 -17,8 -14,8 -27,5 -10,1 -25,6 -20,0 -11.8 -20.7 -6.4 -11 271-278 H3 -0,5 -5.4 3.5 4,1 -2,2 -8,5 -0,9 -6. -1,2 -7.5 -1,9 -4.9 -2.0 -5.0 -2,2 -4.5 7,1 17,6 -1,2 -7.5 -2,2 -4.6 -1.5 -5,6 -1, 272-278 H3-H4 -0,3 -5,0 3,7 5,0 -1,8 -8,0 -0,2 -5,1 -1,6 -5,5 -1,7 -3,5 -0,8 -4,7 -1,8 -4.4 7,4 16,9 -0,8 -6,1 -1,7 -4.5 -1,7 -5,2 -1, H3-H4 -12,8 -7.8 -2.7 30.8 -10.9 273-278 0.7 -5.8 5,1 6.1 -3,3 -0.2 -11.0 1,1 -12,2 -1.6 -9.5 -2.0 -10,8 14.1 -1.8 -11,9 -3.7 -9.9 -0.7 -2 271-281 H3-H4 0,7 -3,0 6,4 7,0 -2,1 -4,6 -2,4 0,3 -2,6 -2,0 -5,6 -1,5 13,4 19,2 -6,2 -2,2 -3,2 -1, -4.3 -0.2 -5,1 -4,1 -0,2 -5,1 0,4 H3-H4 -0,3 -2,7 -3,0 -2,8 272-281 5.9 6,1 -2,6 -6,1 -2,2 -5.4 -1.8 -5.5 -0,8 -0,1 -3.8 -0.3 -3,4 12,1 15,8 0,4 -5. -1.3 -4.9 0,1 2 279-286 H4-H5 -9,1 -10,4 1,3 -1,5 -0,6 -0,4 -3,2 0,2 -0,9 -2,5 -2,8 -3,2 -3,4 -3,2 2,7 7,4 -0,6 -2,6 -5,3 -5,4 -4,7 -2,8 -2, 2,4 -3,1 H4-H5 12.5 280-290 -0.9 -2, 3.6 41 -0,2 -3,7 -0.4 -5,1 0.4 -5.9 0.5 -3,1 -3,4 -44 -4.2 -43 5.1 -1.1 -4.2 -47 -46 -3.0 -3,0 -2 282-289 H4-H5 7,6 -5,0 -2,7 -3,2 -4,9 -3,0 -1.4 -3.4 3.1 -0.1 -0.9 -3.5 0.0 -3.4 0.0 -2.5 -2.5 -2.9 3.2 16.1 -0.7 -3.6 -3.6 -0.9 -2 -2,8 282-290 H4-H5 -0.9 -3.4 3.6 7.7 0.5 -6,0 0.0 -3.7 0.4 -4.1 1.0 -2,1 -3.2 -4.6 -3.0 -3.2 4.7 18.2 -1.1 -6.0 -3.4 -3.9 -1.1 -2, 285-290 H5 -3,1 -5.7 2.2 6.5 -0.1 -1.3 0.7 -3.0 -0,3 -3.0 -0,3 -2.8 -0,8 -3.2 -2.8 -4.6 2,6 20.7 0.2 -3,6 -1.0 -4.2 -3,8 -1,7 -1, 290-296 H5 -14.6 -34,7 -5.8 -25.6 -176 -22 0 -13.9 -34,4 -12.4 -31.8 -9.2 -21.9 -24.0 -307 -24 6 -31.7 -2.6 -19.1 -14 8 -113 -23.9 -25 5 -21.8 -315 -17, 299-311 H5-Bsheets -9.5 -17.4 -1.3 -12.0 -14.5 -24.6 -10.7 -14.8 -10.4 -18.4 -10.1 -10.7 -14.9 -18.8 -17.1 -26.3 3.2 -8.7 -13.2 -27. -16.5 -21.8 -13.0 -17.2 -4 299-312 H5-βsheets -12,1 -15,6 -3,2 -9,6 -18,6 -25,1 -12,6 -12,9 -10,6 -16,2 -9.8 -7,5 -16.5 -17,2 -18,7 -22,3 2,6 -7,4 -16,9 -29,5 -16,8 -18,1 -15,2 -17,4 -5, 300-311 H5-βsheets -10,5 -18,8 -2,2 -13,7 -15,4 -25,1 -11.3 -15,8 -11,2 -19,5 -11,2 -11,9 -14,9 -17,9 -16,6 -25,4 1,5 -11,4 -14,3 -28, -17,5 -21,7 -14,4 -19,1 -3, -13,3 -10.7 300-312 H5-βsheets -12.8-17.6 -2,8 -17.1 -24.3 -14 7 -16,2 -12,5 -18,8 -11.8 -9,8 -18.1 -19.0-19.4-25.5 1.8 -18.4 -31.4 -12,4 -20,1 -16.0-18,8 -5 -14,4 -20,3 -24,9 -16,7 -8,7 -18,0 -23,5 -13,1 -25,2 -21,3 299-314 H5-Bsheets -17.8 -17.0 -7.5 -15.8 -15.5 -19.2 -15.7 -22.0 -24.0 -0.6 -35.9 -17.0 -19.7 -14.9 -10 299-315 H5-βsheets -21,2 -16,6 -8,9 -15,9 -19,8 -21,4 -18.7 -15,3 -17,0 -21,4 -17.1 -7,7 -24,2 -18,2 -25.2 -24,5 -5,1 -15,1 -29,3 -38.5 -23.7 -17,2 -20,9 -13,3 -11, -16,6 -17,7 -9,0 -18,8 -15,6 -31,3 -13,5 300-315 H5-Bsheets -21.8 -17.0 -9.3 -23.5 -21.6 -19.3 -15.7 -22.5 -16.4 -26.9 -27.6 -25.4 -5.6 -39.9 -25.9 -17.2 -22.3 -11. 312-316 ßsheets -24.9-0.7 -25.9 -18.2 -22.2 -7.0 -28.2 -1.7 -36.6 -15.6 -33.1 -3,2 -38.9 -9.7 -42.5 -15.4 -20.3 -14 3 -46.6 -37.9 -37.5 -6.0 -34.0 -9.3 -18 -12 0 -10.9 -128 -15 -91 -24 7 -13 316-326 **Bsheets-H6** -20.9 -12 4 -16 5 -124 -14.9 -127 -10.3 -117 -207 -119 -25.8 -14 1 -68 -26.5 -27 6 -87 -22.0 -13 1 319-324 -27,8 -14,9 -21,2 -16,1 -15,0 -4,7 -18,7 -9,1 -18,4 -14,8 -25.0 -3,9 -17,1 -16,0 -22,9 -19,1 -10,2 -11,0 -28,5 -29,5 -18,9 -4,8 -27,8 -8,5 -13, **Bsheets-H6** 319-326 -30,7 -22,1 -14,4 -16,7 -23,9 -21,7 -25,9 -19,4 -18,7 -17,8 -5,5 -27,4 -16,6 -29,7 -10,3 -15,7 -27,8 -35,4 -28,2 -15,2 -18 **Bsheets-H6** -17.0 -19.1 -11.3 -24.3320-326 **Bsheets-H6** -30.5 -23.6 -15.2 -19.1 -24 5 -18.1 -29.4 -198 -21.7 -18.8 -21.6 -6.2 -27.2 -16.8 -29.6 -17.2 -10.7 -17 9 -30.7 -37.7 -30.5 -9.9 -33.0 -20.9 -19 -29.5 -22.3 -26.4 -21.7 -24.7 -27.9 -22.0 -11.7 -22.3 -10.3 -19.4 -27.5 -38.5 -32.0 -16.7 -37.6 -21 321-326 **Bsheets-H6** -21.0 -30.1 -20.8 -18 7 -29.7 -35.9 -25.1 -25.4 319-331 -39,8 -29,1 -15.0 -30,2 -19,9 -26,2 -25,4 -7,7 -18,5 -12,6 -17,0 -22,6 -33,8 -29,8 -12,2 **Bsheets-H6** -10.8 -35.3 -26.0-22.0 -35.2 -36.4 -21.0 -32.8 -11.7 -19 -14.0 320-331 **Bsheets-H6** -41.0 -28.5 -16.5 -20.8 -32.7 -19,2 -43.4 -34.7 -33.3 -29,3 -32.6 -37.4 -22.0 -38.5 -23.1 -20.4 -23,1 -35.3 -23.8 -36.2 -14.8 -33.2 -14.2 -19 321-331 ßsheets-H6 -45.4 -29.4 -22,0 -68.0 -418 -43.2 -18,2 -36.9 -12,3 -32.1 -17.4 -34.0 -16,2 -12,1 -14.9 -35.7 -21,9 -35.9 -15,9 -41,3 -19,7 -13 -8,4 -44.1 -44.7 -45.2 -28.9 -11.3 -12.8 -18.1 -49.4 -30.4-36.1 -22.6 -30.6 -6.6 -19.9 -21.9 -19.5 -11.7 -26.9-40.4 -12.2 -29.2 -10.2 -20 326-331 -37.3 -5.1 H6 327-331 H6 -43,8 -31,0 -14,2 -13,5 -37,6 -19,6 -51,6 -29,6 -38,0 -23,5 -31,8 -9.5 -43,9 -21,5 -43,5 -23,5 -19,6 -12,1 -31,9 -5.6 -43,5 -12,8 -32,6 -9,2 -21, -23,1 333-341 H7 -50,0 -17,6 -33,5 -36,2 -50,7 -24,1 -59,3 -24,2 -56,7 -29,1 -36,9 -29,9 -44.7 -29,4 -44.5 -6,4 -22,3 -21,1 -42,2 -29,2 -39,0 -25,0 -43,8 -22, 334-340 H7 -20,2 -51,9 -11,3 -40.8 -21,1 -21,5 -53,5 -19,7 -54,8 -17,0 -43.9 -21,0 -45,6 -14,5 -32,2 2,3 -8,3 -16,1 -47,2 -35,4 -48,4 -27,9 -12, -49, -56,7 H7 -17.4 -44 0 -27.2 -19,2 -47 8 -24.3 334-341 -195 -48 ! -7,1 -31.8 -25.9 -477 -21,0 -42 9 -16.4 -42.3 -32.8 -25.3 -44 4 5,5 -16.2 -410 -22,9 -48 8 -19 H7 -23,0 -47,0 -19,2 -27,3 -44,4 -25,9 -42,6 -13,3 -40,7 -25,3 -20, 335-340 -45.8 -29.6 -22.2 -22.9 -41. -20.4 -38.9 -31.4 2.8 -11.7 -39.5 -17.8 -42.1 -6.8 335-341 H7 -20,3 -48. -3,5 -30,4 -19,9 -50.6 -19,1 -43.2 -16,8 -40.5 -15,6 -33,4 -25,7 -46.4 -24,3 -45.4 6,1 -17,1 -14.5 -46.7 -23.8 -42.1 -16,7 -44.8 -19 336-341 H7 -9,0 -49.6 2,2 -35,0 -17,5 -63,2 -9,9 -49,2 -9,5 -48.6 -9,3 -44.0 -16,5 -52,0 -16,4 -52,2 13,7 -18,3 -14,3 -59,1 -17,0 -50,2 -12,8 -54,4 -14 H7 -28,3 -29,3 -37,0 -22,2 341-348 -18,2 -42,7 -0,2 -23,0 -19,9 -41,8 -17,4 -34,9 -14,4 -36,9 -12,6 -28,2 -35,3 9,5 -13,5 -44,9 -29,4 -33,1 -24,1 -40,0 -24

igure	2

	,								
Ŷ	Left Contraction of the second	7	1°	P	19	P	15	2 ^A	EEC .
С	600 sec	30 sec	600 sec	30 sec	600 sec	30 sec	600 sec	30 sec	600 sec
3	-0,3	6,5	1,3	3,3	2,6	7,4	2,2	2,4	-3,5
1	3,8	4,2	-0,1	-1,1	-1,5	5,9	1,6	2,9	0,5
3 1	4,0	5,3 -1 8	-3.4	-0,6 -4.5	1,∠ -3.4	5,2 5,8	3,0 0,6	4,5	2,2
2	4,4	-0,1	-2,7	-4,6	-1,1	5,5	2,9	2,6	2,1
2	-8,6	0,4	0,5	-8,2	-14,3	-0,4	0,1	-7,5	-12,6
3	-3,8	-0,5	-1,4	-2,1	-3,5	-0,1	-0,5	-4,7	-3,7
5 7	-3,0 -3,1	-2,4	-3,1	2.9	2,2 1.8	3.2	0,0	-1,0	0,9
9	-6,0	-2,1	-2,5	-0,8	-1,4	-6,6	-3,7	-1,4	0,4
0	-1,4	-2,2	-1,5	-2,9	-2,4	-0,3	-1,4	-0,3	0,8
4	-2,1	-5,2	-0,5	0,6	-0,7	-0,4	-2,4	-1,2	-0,2
。 2	-2,1	-1.8	-0,9	0.4	-2,1	-1,3	-0,6	-1,0	-0,8 0.5
2	-1,3	-0,3	-2,5	-0,8	0,6	-1,8	-2,1	-1,7	0,2
5	-3,8	-1,8	-3,0	-0,6	-0,5	0,1	-1,2	-1,0	0,1
4	-5,2	3,1	1,4	-1,8	-0,5	-0,8	-0,7	-0,7	-3,8
9	-2,8 -9.8	-2,7	-3,6	-5.8	-1,1 -0.3	-1,0 -2.3	0,9	-1,8 _9,9	-14 7
6	-11,8	-9,7	-1,1	-5,3	-6,3	-5,4	-2,8	-10,3	-9,9
5	-8,4	-7,5	-1,1	-6,2	-2,2	-4,3	-1,9	-10,2	-5,8
6	-7,4	-9,6	-3,4	-8,7	-0,6	-7,2	-4,5	-12,6	-0,8
5 ⊿	-3,4 -4 1	-1,7	-2,8	-0,6	-3,9	-1,1 -12	-3,2	-0,3	-3,7
5	-5,8	-2,6	-6,3	-0,2	-8,0	-2,5	-9,1	0,8	-4,3
0	-5,6	-2,6	-3,5	-0,1	-2,9	-1,2	-3,0	0,0	-1,3
7	-1,9	-2,0	-4,1	1,4	-2,4	0,3	-2,9	-0,2	-2,2
3	-3,7	-3,2	-3,8 -4.6	-0,3	-1,1	-0,8	-2,2	-0,3	-0,4
4	-3,6	-2,1	-4,0	-0,5	-2,0	-0,6	-1,9	0,0	-1,6
5	-3,5	-2,7	-3,7	0,4	-1,7	-0,9	-2,4	0,3	-1,3
3	-2,9	-0,9	-3,8	-0,4	-3,8	1,8	-0,5	0,7	-1,6
1 1	-14,8	-13,0	-7,1	-5,7	-9,6	-9,3	-6,1 -5.4	-5,5	-11,1
3	-4,6	-10,5	-7,5	-4,8	-4,4	-6,5	-3,4 -4,6	-5,5	-5,6
8	-4,8	-9,9	-7,2	-6,7	-5,0	-9,0	-9,2	-7,2	-6,2
3	-4,9	-6,8	-4,4	-5,2	-4,0	-4,9	-2,6	-6,5	-4,7
2	-5,9 -5.4	-9,8 -10.2	-5,2 -5,3	-4,4 -4.0	-1,5 -2.1	-8,0 -7.4	-4,1 -4.0	-7,5 -8.8	-3,6 -3,8
8	-4,3	-11,4	-5,1	-5,3	-3,5	-8,2	-3,6	-7,6	-3,6
3	-3,8	-8,6	-0,1	-4,3	-0,3	-7,1	-0,3	-11,7	0,0
7	-5,2	-5,8	-1,9	-2,2	0,8	-5,8	-1,7	-3,7	1,0
3 9	-8,3 -6.6	-2,7	-1,4 -2.7	-8,6 -3.8	-3,2	-1,6	2,2 -2.8	-7,3 -9.0	0,0
7	-11,3	-5,9	0,8	-5,4	1,6	-7,5	-4,6	-11,2	1,9
7	-9,2	-11,4	5,2	-5,6	0,6	-12,9	-7,1	-10,9	0,5
4	-6,2	-10,7	-1,5	-4,5	0,6	-9,7	-3,7	-13,8	-1,9
0	-7,1 -4.9	-11,4	-1,2	-10,1	0,5	-12,9	-7,5	-14,3	-0,9 -2.0
8	-7,5	-14,9	-6,4	-7,4	0,1	-11,4	-5,6	-15,8	-0,9
2	-9,4	-19,3	-2,3	-10,0	0,6	-14,5	-2,3	-16,5	-0,2
7	-23,6	-12,4	-18,5	-15,4	-15,3	-14,1	-10,3	-3,7	-16,6
1 5	-21,6	-10,3	-7,9 -10 1	-10.7	-16,8	-10,8	-20,0 -12 7	-3,9 -7.8	-19,1
1	-28,4	-10,2	-15,7	-10,1	-25,5	-9,9	-13,5	-7,1	-22,7
3	-27,4	-16,6	-15,5	-8,8	-26,0	-11,0	-12,8	-6,8	-25,4
8	-32,6	-13,2	-18,7	-8,0	-34,3	-10,0	-15,1	-5,0	-32,3
1	-18,2	-21,1	-7,3	-10,0	-19,6	-15,5	-1,1	-9,2	-18,2

342-348	H7	-1	3,5	-40,8	-5	i,2	-27,6	-21,6	-35,0	-17,1	-38,7	-16,6	-39,3	-14,4	-31,9	-29,2	-36,8	-28,8	-37,0	8,4	-15,5	-20,1	-40,8 -29,3	-33,4	-21,2	-34,6	-24,3	-19,4	-20,2	-9,2	-13,2	-24,3	-14,6	-7,5	-8,8	-18,6
349-353	loop H7-H8	-	5,0	-16,1	6	i,4	-8,3	-6,1	-4,1	-2,5	-12,3	-1,3	-13,3	-1,0	-8,4	-11,0	-8,1	-13,7	-14,2	13,7	0,7	-2,9	-21,4 -15,5	-14,5	-4,3	-21,6	-8,0	-6,5	-6,7	-4,2	-0,2	-6,8	-5,2	-4,7	-1,5	-10,3
349-355	loop H7-H8, H8	-	0,6	-9,3	2	.3	-2,7	-0,4	-3.3	-3.5	-8,3	-1,2	-9,7	1,4	-6,1	-7,0	-7.0	-7,1	-7,6	11,9	3.6	-4.6	-13,3 -8,1	-11,1	-5,5	-12,2	-6,5	-4,9	-4,7	-4.6	-2,0	-5,0	-3,4	-1,9	-1,2	-5,2
349-356	1000 H7-H8, H8	-	2.1	-8.4	2	.6	1.3	-1.5	-10.0	-7.4	-14.1	-3.2	-9.0	0.0	-4.2	-2.8	-2.9	-5.2	-6.9	8.0	7.1	-3.5	-10.2 -4.3	-6.5	-4.8	-9.9	-3.7	-4.1	-1.1	-1.3	-3.1	-5.0	-1.5	-2.0	-1.8	-6.6
350-356	loop H7-H8 H8) 1	-27		, -	.,.	-1.0	-6.0	0.5	-3.4	-1.5	-6.8	1 1	-3.1	0.6	-1.3	-3.2	-4.0	5.0	12 1	0.5	-5.2 -1.4	-4.0	-0.8	-4.2	2.0	-2.2	0.4	-2.2	-,.	-,-	-1 7	-2.4	0.4	-2.3
352 356			1	2,1	0	7	3.4	13	5 1	0,0	4.4	0.8	5.0	2.0	2.6	2.0	3.2	2.3	2.0	4.6	13.7	1 1	17 21	2.0	1 /	3.4	2,0	2.3	1 1	2,2	0.7	33	0.1	1 4	2.4	0,0
257 261) /	-2,3		,, / , 5	0.2	-1,5	-0,1	-0,9	-4,4	0,0	-5,0	2,0	-2,0	2,9	-3,2	2,5	-2,0	4,0	5.0	0.2	2.5 0.2	-2,3	-1,4	-3,4	0.2	1.2	0.5	-2,3	-0,7	-5,5	0,1	-1,4	2,4	-0,9
307-301		-),4) 4	-1,7	-0	r,5	0,3	0,9	-2,3	0,5	-1,0	-0,1	-0,9	0,0	-1,2	0,0	0,0	0,4	0,2	0,5	0,9	-0,2	-2,5 0,5	0,2	1,2	-0,7	0,3	1,2	0,5	0,4	-0,2	-0,0	0,7	0,0	-0,1	-1,0
300-305		-),4),0	-3,8		,5	0,4	-0,5	-0,0	0,0	-4,0	1,0	-3,9	1,1	-2,8	-0,8	-1,0	-0,8	-1,3	1,9	9,3	-0,8	-4,0 -0,8	-1,7	-0,6	-3,5	-0,7	-0,9	-0,4	-1,3	0,8	-2,5	-0,2	-1,4	-0,2	-3,1
362-367	на, юор на-ня	-	3,2	-5,7		2,0	-1,5	-0,6	-1,9	-1,9	-3,8	3,1	-1,6	2,3	-3,0	-4,3	-5,3	-4,9	-7,2	9,4	14,6	2,4	-5,1 -3,3	-5,3	-7,9	-7,1	2,6	-3,5	-3,3	-5,0	1,4	-3,2	-3,3	-5,4	-1,5	-1,1
362-376	Н8, юор Н8-Н9	-	9,6	-10,1	1	,6	-7,1	-11,9	-5,4	-10,4	-11,5	-7,3	-13,5	-7,2	-6,1	-14,2	-9,0	-14,3	-9,9	10,6	-2,5	-4,9	-2,7 -14,1	-7,6	-11,4	-6,9	-11,4	-5,7	-9,2	-2,4	-4,7	-3,4	-6,9	-2,7	-4,4	-4,4
366-376	loop H8-H9, H9	-1	2,4	-13,3	-6	5,2	-7,7	-16,4	-5,0	-19,2	-12,7	-15,2	-10,3	-15,3	-6,2	-19,5	-13,9	-20,8	-12,5	9,1	-3,1	-6,5	0,2 -19,3	-9,8	-14,4	-7,1	-14,9	-7,0	-13,1	-3,9	-11,2	-4,8	-9,2	-3,6	-10,5	-2,2
366-377	loop H8-H9, H9	-1	2,5	-13,2	-2	2,2	-6,8	-8,4	-1,8	-19,5	-12,2	-13,3	-9,8	-14,3	-6,2	-18,4	-11,4	-17,9	-10,0	10,6	-3,8	-6,6	0,6 -18,5	-9,9	-14,6	-8,7	-14,2	-7,0	-12,4	-2,6	-7,8	-4,0	-9,1	-3,1	-4,0	-3,0
366-378	loop H8-H9, H9	-1	,2	-13,3	0),9	-5,1	-13,7	-5,1	-15,7	-13,1	-9,5	-9,1	-6,9	-3,7	-16,4	-12,3	-15,7	-11,2	11,6	0,1	-6,4	-1,4 -16,6	-10,4	-14,2	-10,5	-12,6	-8,0	-10,8	-3,9	-5,7	-3,5	-7,8	-3,2	-4,7	-2,1
366-389	loop H8-H9, H9	-	5,0	-9,8	-2	2,7	-3,5	-6,6	-2,7	-8,3	-10,6	-6,7	-10,1	-6,2	-3,6	-11,7	-10,1	-11,5	-10,2	19,7	10,1	-3,6	-5,6 -11,3	-8,1	-6,1	-6,3	-9,8	-8,4	-8,2	-5,8	-7,3	-4,6	-6,1	-3,8	-2,5	-3,1
377-385	H9),7	-5,8	11	,0	4,6	3,4	-5,4	-3,0	-8,0	-2,1	-10,4	-1,3	-5,6	-4,4	-4,2	-3,8	-3,3	24,2	20,3	-1,2	-6,5 -3,2	-3,2	-1,0	-1,8	-7,2	-7,1	-4,3	-5,7	-1,6	-5,3	-2,7	-5,6	-0,2	-3,8
377-386	H9	-	,7	-7,4	11	,9	6,2	-1,8	-10,0	-0,6	-6,1	0,0	-5,8	-0,8	-3,1	-5,2	-6,8	-5,1	-4,7	23,1	21,4	-2,1	-7,5 -4,9	-5,7	-0,7	-2,3	-5,0	-4,7	-4,7	-4,8	-0,2	-3,4	-1,8	-3,0	-0,1	-3,5
377-387	Н9	-	,7	-7,8	9	,8	7,2	-1,1	-9,2	-2,3	-6,8	-2,7	-8,3	-1,5	-4,7	-3,9	-5,4	-3,0	-4,2	21,8	20,0	-2,7	-8,0 -3,9	-5,4	-1,2	-3,5	-4,4	-5,4	-3,9	-4,8	-2,1	-4,5	-2,7	-4,1	-0,4	-3,3
377-389	Н9	-	,4	-6,3	8	3,3	6,6	-0,9	-9,1	-2,0	-6,0	-2,0	-7,0	-1,7	-4,7	-2,9	-4,4	-2,4	-3,8	18,3	19,5	-2,1	-7,8 -2,9	-4,1	-0,8	-3,6	-3,2	-4,2	-2,9	-3,7	-1,6	-3,8	-1,9	-3,1	-0,4	-3,0
378-389	Н9	-	.2	-8,1	4	.3	6,7	0,9	3.3	-2.8	-6,8	0,2	-9.5	-1,7	-8,7	-3,1	-5.6	-2,0	-4,4	7,9	18,9	-1,5	-2,2 -6,3	-7,6	0.0	2,4	-5,7	-7,8	-3,6	-4,5	-1,4	-8,3	-1,2	-3,5	0,1	-7,5
379-389	Н9	-	2.0	-6.2	9	.5	7.9	-0.4	-3.4	-2.0	-5.7	-1.4	-6.0	-1.0	-3.9	-2.0	-3.0	-0.9	-2.3	18.4	22.7	-2.0	-8.8 -2.5	-2.6	-2.1	-4.7	-3.1	-3.7	-2.1	-2.4	-1.0	-3.1	-0.8	-3.8	-0.1	-3.6
382-389	Н9		6	-8.0	4	9	7.5	-1.5	-4 5	-2.5	-7.8	-2.5	-9.7	-21	-4.3	-3.6	-5.1	-37	-4.5	17.7	23 2	-1.8	-10.6 -2.7	-5.9	-2 6	-8.8	-1.5	-37	-3.0	-5.2	-3.2	-5.3	-3.5	-4.9	0.1	-27
385-389	Н9	-	34	13	4	2	9.9	-7.3	-8.9	-22	-7 1	-1.5	-8.3	-28	-7 1	-1.8	-3.6	0.1	-4.9	16 4	25.6	-3.1	-8.0 -1.5	-37	-4.2	-8.0	-4.3	-5.3	12	-4.2	-14	-5.2	11	-3.5	-1.0	-24
390-402	H0_H10		2 0	0.5		, _	-6.2	3.1	1.2	-3.6	-8.0	_1 1	-5.9	_1 1	-6.7	-0.3	-8.5	-0.1	-5.2	2.6	5.6	-0.6	-1.0 -2.0	_9.0	-3.6	-13.5	3.2	-3.0	3.6	-3.2	_1 0	_1.8	1.6	-1.3	-1.2	_1 7
390-404	H9-H10) 7	_1 2		1.8	2.2	-0.7	_/ 1	_1 2	-5.1	-3.1	-6.1	_2.8	-5.2	_2.2	-3.7	_3 1	-5.4	2,0	2 1	-1.2	-3.1 3.6	-5.6	-3.1	-4.0	0,2	-2.5	-0.4	2.5	_1 0	-2.4	_0 3	-1.6	_0.2	_1 7
202 402),1 2.0	-1,5	2	,0 2	-2,2	-0,7	-4,1	-4,2	-3,1	-5,1	12.0	-2,0	-5,2	-2,2	-3,7	-3,1	-5,4	2.0	2,1	-1,2	10.4 9.1	17.0	10.2	-4,0	5.1	-2,5	-0,4	10.0	-1,5	-2,4	-0,5	2.0	-0,2	-1,7
302 404		-	,2	-5,9	-3	5	-9,9	0,2	-1,1	-5,2	-7,0	-1,0	-13,9	-2,0	-0,0	-4,1	-12,0	-2,4	-9,5	-2,0	-0,9	-2,0	21 54	-17,0	-10,5	-24,0	-5,1	-3,9	-1,1	-10,9	1,4	-1,5	-0,1	-5,6	-1,4	-2,5
392-404		-	,9	-1,4		,5 .4	-3,0	-3,1	-4,2	-3,0	-5,0	-3,0	-5,4	-3,0	-5,1	-2,0	-2,0	-4,5	-5,2	2,9	-1,2	-0,9	-2,1 -5,4	-0,0	-4,4	-4,0	0,3	-0,2	-0,6	-0,0	-1,7	-1,1	0,0	-0,0	-0,9	-1,5
393-404	H9-H10		,2	2,4	-4	,4	1,1	-2,4	-0,9	-10,1	-4,5	-9,3	0,2	-8,5	-3,5	-4,5	-4,9	-8,8	-9,0	1,4	0,9	0,6	-1,0 -8,0	-9,0	-3,0	-2,8	-2,7	-3,3	-2,5	-3,3	-0,3	0,1	1,0	-1,9	-1,1	1,0
390-408	H9-H10	-	5,1	0,0		,5	-0,8	-2,5	-3,1	-2,0	-9,3	-0,9	-10,3	-2,5	-8,0	-3,8	-9,0	-0,5	-10,2	10,2	7,0	-4,8	-4,8 -7,1	-7,4	-9,2	-10,2	-2,7	-5,3	-4,8	-3,1	4,0	-9,6	0,7	-0,8	-1,2	-5,3
392-407	H9-H10	-	2,0	-6,2	2	.,8	-2,1	-3,2	-9,0	-3,3	-8,8	-2,6	-9,8	-3,0	-4,8	-2,2	-6,5	-4,6	-9,4	7,2	6,5	-1,6	-2,1 -2,4	-5,2	-4,2	-6,5	-1,3	-5,1	1,9	-1,7	-0,3	-4,5	-0,2	-1,9	-3,0	-3,2
392-409	H9-H10	-	,9	-5,3	-5	9,6	-2,4	-0,9	-6,6	-4,2	-9,6	-8,4	-9,6	-5,0	-6,4	-1,9	-11,3	-1,6	-10,1	4,4	2,3	-1,8	-2,3 -4,2	-9,9	-4,1	-7,3	-1,7	-10,4	-0,5	-5,1	0,8	-5,9	-1,0	-4,3	-3,6	-5,3
408-413	H10/11),7	1,2	-3	5,7	-3,7	-1,0	-3,7	-1,6	-4,8	-0,8	-7,5	0,6	0,4	-2,1	-9,7	-0,6	-3,0	-4,9	-2,0	1,0	0,1 -0,5	-3,6	-2,8	-5,3	-5,4	-11,6	-1,9	-6,7	-2,2	-7,4	-0,8	-5,2	-0,6	-3,0
410-414	H10/11),1	-1,7	-2	2,1	-5,3	-2,8	-8,2	-1,4	-6,0	-2,0	-9,0	-0,3	-2,9	-3,7	-12,7	-1,6	-6,5	-2,9	-1,3	0,9	6,3 -1,3	-7,5	-3,4	-9,5	-7,7	-12,7	-3,2	-7,2	-2,1	-6,9	-1,7	-5,4	-2,2	-4,9
412-420	H10/11	-1	6,9	-2,5	-10	0,0	-5,5	-2,9	-3,8	-15,5	-4,1	-14,3	-10,1	-14,1	-3,0	-20,8	-10,4	-15,5	-4,2	-0,2	-0,8	6,3	0,6 -14,2	-3,4	-9,4	-4,3	-23,0	-11,3	-9,8	-6,3	-8,7	-4,2	-6,4	-4,4	2,9	-1,4
415-420	H10/11	-3	,8	-2,8	-19	9,1	-3,5	-3,1	3,0	-27,4	-0,6	-24,7	-5,5	-24,4	0,5	-34,8	-6,9	-25,3	-1,0	-6,5	-4,0	8,7	1,7 -25,1	0,4	-15,7	-4,5	-32,9	-10,7	-15,1	-3,8	-11,9	0,5	-8,9	-5,0	6,8	-1,3
412-424	H10/11	-3),6	-3,6	-12	2,7	-6,7	-9,6	-7,0	-20,9	-5,1	-11,9	-8,9	-16,1	-1,5	-31,6	-10,0	-24,8	-4,8	-6,4	-4,2	-0,7	-1,1 -21,4	-7,4	-13,6	-2,1	-29,2	-13,7	-14,4	-6,0	-6,4	-5,1	-7,3	-8,5	4,7	-4,2
412-426	H10/11	-3),7	-4,6	-16	6,6	-4,0	-5,7	-3,8	-30,0	-7,1	-22,7	-9,7	-23,3	-0,8	-32,9	-9,9	-27,3	-6,0	-5,6	-2,3	3,5	0,6 -22,9	-4,3	-9,2	-1,4	-27,0	-9,9	-12,6	-6,6	-9,2	-1,1	-5,9	-2,9	-0,5	-0,4
412-427	H10/11	-3	3,3	-6,2	-17	',7	-5,3	-6,0	-3,8	-31,7	-8,6	-23,4	-10,8	-22,5	-0,7	-33,9	-9,3	-28,5	-6,0	-6,3	-3,3	3,0	0,7 -23,4	-4,0	-10,3	-1,8	-27,6	-10,0	-12,0	-5,8	-8,8	-2,1	-5,9	-2,9	-0,8	-0,7
414-426	H10/11	-3	5,0	-4,1	-20),6	-3,2	-5,7	-1,6	-34,9	-6,5	-27,0	-7,1	-26,4	0,0	-34,8	-4,6	-28,8	-2,8	-8,8	-3,6	3,6	-0,9 -24,6	-1,2	-10,8	0,1	-29,4	-7,6	-12,4	-4,2	-10,7	0,2	-5,1	-0,5	-2,1	-0,1
414-427	H10/11	-3	7,6	-4,2	-23	8,7	-3,9	-5,4	-3,9	-40,9	-8,7	-30,0	-7,4	-29,6	-0,8	-37,1	-5,1	-31,8	-4,1	-11,2	-6,0	2,9	-0,4 -26,7	-2,0	-11,5	-0,8	-30,3	-7,8	-11,8	-3,7	-11,9	-0,1	-5,9	-0,9	-3,5	-0,5
415-426	H10/11	-4),2	-5,0	-19	9,6	-2,5	-7,0	-1,0	-36,1	-7,5	-28,8	-5,9	-26,7	0,7	-40,3	-5,6	-34,2	-3,7	-9,6	-4,1	2,6	-1,4 -28,4	-1,9	-12,1	-0,1	-31,0	-8,1	-12,3	-3,4	-9,6	0,8	-6,6	-1,0	-2,8	-1,0
415-427	H10/11	-4	8,8	-5,7	-21	,2	-3,5	-7,3	-1,6	-39,9	-7,4	-28,3	-5,8	-29,8	0,0	-40,6	-5,9	-34,9	-4,2	-9,2	-3,6	2,2	-1,0 -28,9	-2,3	-12,9	-0,8	-30,6	-7,8	-12,5	-3,9	-9,3	0,8	-6,3	-1,1	-2,7	-0,1
427-439	H10/11-H12	-1	,9	1,6	-7	,0	-0,8	-2,8	-1,3	-13,8	-1,5	-7,7	-1,8	-10,0	-1,7	-11,4	-0,6	-9,7	-1,4	-3,4	-1,1	0,1	-0,8 -10,1	-3,3	-2,5	-1,4	-8,0	-1,3	-2,9	-1,7	-2,6	0,4	-1,0	-0,1	-0,7	0,3
427-440	H10/11-H12	-1	1,4	1,3	-7	',4	-0,7	-3,7	-1,7	-14,7	-2,0	-8,9	-3,6	-9,5	-1,0	-13,8	-1,7	-11,7	-1,5	-1,4	-0,7	0,6	-0,5 -10,4	-2,8	-3,1	-1,3	-10,5	-2,6	-3,0	-1,5	-3,5	-0,7	-1,9	-1,1	-0,6	-0,3
428-439	H10/11-H12	-1),4	1,7	-5	5,9	-1,8	-3,1	-1,4	-11,0	-1,2	-7,7	-3,3	-10,2	-2,9	-11,0	-2,6	-10,6	-3,6	-3,1	-1,6	0,4	-0,4 -10,3	-4,6	-3,6	-2,3	-7,5	-2,1	-4,1	-3,2	-2,5	-0,2	-2,3	-2,3	-1,2	-0,3
427-441	H10/11-H12	-1	5,6	1,5	-7	,4	-0,5	-2,5	-1,7	-16,7	-0,8	-9,4	-1,8	-10,0	-0,2	-15,9	-2,6	-13,2	-3,3	-3,3	-1,0	-0,4	-0,3 -10,3	-3,0	-1,7	-0,1	-10,4	-2,4	-4,2	-2,7	-2,1	0,3	-2,3	-1,3	-1,7	-0,5
428-440	H10/11-H12	-1	2,9	4,4	-8	9,0	-1,5	-3,8	-0,1	-15,3	-1,3	-10,1	-3,9	-11,1	-0,4	-13,6	-2,3	-13,0	-3,3	-3,6	-1,6	0,5	-0,3 -10,4	-3,3	-1,2	0,9	-9,5	-2,5	-3,5	-2,0	-3,2	0,5	-1,9	-0,3	-1,4	0,4
427-442	H10/11-H12	-1	9,8	1,4	-4	.1	-1,2	0.5	0.2	-18,0	1.0	-10,8	-3.5	-11,2	2,4	-8,9	0,5	-13,2	-0,1	-3,3	-1,4	0.3	0,0 -12,1	-1,5	-2,0	1,9	-10,2	-0,2	-1,9	0,8	-3,2	-0,1	-0,7	-1,4	-2,4	-0,4
428-441	H10/11-H12	-1	.1	3.9	-7	.7	-1.3	-2.2	0.2	-17.1	-2.7	-11.0	-3.5	-11.7	-2.6	-15.3	-2.3	-13.2	-2.0	-4.0	-3.4	0.9	-0.2 -10.9	-3.4	-2.1	-0.5	-10.7	-1.6	-2.9	-2.6	-3.5	-0.7	-4.1	-1.1	-2.0	-0.4
427-443	H10/11-H12	-2	.4	1.1	-9	.0	-0.5	0.7	2.0	-26.5	-1.8	-16.1	-4.0	-17.4	-1.1	-22.2	0.7	-18.4	-1.1	-1.7	-1.8	1.0	-0.2 -15.1	-0.8	-5.7	0.5	-8.3	1.3	-4.6	-0.5	-5.2	0.6	-2.8	0.3	-1.0	-0.6
428-442	H10/11-H12	-2	.3	1.9	-5	5.3	-1.4	3.5	3.9	-19.1	0.7	-12.5	-4.5	-14.1	2.2	-13.8	3.2	-15.6	-3.2	-3.3	-1.8	1.0	0.1 -11.4	-1.1	-1.0	2.4	-10.0	0.1	-2.2	2.7	-2.6	2.8	-2.4	0.5	-1.7	-0.4
428-443	H10/11-H12	-2	3.2	3.6	_9	2	-17	5.8	4.8	-24.9	-2.4	-16.7	-5.0	-17.8	-1.6	-22.2	-0.7	-20.7	-1 7	-2.1	-1.5	1.5	-0.3 -19.0	-17	-27	-0.3	-16.5	-2.8	-3.1	-0.1	-5.7	-0.2	-5.0	-2.0	-1.2	0,0
440-447	H12	-2	5.2	-1.6	-13	; 1	-1.3	-7.9	-2.5	-29.4	-3.1	-21.8	-6.3	-21 7	-1.2	-26.3	-3.2	-23.7	-4.0	-0.1	-0.7	0.6	-0.3 -20.0	-2.0	-8.6	-14	-18.4	-3.7	-7 7	-2.1	-9.3	0,0	-5.0	-1.3	-12	0.3
441-446	H12	-2	73	0.4	_21	7	-5.9	-12.6	-6.0	-16.6	-0.5	-36.3	2 1	-28.7	-4.0	-26.0	-0.2	-21 7	-5.1	-4.0	-0.5	0.2	-0.4 -17.6	2.8	-4.2	0.0	-13.3	-4.5	-4.3	0.3	-8.0	0,0	-1.0	4 1	-0.6	3 1
443-447	H12	-	,0	0.4	_1	י, כ	1 1	-4.0	-2.3	0.4	-1.0	-2.0	-3.3	-1.0	-0.4	-1.8	-0.7	-3.7	-2.4	1.3	0.4	-0.1	-0.3 -4.0	-2.5	-2.2	-1.9	-2.7	-1.3	0.1	-1.0	-1.6	0.2	0.4	0.1	-1.2	0.9
			,0	0,1		,0	.,.	1,0	2,0	0,1	1,0	2,0	0,0	1,0	0,1	1,0		.XRß	2,1	1,0	0,1	0,1	0,0 1,0	2,0	_ ,_	1,0	2,1	1,0	0,1	1,0	1,0	0,2	0,1	0,1	1,2	0,0
218-222	H1 I		21	0 /	?	1	17	0.0	-1 2	-0.4	1 3	-0.5	2.0	29	1.8	20		-0.2	0.5	-1.5	1.6	24	42 35	25	4.0	2 9	-14	3.9	-11	3.0	-37	3.5	1.5	4 1	0.6	24
218-223	H1		2	0,4	2	8	-0.3	1.8	_1 2	-20	0.2	2.0	5.0	0.2	-1.0	0.2	-0.4	-4 1	5 1	-1.8	-0.2	-14	1.9 0.0	1 /	0.0	0.6	-4 1	1.8	1.5	3 3	-0.5	3.8	23	6.4	3.0	4 0
218-225	нт Н1			0,2	1	1	1 1	_0.0	1,2	_0.3	0,2	_0.3	1.6	1.4	0.4	17	_1 0	-2.5	_1 0	1,0	0,2	-1.8	-2.2 1.0	0.6	27	0,0	-3.2	_0.2	-1.0	1 1	-3.5	-1.4	_0.0	_2 0	1.0	1.0
218 226			, 4 1	1 0,1		0	1,1	-0,9	-1,0	-0,3	0,7	-0,3	-1,0	0.2	2.4	1,7	-1,9	-2,5	-1,9	7.2	4.0	-1,0	15 07	0,0	2,1	0,3	-5,2	-0,2	-1,0	0.2	-5,5	2 2	-0,9	2,0	2.2	6.4
210-220			, I) 2	-1,3	4	,9	4,2	1,1	2,5	-1,0	0,9	-5,5	-7,0	-0,2	-3,1	1,0	-4,1	-1,4	0,4	1,3	4,9	-2,2	-1,0 0,7	4,1	0,1	0,7	-4,0	-1,4	-1,1	0,3	-1,4	-3,3	1,0	-2,5	-2,3	-0,4
221-220			,∠ I 7	0,2	0	,0	4,9	12.0	3,9	-0,8	1,9	-1,4	-10,4	-0,1	-0,1	1,0	-4,0	-3,5	-5,1	10,5	12.4	-1,5	-0,4 2,0	2,8	2,3	0,0	-3,6	-1,0	0,0	-4,3	-1,0	-9,0	1.0	-9,9	0,7	-4,ŏ
221-221			F, /	1,0	14	,0	10,4	12,6	1,9	5,3	2,9	0,8	-7,8	1,4	-8,5	4,3	-1,5	-4,5	-7,2	19,3	13,1	-2,3	-14,8 3,0	-1,8	2,7	-2,0	-0,8	-0,8	-0,7	-14,7	-0,9	-16,8	1,2	-10,8	2,8	-1,/
220-230			, 1	-1,8	13	0,∠	10,1	1,8	2,1	-2,1	-4,1	0,1	-11,3	0,2	-8,5	0,7	-2,5	-2,6	-8,0	10,0	32,8	0,1	10,7 0,9	-3,1	1,1	-4,1	-0,7	-8,9	-0,9	-8,0	-0,6	-10,2	-0,4	-11,7	-0,6	-7,9
220-231		-	,1	-2,0	12	.,3	19,8	1,8	0,0	-0,5	-4,0	-0,8	-9,4	-0,8	-9,8	-0,1	-3,6	-0,8	-5,2	16,8	34,1	-1,4	-10,7 0,4	-4,2	0,2	-5,5	-0,9	-7,5	-0,3	-5,1	0,2	-7,8	0,3	-8,2	0,2	-5,9
227-231	H1		0,4	-0,9	1	,1	2,0	0,2	-3,5	-1,9	-2,6	-0,8	-2,8	-2,9	-4,7	-0,4	-1,5	4,1	-2,9	3,8	8,5	0,1	-5,0 -0,3	-4,3	-0,1	-4,7	-2,5	-3,2	2,1	-10,6	0,0	-8,5	-3,9	-12,2	1,9	-7,4
226-233	H1	-),/	-2,1	12	.,2	27,8	1,8	-1,2	-0,8	-3,4	-0,9	-10,0	-1,6	-8,2	-0,9	-3,8	-0,5	-4,3	17,6	40,9	-0,9	-9,3 -0,1	-3,3	-0,2	-4,3	-0,5	-6,6	0,6	-6,5	0,4	-8,9	0,8	-9,1	-0,4	-6,8
227-233	H1		0,1	-2,3	11	,7	21,4	1,1	-2,9	-0,2	-3,2	-0,5	-7,0	-0,5	-5,9	-0,2	-2,6	-0,3	-4,7	15,4	36,7	0,0	-6,6 0,2	-3,0	-0,4	-3,2	-0,5	-5,4	-0,8	-5,1	-0,7	-6,6	0,1	-6,7	-0,4	-4,9
228-233	H1),2	-2,2	12	2,6	24,1	2,7	-3,8	0,2	-4,1	0,0	-6,5	1,2	-5,6	0,3	-2,2	-0,4	-7,7	16,1	38,3	0,9	-6,2 1,1	-3,1	1,9	-2,7	0,6	-4,4	0,0	-5,4	0,8	-5,6	0,8	-6,3	0,3	-5,2
232-236	H1	-	5,9	-24,1	14	,3	-20,9	-10,2	-14,7	-4,2	-13,8	-6,5	-47,7	-10,1	-44,9	-6,4	-34,9	-8,1	-15,3	24,3	-0,7	-9,8	-45,0 -5,5	-22,6	-5,4	-25,6	-7,9	-28,7	-3,8	-26,8	-6,0	-39,6	-5,6	-45,6	-3,6	-34,8
234-238	H1	-	3,2	-14,2	-0),3	-16,2	-4,4	-8,0	-2,3	-5,9	-2,9	-23,6	-6,9	-25,4	-3,2	-20,8	-6,3	-2,8	4,1	-8,0	-6,2	-23,2 -4,7	-11,7	-3,7	-13,3	-5,5	-12,3	-0,8	-11,9	-6,3	-17,7	-5,5	-22,5	-4,2	-16,6

274-279	НЗ	-15,4	-53,6	-18,7	-45,8	-33,2	-73,4	-20,6	-45,6	-19,1	-79,3	-23,1	-62,0	-15,4	-54,9	-40,4	-84,4	-20,6	-45,0	-24,6	-63,7 -19	9,2 -3	,4 -19,2	-32,2	-21,2	-53,4	-15,9	-46,7 -	18,0	-61,3	-17,9	-65,7	-12,1	-45,7
275-279	НЗ	-23,8	-54,7	-29,2	-50,0	-34,5	-65,3	-27,4	-50,7	-25,4	-72,6	-31,3	-72,5	-23,0	-57,8	-44,7	-46,4	-24,1	-45,7	-30,6	-73,2 -29	9,7 -3	5,1 -30,0	-36,5	-29,5	-66,8	-20,8	-36,4 -2	25,8	-50,9	-23,1	-55,8	-16,3	-33,2
274-281	НЗ	-17,7	-49,9	-15,4	-47,2	-35,0	-64,9	-16,8	-48,9	-17,8	-66,1	-18,8	-67,1	-17,8	-51,3	-41,2	-56,2	-14,5	-41,2	-18,7	-66,0 -15	5,6 -33	3,5 -15,6	-34,6	-16,5	-55,0	-11,7	-33,8 -	15,2	-50,9	-15,2	-54,2	-9,5	-39,3
275-281	НЗ	-16,5	-50,8	-19,8	-48,7	-34,0	-63,9	-22,1	-49,2	-23,3	-68,5	-23,1	-63,8	-16,3	-50,4	-41,0	-48,2	-19,9	-42,2	-23,1	-66,0 -19	9,7 -3 ⁻	1,5 -19,1	-33,0	-22,1	-53,8	-18,3	-32,9 -2	21,5	-49,6	-21,6	-54,7	-14,9	-31,7
279-284	НЗ	-1,6	-7,3	4,1	4,4	-0,9	-18,8	1,6	-11,6	-1,9	-13,2	0,3	-16,1	-0,8	-7,5	-8,1	-13,6	3,1	7,0	-0,7	-13,8 0),6 -8	3,5 -0,3	-8,4	-1,1	-13,1	-3,3	-8,3	-3,7	-11,3	-1,0	-11,6	-0,5	-9,2
280-284	НЗ	-0,8	-2,1	4,8	6,2	0,5	-7,9	3,7	-2,4	-0,6	-3,9	3,4	-5,5	2,9	-1,2	-0,6	-5,7	6,1	6,5	1,8	-6,1 8	3,3	1,3 11,4	6,3	1,6	-5,6	0,4	-3,8	0,7	-3,3	0,6	-3,0	1,9	-2,0
280-285	НЗ	0,5	-2,1	1,5	6,4	0,3	-5,8	-0,6	-3,0	0,0	-2,4	0,7	-3,3	1,0	-1,0	0,8	-7,2	3,1	10,7	-0,4	-4,2 -0),7 -3	3,3 -0,4	-2,1	0,4	-1,9	-1,4	-2,6	-0,7	-1,7	-0,3	-2,2	-0,5	-1,7
281-285	НЗ	-0,5	-0,3	3,2	13,5	2,4	-2,8	-0,2	-2,9	0,2	-2,3	-1,7	-3,4	0,6	0,8	-0,5	-8,2	3,6	17,0	-1,0	-4,8 -1	1,2 -3	3,6 -0,7	-3,8	-1,3	-4,0	0,4	-1,7	0,2	-1,1	1,0	-1,5	0,3	-1,2
285-292	H3, loop H3-H4	-0,6	-1,6	4,1	13,4	0,3	-1,8	-0,3	-1,0	1,5	-0,6	-1,5	-3,2	-2,2	-3,1	-0,5	-2,3	5,3	23,9	-1,8	-2,9 -1	1,3 -2	2,4 -2,2	-2,9	-2,0	-3,2	0,7	-0,6	0,0	-1,0	1,6	0,0	0,9	-0,7
285-293	H3, loop H3-H4	-0,4	-0,6	8,2	13,2	1,7	0,1	1,1	3,3	-2,4	-1,8	-4,1	0,3	0,4	-4,1	-1,8	0,6	10,5	21,4	-6,1	-4,2 -5	5,7	,4 -5,0	-1,7	-4,6	1,2	-2,8	-2,6	-3,1	-7,2	-3,6	-6,7	-2,8	-3,0
286-292	H3, loop H3-H4	0,7	0,0	4,4	12,9	1,5	-1,2	-0,4	-1,7	2,1	0,9	-1,1	-3,4	-0,4	-1,1	0,0	-1,4	5,6	22,7	-1,5	-2,7 -1	,2 -2	2,5 -1,1	-2,2	-0,6	-1,7	1,5	-0,2	2,2	0,3	1,4	-0,2	2,3	1,0
285-295	H3, loop H3-H4	-0,9	-1,1	8,7	14,1	2,1	-0,9	0,2	-0,2	-0,8	-1,2	0,1	-1,6	-0,1	-1,7	-1,6	-0,6	11,6	20,7	-0,5	-0,7 2	2,1 -(0,1 0,7	-0,6	-1,2	-0,4	-1,3	-0,8	-1,4	-1,7	-1,1	-1,7	-1,7	-1,2
286-295	H3, loop H3-H4	0,1	-0,6	6,9	11,4	2,0	-1,2	-0,1	0,1	-0,8	-1,7	0,3	-0,8	0,6	-1,6	-1,4	-1,0	8,7	17,0	0,3	-0,5 2	2,5 0	0,2 0,7	-0,5	-0,6	-0,1	-2,0	-1,8	-1,6	-2,6	-1,7	-2,4	-1,6	-1,4
293-300	H4-H5	1,2	0,1	4,3	7,0	2,0	0,1	1,0	1,8	-0,6	1,5	1,5	2,7	1,0	-1,6	-1,2	1,1	3,3	8,2	0,6	1,4 1	1,9 2	2,6 1,3	2,1	0,5	2,6	-1,6	0,3	-1,6	0,7	0,1	1,3	-1,4	1,4
294-299	H4-H5	1,5	0,7	6,5	5,7	0,6	0,1	3,5	0,2	-1,7	-2,4	3,4	2,8	2,1	0,3	-2,8	-1,9	5,6	7,2	2,8	0,0 2	2,5 8	3,1 0,6	5,8	2,1	0,5	-4,8	3,4	-2,5	3,6	4,1	5,1	-0,7	-1,1
294-304	H4-H5	2,5	1,0	6,5	13,9	2,3	0,6	0,8	1,1	0,4	0,9	2,4	3,8	2,6	-0,4	-1,2	-0,1	5,8	17,7	1,2	1,5 2	2,0 2	2,9 1,8	2,6	1,4	2,4	-3,0	-0,2	-1,8	0,7	-1,3	-0,9	-1,3	1,2
296-303	H5	0,9	0,6	6,1	13,2	2,0	0,3	0,4	-0,6	0,9	0,5	2,2	2,1	1,1	0,9	-1,0	-1,5	6,1	19,2	0,8	0,1 1	l,4 [·]	1,0 1,4	0,5	0,6	0,9	-0,6	-0,1	0,0	-0,1	0,7	-0,8	0,2	1,1
296-304	H5	0,0	0,1	5,4	16,2	2,3	1,5	1,6	0,5	0,6	0,7	3,2	-5,4	0,6	0,1	-0,6	-1,0	6,2	22,1	2,4	2,4 3	3,1 2	2,5 3,2	2,9	2,7	2,9	0,1	0,8	-0,2	0,4	0,8	-0,1	0,5	0,5
304-308	H5	-13,9	-32,2	-12,5	-45,0	-26,0	-35,2	-20,5	-50,0	-22,1	-67,8	-20,1	-56,6	-15,4	-45,9	-37,8	-41,3	-10,4	-33,1	-12,7	-10,6 -22	2,1 -4	5,2 -18,7	-39,5	-20,3	-39,1	-17,5	-32,7 -2	20,2	-44,8	-21,7	-60,5	-13,9	-34,4
304-310	H5	-18,4	-26,3	-16,9	-36,3	-32,7	-22,8	-23,7	-40,8	-26,5	-57,6	-25,2	-44,9	-19,6	-35,8	-36,3	-31,0	-13,2	-21,8	-8,3	-6,7 -22	2,5 -31	,8 -22,3	-31,7	-22,4	-30,6	-18,9	-23,7 -2	21,3	-33,7	-23,8	-48,8	-17,6	-26,5
305-310	H5	-17,9	-26,8	-15,5	-35,6	-30,7	-29,4	-21,9	-40,7	-23,7	-53,2	-22,6	-43,3	-19,0	-35,4	-27,6	-30,3	-12,3	-18,0	-5,8	-7,1 -21	1,0 -30	0,4 -20,9	-32,1	-20,6	-32,8	-17,0	-21,6 -1	19,4	-32,1	-21,8	-45,1	-17,1	-26,8
313-325	H5, βsheets	-11,6	-13,0	-3,0	-10,8	-16,5	-21,8	-9,0	-17,3	-16,1	-27,8	-14,3	-25,7	-16,1	-24,7	-16,8	-19,3	-1,1	-2,0	-16,5	-28,2 -12	2,2 -9	9,9 -11,7	-10,6	-6,9	-2,9	-8,4	-7,6 -1	11,4	-9,3	-10,5	-15,6	-8,6	-13,4
313-326	H5, βsheets	-15,8	-13,0	-9,5	-15,7	-19,9	-19,2	-14,8	-15,9	-20,9	-31,1	-20,5	-29,7	-19,6	-27,1	-17,8	-20,0	-6,4	-6,0	-21,2	-31,3 -16	6,1 -12	2,2 -15,0	-12,0	-11,6	-4,9	-10,7	-9,1 -	15,6	-10,8	-16,6	-16,9	-9,5	-11,6
314-326	H5, βsheets	-16,9	-13,9	-11,1	-18,4	-20,1	-18,4	-15,1	-17,9	-22,5	-32,1	-20,0	-28,7	-21,6	-27,7	-19,4	-19,7	-7,6	-8,7	-20,0	-31,3 -16	6,5 -10),9 -14,5	-10,6	-10,4	-5,2	-11,4	-7,5 -	16,1	-8,9	-16,1	-15,8	-10,0	-11,1
330-340	βsheets, H6	-20,8	-14,1	-29,7	-31,1	-28,6	-12,5	-15,8	-7,9	-39,7	-37,7	-35,7	-32,9	-29,9	-23,7	-33,7	-17,5	-24,4	-24,4	-38,3	-38,4 -20),8	3,7 -17,5	3,9	-29,7	-11,4	-14,2	2,4 -2	29,0	-2,3	-29,5	-8,7	-10,6	1,6
333-339	βsheets, H6	-30,3	-26,3	-30,1	-35,1	-29,4	-15,3	-27,3	-11,5	-33,4	-37,6	-35,2	-37,6	-30,0	-30,7	-20,8	-6,9	-24,1	-28,3	-34,5	-44,4 -25	5,3 -(0,7 -23,4	0,8	-31,1	-17,5	-17,2	-2,6 -2	26,7	-8,1	-27,2	-10,3	-11,4	-3,2
333-340	βsheets, H6	-29,9	-23,1	-27,6	-34,8	-29,9	-15,9	-25,4	-12,3	-35,2	-38,3	-32,0	-37,9	-30,8	-29,1	-32,4	-20,1	-21,2	-28,7	-36,9	-45,0 -20),9 -(),3 -17,1	0,0	-29,5	-15,0	-13,9	2,0 -2	25,4	-3,6	-27,2	-8,1	-10,7	2,2
335-340	βsheets, H6	-29,7	-23,8	-29,0	-35,2	-29,5	-14,5	-25,3	-10,9	-37,1	-43,0	-31,7	-37,5	-29,6	-29,7	-23,3	-19,8	-24,8	-28,0	-36,5	-46,2 -22	2,8 (0,9 -19,9	3,3	-29,2	-16,4	-21,7	-5,6 -3	32,7	-7,9	-28,6	-10,5	-13,5	-0,8
333-345	βsheets, H6	-43,5	-25,6	-29,9	-29,4	-44,1	-14,1	-37,2	-13,2	-48,5	-47,6	-44,6	-40,7	-44,2	-32,7	-42,8	-24,1	-25,4	-22,2	-26,7	-18,0 -30),1 (0,8 -23,8	2,5	-24,6	-8,2	-22,7	1,0 -3	33,7	-4,3	-37,2	-9,1	-17,6	-2,6
333-346	psheets, H6	-46,7	-25,8	-39,6	-28,1	-48,4	-11,9	-42,4	-10,4	-54,4	-51,8	-45,7	-36,2	-47,5	-34,0	-50,4	-27,7	-35,3	-16,6	-26,8	-19,8 -34	1,4 8	3,3 -27,4	8,9	-34,4	-11,0	-27,7	1,7 -	39,1	-3,3	-43,1	-9,6	-21,0	-1,9
334-345	psneets, Ho	-01,9	-28,1	-38,0	-35,8	-44,4	-3,8	-48,9	-18,8	-50,3	-49,7	-49,0	-44,2	-00,8	-20,0	-57,4	-28,2	-34,4	-29,6	-30,0	-20,3 -42	2,4 -4		-4,3	-34,5	-19,2	-39,2	1,8 -	53,9 45 0	-9,6	-37,0	-0,9	-18,2	-0,4
341-340		-51,7	-24,4	-43,0	-55,5	-04,0	-11,4	-55,0	-14,0	-00,0	-01,0	-02,9	-52,5	-52,0	-29,9	-12,0	-33,3	-31,9	-19,4	-10,4	2,0 -40), I	-39,4	-2,1	-41,4	-10,0	-32,0	-0,3 -4	40,Z	-0,9	-50,2	-10,5	-20,0	-4,1
3/1 3/8		-43,0	20.1	-33,0	24.4	37.8	7 7	-40,7	-0,0	-33,4	35.8	-51,0	-45,5	40,5	-27,0	-J1,1 /2.8	16.2	-27,0	18.5	-13,2	3.5 39	2.5 4	20 315	-2,4	-34,7	-9,0	-20,7	20	35.7	-7,2	32.6	-7,2	20.0	1.4
341 340		- - -0,2 //2/2	26.0	26.1	26.0	-57,0	0.8	41.0	13.0	-40,7 52.5	45.0	18.4	42.1	43.1	30.5	12,0	21.4	23,5	21.5	10.0	1 2 3/	10 (2 28 3	3.5	33.2	13.3	22,2	1.6	30.7	8.0	30.6	10.0	20,0	2.6
347-355	H7	-72,2	-20,3	-30.6	-62.8	-38.6	-47 1	-33.0	-50.9	-36.7	-71 4	-37.6	-79 1	-26.4	-45.4	-37.6	-52.2	-28.6	-49.8	-18.7	_40.0 _33	$37 -3^{\prime}$	-20,0	-32.9	-33.7	-55.9	-26.9	-21.4	34 1	-41 9	-30.0	-45.9	-20,7	-24.9
348-355	Н7	-22.2	-42.3	-17.2	-47.6	-34 4	-54 1	-27.7	-48.3	-27.2	-65.2	-29.4	-68.9	-21 7	-42 7	-42.8	-42.2	-14.8	-35.5	-17.9	-39.9 -25	5,7 0	8 -19.9	-30.3	-26.1	-47.3	-16.8	-26.8 -2	23 7	-42 7	-23.6	-44 5	-13.9	-28.3
349-354	H7	-24.7	-42.5	-20.3	-46.0	-30.2	-45.4	-25.9	-43.9	-28.8	-65.5	-28.8	-61.9	-24.1	-42.5	-37.4	-42.4	-16.8	-28.8	-6.0	-36.6 -23	3.1 -29	.5 -20.4	-31.7	-24.4	-44.8	-15.5	-31.0 -2	23.6	-39.9	-22.9	-40.3	-13.1	-30.6
349-355	H7	-25,2	-48,1	-20,7	-48,4	-32,4	-49,6	-26,6	-46,4	-28,9	-67,5	-30,6	-64,5	-23,7	-48,6	-38,9	-39,6	-17,2	-33,6	-12,0	-42,5 -23	3,9 -3 ²	.3 -22,1	-33,0	-25,7	-47,1	-17,0	-31,0 -2	23,2	-43,0	-24,4	-45,6	-14,0	-30,8
350-354	Н7	-5,8	-43,6	-5,5	-43,8	-17,2	-63,7	-11,9	-55,0	-11,5	-66,4	-11,5	-62,0	-4,4	-40,2	-30,9	-48,3	-5,2	-33,8	-9,3	-53,6 -10),3 -4 [·]	.8 -9,8	-44,9	-11,2	-57,3	-10,3	-48,7 -	10,7	-57,5	-10,1	-58,0	-7,9	-43,8
350-355	H7	-10,9	-48,2	-11,2	-47,7	-24,1	-63,0	-17,7	-52,6	-16,9	-66,7	-18,2	-60,7	-11,0	-47,6	-35,8	-43,6	-9,6	-38,0	-17,9	-53,7 -16	6,4 -37	7,3 -15,4	-39,7	-17,5	-54,9	-15,5	-42,4 -	17,0	-53,7	-14,8	-53,4	-11,6	-38,1
356-369	H7-H8	2,3	-2,2	-4,0	-7,1	-2,0	-9,2	-2,0	-8,1	-4,7	-9,2	3,1	-6,0	1,2	-8,4	-7,0	-10,6	-6,5	-8,7	-0,3	-6,9 -5	5,2 -4	l,3 -5,0	-4,9	-1,4	-6,5	-7,6	-4,7	0,6	0,6	-4,1	-5,9	-5,2	-6,7
357-369	H7-H8	3,7	0,9	-0,8	-6,7	-6,2	-13,5	-4,4	-4,1	-6,4	-8,7	8,9	2,0	2,9	-6,3	-3,7	-6,8	-6,1	-8,2	4,6	1,4 -0),3 2	2,8 1,2	2,3	3,9	0,7	-6,7	-1,9	1,2	3,1	-2,3	-2,1	-4,3	-5,4
360-369	H7-H8	0,1	0,8	-5,6	-0,7	0,3	0,2	-1,7	-1,1	-5,0	0,5	2,6	2,6	-0,1	-0,7	-3,0	1,1	-8,5	-3,3	2,0	1,7 -3	3,4 4	4 <mark>,0</mark> -3,5	3,9	-1,0	0,0	-6,9	5,7	-1,3	6,7	-1,8	6,7	-5,1	1,3
360-370	H7-H8	3,4	3,0	0,8	6,5	3,3	0,3	2,2	1,8	-1,6	5,2	-1,4	-2,5	3,1	1,8	-3,8	-1,0	-3,7	2,0	-0,6	-0,8 -4	1,3 -2	2,9 -2,6	-3,4	-0,3	-0,3	-4,0	5,2	1,2	6,4	-2,3	5,0	-2,6	3,2
374-378	H8	-0,6	-1,8	6,6	5,4	0,1	-0,2	1,4	-1,0	1,0	0,2	0,4	-3,9	-1,9	-5,4	1,1	0,7	3,1	6,2	1,5	-2,3 -1	1,0 -3	3,5 -1,0	-3,7	-0,5	-2,2	1,0	0,3	2,0	1,0	1,4	0,1	1,3	0,1
374-379	H8	1,9	1,5	1,8	4,6	0,0	-0,3	0,1	0,7	0,4	-0,6	0,0	0,9	1,2	0,7	0,6	0,6	1,6	6,6	0,1	0,5 -0),6 -0	0,3 -0,8	-0,3	0,1	0,5	-1,2	-0,6	-1,3	-0,9	-0,2	-0,4	-0,8	-0,9
374-394	H8-H9	-1,4	-2,8	12,2	6,7	0,1	-0,9	-1,6	-3,8	-2,5	-3,0	0,3	-0,5	-0,1	-5,0	-2,8	-1,7	11,2	9,8	0,7	0,6 -0),3 [·]	1,1 -1,0	-0,1	-0,8	-5,3	-2,1	-1,9	-2,2	-2,0	-2,3	-2,1	-2,2	-2,1
378-394	H8-H9	-2,7	-1,6	-1,7	-1,9	-3,3	-3,3	-4,0	-3,5	-3,9	-8,0	-0,7	0,1	-1,2	-2,6	-2,7	-6,2	1,7	-2,7	-0,3	1,5 -1	l,9	,0 -2,2	-0,5	-1,9	0,4	-4,1	-7,1	-4,5	-6,2	-4,5	-7,3	-3,4	-6,5
380-392	H8-H9	-1,6	-3,9	3,0	-2,9	-3,2	-0,3	-2,3	-6,0	-2,3	-11,1	1,8	-3,0	-2,1	-5,5	-7,0	-8,1	6,5	0,3	2,8	3,4 -0),4 -'	1,5 -0,6	-4,7	0,7	1,2	-2,8	-9,6	-1,6	-7,8	-1,5	-9,4	-2,2	-10,4
379-394	H8-H9	-3,6	-3,6	6,7	2,9	-3,0	-3,0	1,6	0,6	-4,6	-10,2	-0,5	6,2	-1,9	-5,3	-2,9	-5,0	3,0	-2,0	0,1	-2,1 -2	2,3	<mark>,2</mark> -2,3	5,4	-2,3	-3,7	-5,3	-8,8	-5,6	-8,2	-4,3	-9,0	-4,6	-8,2
380-394	H8-H9	-2,3	-3,3	3,9	-2,4	-1,8	-3,4	-3,0	-6,3	-1,5	-10,2	-2,1	-6,1	-2,4	-5,5	-6,1	-5,3	8,2	3,1	-1,4	-3,0 -2	2,2 -3	3,4 -2,5	-5,5	-2,7	-4,1	-2,0	-10,2	-2,0	-10,1	-1,9	-10,5	-1,6	-8,8
376-401	H8-H9	-1,9	-2,6	-2,4	-1,2	-1,2	-2,8	-2,9	-3,9	-1,6	-5,4	-0,9	-2,6	-1,2	-3,0	-1,4	-4,9	0,1	1,8	-1,2	-2,6 -1	,9 -2	2,0 -2,2	-3,0	-2,1	-2,8	-1,3	-4,8	-1,2	-5,1	-3,1	-6,0	-1,7	-4,4
380-401	H8-H9	-1,5	-2,7	5,5	1,7	-0,8	-3,2	-1,9	-4,9	-1,2	-/,/	-1,1	-3,8	-0,6	-3,9	-0,7	-5,6	9,1	9,0	-1,0	-2,9 -1	1,1 -2	2,6 -1,3	-3,9	-1,3	-3,2	-1,5	-7,6	-1,5	-7,5	-2,4	-9,0	-1,2	-6,4
380-403	H8-H9	-1,4	-2,5	5,4	2,4	-0,5	-3,2	-2,3	-4,7	-1,2	-7,1	-0,6	-2,7	-0,9	-3,4	-0,2	-4,7	8,9	9,1	-1,0	-2,4 -0),3 - ·	-0,5	-2,8	-1,1	-2,5	-1,3	-0,0	-1,1	-6,5	-2,2	-8,2	-1,1	-5,7
389-394	H9	-0,9	-2,8	7,1	2,0	-2,4	-1,4	-0,7	-4,8	-2,4	-9,6	1,4	-3,5	-1,1	-4,9	-2,2	-4,0	9,2	8,4	4,2	-1,0 -1	1,5	5,1 -3,4	0,1	2,7	-4,2	-5,7	-4,7	-5,0	-5,5	0,9	-4,8	-2,9	-5,7
393-403		-1,3	-0,2	21,0	14.5	0,0	-0,1	2,3	1.0	0,0	-2,2	1,9	-0,1	-1,4	-0,9	1,5	-0,7	19,5	24,0	0,5	0,3 0			2.0	2,3	0,0	-0,0	-2,5	-0,2	-1,0	0,0	-2,1	0,4	-2,0
395-401	П9 Н0	-1,4	-1,0	2.0	0.5	0.8	-0,7	-0,0	-1,0	0,0	-1,0	-0,4	-2,0	-1,0	-1,7	2.0	-1,0	15,7	12.8	-1,4	22 1	1,0 -0	0,4 -0,4	-3,9	-0,4	-2,0	3.7	-1,0	1,2	-2,2	0,9	-2,3	0,3	-1,0
394-403	П9 Н0	1,2	0,9	2,9	9,5	0,0	-0,2	-1,7	-1,0	-0,0	-3,0	-2,9	-0,9	0,0	-0,1	-2,0	-1,3	16.0	22.3	0,4	3.1	1,0 -2	-1,0	-1,7	-0,5	3.6	-3,7	-4,2	-2,4	-3,5	-1,3	-2,0	-2,2	-2,5
395-402	но Но	-0.6	-0,9	10.1	12.8	0,0	-0,2	-0,4	-2,4	-1,0	-3,3	-0.8	-4,5	-1,1	-2,1	1,0	-0.5	10,0	17.7	-0,0	-3,1 -4	+,0 13 -?	3 _0 9	-2,2	-0,9	-3,0	-0,9	-2,5	0,1	-2,3	-0,4	-1,0	-1,2	-2,0
398-403	Н9	-1 0	2.5	12.0	83	1 7	0.0	1 3	-3.1	2.0	-0.1	0,0	-5.0	0.6	5.4	-0.6	-1 /	11.3	12.3	24	-3.5	1	30 14	-2.6	3 1	-1.6	24	0.3	1.3	-0.6	37	-0.1	20	_0 2
403-418	Н9-Н10	-0.0	1.8	4.8	0,3	0.5	0,0	-1 /	-0,1	-1 0	-0,1	0,7	-1.6	-2.4	_1 1	-0,0	-1,4	2.8	-4.3	0.2	-1.0) 4	3 17	-2,0	-0 3	0.7	-4.0	0.8	-17	0.2	-1.8	0.1	-0.7	0,2
404-418	Н9-Н10	-0,9 -0.2	0.1	2.6	0,7	-1 1	_0.0	-0.5	_0.2	-17	_0 0	0,0	1 1	-0.4	_2 1	_2,0	-1.0	0.4	-2.6	0,2	0.5) 1 4		1.5	_0,5	0,7	-2.0	1 5	-2.0	1.5	-0.7	0.8	-1.2	0,0
405-418	H9-H10	-0,2 0.2	0,1	2,0	0,0	-1 3	-0,0	-0,5	-0,2	-1.8	-0,9	3.7	7 1	0,4	-2,1	-3,2	-0.6	0,4	-2,0	2.8	5.4 3	32	1 26	3.0	2.0	5.4	-2,9	0.7	-4.3	-0.5	-2 7	-0.8	-1.7	_0 1
403-421	Н9-Н10	-0.7	-4.8	3.4	-1 4	-1 1	-7.5	-1.6	-5.3	0.7	-4 7	12	-4.9	0.1	-7 1	-3.2	-5.1	3.0	-0.6	-0.7	-3.2 1	3 -	2 0.6	-27	-2.5	-6 1	-0 1	-0.7	0.9	-2.5	1.5	-1 4	17	0.4
406-418	Н9-Н10	0.4	0.7	0.9	-1.9	-1.4	-0.3	-0.8	-0.8	-2.5	-1.0	2.7	3.6	0.5	-0.8	-5.5	-4.2	-1.8	-5.5	1.4	2.8).7 4	.7 0.5	4.1	0.4	2.8	-3.7	1.5	-2.6	1.7	-2.0	0,1	-1.2	0.7
404-422	H9-H10	-0,6	-4.0	3,2	1.1	-1.0	-3.8	-1.5	-4.6	-3,7	-6.4	-1,1	-2.9	-0,5	-5.7	-3,3	-5.2	2,3	1.8	0.0	1,1 -1	,7 -(),7 -1.3	-2.8	-2,0	-2,5	-2,6	-4,1	-2,4	-3.8	-2,1	-5,5	-3,3	-4.4
405-421	H9-H10	-0,6	-3,0	3,3	-2,2	0,0	-5,4	0,2	-4,6	-3,1	-6,9	-0,7	1,2	-0,6	-5,3	-5,2	-6,2	1,9	-0,5	-2,1	2,6 -2	2,1 (),3 -2,1	-0,4	-2,4	-1,6	-4,0	-2,7	-4,1	-3,4	-2,4	-4,0	-3,2	-4,4

406-421	H9-H10	-0,8	-3,5	1,6	-0,3	-1,7	-5,9	-1,7	-1,1	-3,2	-7,2	-2,3	-3,1	0,1	-7,2	-3,7	-7,7	2,1	-0,2	-0,7	-2,1	-2,2	-2,0	-3,4	-3,9	-1,0	-5,3	-4,0	-5,2	-3,3	-5,6	-4,5	-7,1	-2,2	-5,7
407-421	H9-H10	-4,7	-8,2	3,6	-2,2	-1,2	-2,8	-1,1	-6,5	-3,6	-8,0	1,2	-2,3	-11,9	-9,1	-5,4	-8,9	-0,2	-2,1	0,3	-2,3	-0,4	-2,8	-1,1	-3,3	-0,4	-4,3	-4,1	-3,3	-2,8	-2,8	-1,9	-4,0	-1,7	-4,4
423-428	H10/11	-2,3	-0,3	-3,5	7,9	-1,2	0,3	-3,0	-0,9	-0,3	-4,5	-2,9	-4,8	-0,3	-4,0	-7,5	-15,7	-8,7	-4,5	-2,1	-5,7	-2,6	-0,8	-3,0	-7,3	-4,8	-2,4	-4,7	-7,1	-3,3	-5,8	-0,9	-5,4	-0,3	-5,2
424-428	H10/11	-3,7	-2,3	-4,2	1,0	-3,8	-7,8	-4,6	-4,3	-2,1	-7,7	-4,5	-9,3	-0,9	-5,7	-8,5	-13,5	-10,8	-10,0	-2,8	-5,2	-5,3	-5,0	-4,9	-8,8	-7,2	-5,7	-5,7	-7,7	-5,5	-8,1	-0,6	-8,1	-3,1	-6,6
426-434	H10/11	-22,5	-21,9	-16,8	-18,7	-22,3	-13,1	-25,4	-21,3	-27,5	-29,5	-27,0	-24,1	-21,9	-21,9	-35,3	-23,0	-11,4	-8,4	1,4	2,2	-22,2	-15,1	-21,2	-17,2	-28,6	-18,2	-22,5	-15,5	-27,0	-22,2	-21,1	-21,8	-15,5	-12,3
426-440	H10/11	-44,1	-28,4	-37,0	-27,7	-33,4	-8,0	-46,6	-22,9	-50,6	-44,1	-49,0	-31,8	-43,5	-23,9	-40,3	-25,1	-15,4	-10,0	2,4	2,9	-38,0	-10,8	-32,8	-11,3	-45,1	-17,9	-31,5	-12,2	-44,0	-21,8	-40,7	-22,4	-24,4	-7,7
426-441	H10/11	-46,2	-29,4	-37,0	-27,6	-35,2	-7,5	-47,1	-22,0	-53,2	-45,3	-49,8	-28,5	-44,5	-23,0	-41,1	-23,7	-14,7	-11,3	2,8	4,0	-38,4	-8,9	-33,2	-9,7	-46,0	-16,7	-32,5	-10,5	-46,0	-20,2	-43,1	-22,4	-25,2	-7,4
428-440	H10/11	-52,4	-28,0	-40,5	-28,0	-39,3	-3,4	-59,2	-20,6	-58,9	-48,2	-60,3	-33,7	-49,2	-23,6	-48,3	-27,5	-16,9	-11,7	5,8	8,4	-35,6	-6,9	-35,7	-7,2	-50,3	-13,2	-36,1	-8,6	-50,5	-18,6	-48,4	-22,2	-27,9	-5,6
429-440	H10/11	-60,6	-30,6	-45,6	-32,7	-42,1	-3,5	-56,3	-23,5	-64,4	-51,8	-60,2	-33,0	-58,1	-27,4	-50,7	-26,2	-15,5	-10,7	4,3	5,8	-46,1	-4,6	-38,7	-4,2	-52,3	-15,9	-36,8	-6,9	-53,9	-18,4	-52,6	-21,1	-29,7	-5,4
429-441	H10/11	-63,6	-31,8	-44,8	-32,1	-44,1	-2,7	-57,4	-22,2	-66,9	-52,2	-60,9	-29,0	-59,6	-25,5	-51,4	-26,1	-15,7	-12,3	4,7	6,6	-46,6	-3,0	-39,6	-2,5	-53,7	-15,2	-36,4	-6,0	-55,4	-17,6	-54,5	-20,4	-29,9	-4,9
441-453	H10/11-H12	-16,0	-1,5	-12,8	-2,7	-5,0	1,0	-16,1	-1,6	-21,7	-3,4	-17,4	-1,3	-13,6	-0,5	-15,5	-5,4	-5,7	-2,6	1,9	-1,2	-12,4	-0,1	-8,5	0,4	-14,9	-2,2	-8,1	1,9	-16,1	1,7	-15,5	1,1	-4,5	3,5
441-454	H10/11-H12	-20,6	-1,1	-18,1	-2,9	-5,3	0,9	-22,1	-1,0	-29,0	-5,5	-22,0	1,1	-16,5	-0,9	-20,4	-5,1	-7,2	-3,9	2,9	0,3	-15,7	1,5	-10,6	2,0	-18,3	0,8	-9,9	1,7	-20,6	1,9	-20,4	0,7	-5,5	3,1
442-453	H10/11-H12	-14,5	-1,3	-11,3	-3,0	-5,2	0,9	-14,6	-0,7	-18,6	-4,3	-15,3	-2,7	-12,5	-1,6	-13,9	-3,7	-6,7	-2,6	1,3	-0,7	-11,8	0,1	-9,6	0,9	-13,0	-1,6	-7,6	0,9	-14,7	0,6	-13,4	0,9	-4,1	2,8
441-456	H10/11-H12	-31,6	-2,0	-15,3	-0,3	-12,5	2,3	-26,0	1,7	-42,8	-18,8	-29,9	5,5	-26,1	-3,5	-28,7	-0,9	-7,8	-1,8	3,5	3,8	-22,2	6,6	-17,6	6,7	-26,6	-12,6	-20,9	5,2	-29,7	2,6	-32,2	-5,4	-12,0	1,9
441-457	H10/11-H12	-33,8	-5,6	-22,5	-2,7	-14,9	1,4	-32,4	-3,9	-43,9	-14,5	-34,3	-1,6	-28,9	-5,0	-34,9	-6,7	-4,9	-3,0	1,8	0,5	-29,5	2,7	-20,8	3,5	-33,6	-6,3	-17,7	5,2	-33,1	0,4	-30,7	0,0	-13,3	4,4
454-461	H12	-31,3	-6,4	-23,5	-4,7	-23,3	1,0	-33,8	-5,7	-39,1	-16,8	-33,9	-6,4	-31,4	-4,6	-31,5	-9,6	-5,2	-1,2	3,2	0,6	-30,6	-2,8	-25,2	-0,5	-33,6	-4,7	-24,0	-1,3	-36,9	-6,2	-34,6	-7,6	-17,1	2,1
455-460	H12	-32,3	-7,7	-24,1	-3,8	-20,1	6,8	-33,8	-4,6	-40,1	-17,1	-36,4	-6,2	-32,7	-7,0	-31,4	-8,8	-7,6	-1,2	2,3	-2,2	-33,6	-3,7	-28,1	-1,4	-36,5	-10,0	-31,5	-11,8	-39,6	-16,6	-36,1	-7,7	-17,4	1,2
455-461	H12	-22,0	-2,6	-16,0	-8,3	-15,3	-0,9	-22,9	-12,2	-31,9	-13,7	-17,7	-3,3	-24,2	-5,3	-23,5	-6,9	-3,3	-6,6	16,2	7,5	-15,0	-1,9	-7,9	0,3	-13,2	-0,9	-16,0	1,0	-29,4	-3,2	-25,1	-4,5	-5,9	0,0
457-461	H12	1,5	0,7	-0,2	1,9	1,4	-1,1	2,0	4,4	5,7	6,3	-3,2	0,1	0,4	0,8	-2,2	0,8	-1,0	4,5	-0,4	5,7	0,2	4,2	1,5	8,0	-0,3	7,7	0,4	4,1	-1,0	5,2	3,3	6,2	7,4	9,5

Supplementary Table 2: Crystallographic data and refinement.

Related to Figure 2

	LXRβ-AZ3	LXRβ-AZ6	LXRβ-AZ8	LXRβ-WAY-254011	
Data collection					
Space group	P3 ₂ 2	P2 ₁	P3 ₂ 2 ₁	I4 ₁ 22	
Cell dimensions	a=125.1 Å,	a=55.4 Å,	a=58.7 Å,	a= 135.3 Å,	
	b=125.1 Å,	b=109.4 Å,	b=58.7Å,	b=135.3 Å,	
	c=125.1 Å	c=89.0 Å, β=90.9°	c=148.0 Å	c=69.73 Å	
Resolution (Å)	20.0 - 3.0	89.1 – 1.9	24.0-1.6	95.8– 2.0	
	(3.23-3.0) ¹	(2.0-1.9) ¹	(1.69-1.60) ¹	(2.11-2.0) ¹	
R _{merge}	0.081 (0.48)	0.093 (0.59)	0.055 (0.45)	0.093 (0.62)	
<	16.6 (4.9)	8.3 (1.7)	8.3 (1.8)	5.5 (1.3)	
Completeness (%)	99.8 (100)	92.7 (86.8)	96.2 (81.6)	99.8 (100)	
Redundancy	- (-)	2.0 (1.9)	4.9 (3.1)	9.2 (9.5)	
Refinement					
Measured / unique refl.	- / 30616	150698 / 80516	475154 /38673	203885 /22128	
R _{work} / R _{free}	0. 241/ 0.271	0.203 / 0.259	0.240 / 0.251	0.222 / 0.254	
No. atoms					
Protein		5742	7695	1924	1933
Water		18 -		338	30
Ligand		96	245		78
Average B-factors					
Protein (Å ²)		74,5	22,5	42,2	35,8
Water (Å ²)		53,6 -		35,2	46,5
Ligand (Å ²)		80,5	29,8	20,8	28,2
R.m.s deviations					
Bond lengths (Å)		0,007	0,011 -		0,014
Bond angles (°)		0,98	1,4 -		1 <u>,</u> 8

¹Values in parentheses refer to highest-resolution shell

Supplementary Table 3: Peptides with highest contribution to the discrimination between lipogenic and non-lipogenic compounds. *Related to Figure 3*

Significance selection criteria included correlation coefficients (|p(corr)| > 0.7) and the coefficients of contribution to the model separation between TG classes (p > 0.05).

Pontido	LXR isoform & Labelling	Amino Acid Sequence	Secondary	OPLS	-DA	Lipogenic (n = 5) vs non-lipogenic (n	= 7): unpaired t-test
replide	Time	Annino Acia Sequence	Structure	р	p(corr)	P-value	P-value summary	t, df*
			TG OPLS-DA: LXR	α and LXR β I	HDX-MS			
270-275	LXRα/30 sec	DFAKQL	H3	0,0744295	0,697956	0,0189	*	t=2,681, df=13
412-426	LXRα/30 sec	VSLRTLSSVHSEQVF	H10/11	0,092981	0,715587	0,0344	*	t=2,362, df=13
412-427	LXRα/30 sec	VSLRTLSSVHSEQVFA	H10/11	0,0971066	0,721315	0,0304	*	t=2,429, df=13
414-426	LXRα/30 sec	LRTLSSVHSEQVF	H10/11	0,104203	0,734507	0,027	*	t=2,492, df=13
414-427	LXRα/30 sec	LRTLSSVHSEQVFA	H10/11	0,116561	0,74986	0,0204	*	t=2,639, df=13
415-426	LXRα/30 sec	RTLSSVHSEQVF	H10/11	0,116667	0,74078	0,0279	*	t=2,474, df=13
415-427	LXRα/30 sec	RTLSSVHSEQVFA	H10/11	0,124186	0,748133	0,0199	*	t=2,652, df=13
428-441	LXRα/30 sec	LRLQDKKLPPLLSE	H10/11-H12	0,0510492	0,773292	0,0132	*	t=2,869, df=13
427-443	LXRα/30 sec	ALRLQDKKLPPLLSEIW	H10/11-H12	0,0827411	0,775786	0,013	*	t=2,875, df=13
428-442	LXRα/30 sec	LRLQDKKLPPLLSEI	H10/11-H12	0,0652641	0,741346	0,0354	*	t=2,347, df=13
428-443	LXRα/30 sec	LRLQDKKLPPLLSEIW	H10/11-H12	0,0834724	0,711789	0,0699	ns	t=1,975, df=13
440-447	LXRα/30 sec	SEIWDVHE	H12	0,0934413	0,825616	0,0084	**	t=3,104, df=13
441-446	LXRα/30 sec	EIWDVH	H12	0,116567	0,920834	0,0005	***	t=4,654, df=13
214-219	LXRα/600 sec	IEKLVA	H1	0,11695	0,825104	0,0011	**	t=4,160, df=13
290-296	LXRα/600 sec	LKTSAIE	H5	0,0811372	0,743081	0,0061	**	t=3,270, df=13
326-331	LXRα/600 sec	FAKAGL	H6	0,0735871	0,697892	0,0024	**	t=3,762, df=13
327-331	LXRα/600 sec	AKAGL	H6	0,0850626	0,759729	0,0009	***	t=4,300, df=13
333-341	LXRα/600 sec	VEFINPIFE	H7	0,116319	0,727585	0,006	**	t=3,275, df=13
333-345	LXRβ/30 sec	FTYSKDDFHRAGL	βsheets, H6	0,0952277	0,887247	<0,0001	****	t=5,865, df=13
333-346	LXRβ/30 sec	FTYSKDDFHRAGLQ	βsheets, H6	0,0902183	0,870471	< 0.0001	****	t=6.063. df=13
341-346	LXRβ/30 sec	HRAGLQ	H6-H7	0,143145	0,818952	0.001	**	t=4.215. df=13
341-347	LXRβ/30 sec	HRAGLQV	H6-H7	0,107901	0,837063	0.0028	**	t=3.677. df=13
341-348	LXRβ/30 sec	HRAGLQVE	H6-H7	0.100804	0.791383	0.0076	**	t=3,156, df=13
341-349	LXRβ/30 sec	HRAGLQVEF	H6-H7	0,108573	0,833864	0.0057	**	t=3.308. df=13
349-354	LXRβ/30 sec	FINPIF	H7	0.0599492	0,705961	0.0102	*	t=3.004. df=13
349-355	LXRβ/30 sec	FINPIFE	H7	0.0547438	0,70169	0.0104	*	t=2.990, df=13
429-440	LXRβ/30 sec	RTLSSVHSEQVF	H10/11	0,154339	0,717002	0.0236	*	t=2.562, df=13
429-441	LXRβ/30 sec	RTLSSVHSEQVFA	H10/11	0,161647	0,724354	0.0234	*	t=2.567. df=13
441-453	LXRβ/30 sec	ALRLQDKKLPPLL	H10/11-H12	0.0501846	0.713708	0.0661	ns	t=2.006, df=13
441-454	LXRβ/30 sec	ALRLQDKKLPPLLS	H10/11-H12	0.0680182	0,713626	0.057	ns	t=2.088. df=13
441-457	LXRB/30 sec	ALRLODKKLPPLLSEIW	H10/11-H12	0.104948	0.723603	0.0853	ns	t=1 863 df=13
304-310	LXRB/600 sec	LKASTIE	H5	0.0945143	0.698917	0.0563	ns	t=2.095, df=13
305-310	LXRB/600 sec	KASTIE	H5	0.0936218	0.7409	0.0259	*	t=2,515 df=13
333-345	LXRβ/600 sec	FTYSKDDFHRAGI	ßsheets, H6	0.131977	0.733755	0.0023	**	t=3 774 df=13
333-346	LXRB/600 sec	FTYSKDDFHRAGLQ	ßsheets, H6	0.14834	0.736355	0.003	**	t=3.646_df=13
341-346	LXRβ/600 sec	HRAGI Q	H6-H7	0.176995	0.796951	0.0022	**	t=3 798 df=13
341-347	LXRβ/600 sec	HRAGIQV	H6-H7	0,130883	0.756441	0.0055	**	t=3.324 df=13
341-348	LXRβ/600 sec	HRAGIQVE	H6-H7	0,108676	0.738019	0.0037	**	t=3.531 df=13
341-349	LXRβ/600 sec		H6-H7	0.131281	0.768548	0.0029	**	t=3.656 df=13
348-355	LXRB/600 sec	FFINPIFF	H7	0 10038	0 718621	0,0020	**	t=3 208 df=13
349-354	LXRβ/600 sec	FINPIF	H7	0.0989918	0 79585	0,0005	**	t=3,419, df=13
349-355		FINPIFE	H7	0.097601	0 769606	0,0040	**	t=3 317 df=13
426-434		VSI RTI SSV	H10/11	0.0628284	0 712973	0,0030	*	t=2.452 df=13
426-440	L XRB/600 sec	VSI RTI SSVHSFOVF	H10/11	0 107806	0 792896	0,0291	**	t=3 189 df=13
426-441	L XRB/600 sec	VSI RTI SSVHSEOVEA	H10/11	0 109961	0 7865	0,0071	**	t=3 220 df=13
428-440	L XRB/600 sec	I RTI SSVHSFOVF	H10/11	0 120780	0 785036	0,0007	**	t=3 273 df=13
429-440	L XRB/600 sec	RTLSSVHSFOVF	H10/11	0 143264	0.803832	0,000	**	t=3.578 df=13
429-441	LXRB/600 sec	RTLSSVHSEQVFA	H10/11	0.141402	0.785316	0,0004	**	t=3 442 df=13

* t: t-values, df: degrees of freedom

Supplementary Table 4: Differences in deuteration levels (% of maximal deuteration) of LXR LBDs in presence of the SRC1 coactivator peptide and different ligands. Related to Figure 3 rrected to back exchange using the fully deuterated controls. Missing pentides are shown in dark grey. HDX-MS me -1. for all nentide

Deuterium uptake value	es for all peptides were co	rrected to b	back exc	change us	sing the fu	ully deuter	rated cor	ntrols. Mis	sing pep	tides are	shown in	dark gre	ey. HDX-I	MS meas	urements	were pe	rformed i	in triplicat	tes and th	e average	e values	are show	n. Color	scheme is i	entical	to Figure 2.								
		10.0912	⁵¹	NAT 25	401 ¹	4^		A2876	0	pli		Al	,	p2	,	ALA	L.	CN30	69	NS-857	1921	A20	,	AT		JR:623		p.18	4	0/	A25		24,256	ŗ,
				<i>N</i> .	I													DX (apo -	ligand), '	<u>~</u> %										I				
Peptide	Secondary Structure	30 sec 60	00 sec 🕄	30 sec 6	00 sec 3	30 sec 60	00 sec 3	30 sec 6	00 sec 3	0 sec 60	00 sec 3	0 sec 6	00 sec 3	30 sec 6	00 sec 🗧	30 sec 6	00 sec 🗄	30 sec 6	00 sec 3	30 sec 60	00 sec 3	30 sec 6	00 sec 🕻	30 sec 600	sec 30	sec 600 s	ec 30 se	ec 600 se	30 sec	600 sec	30 sec 60	0 sec 3	0 sec 60)0 sec
	· · · · · · · · · · · · · · · · · · ·														Ĺ	XRα																		
200-210	H1	1,7	-5,9	-0,9	-8,9	-2,0	-2,3	-1,2	1,5	-4,8	-7,6	-2,3	-8,4	-1,0	-2,5	2,5	-8,1	-0,5	-8,5	3,7	-8,6	2,0	-0,5		-8,3	-2,0 -	7,2 1	,4 1,	2 9,9	-5,6	-1,1	-9,2	-3,5	-4,6
200-213	H1	6,4	-0,5	2,6	-1,8	6,0	2,1	3,1	-0,3	2,9	-2,7	-1,7	-5,4	3,8	1,7	3,1	-0,2	1,5	-2,0	7,3	-0,4	5,4	3,1	4,5	-0,2	-1,8 -3	3,7 3	<mark>,6</mark> -1,	9 3,3	0,8	-2,4	-5,2	4,4	-0,4
204-213	H1	6,9	-1,3	-0,6	-1,9	3,4	-0,5	-1,5	-1,8	-1,0	-2,3	-4,3	-5,7	-1,2	-1,1	-0,2	0,9	-2,0	-6,0	6,2	-2,0	4,5	3,2	0,6	0,6	-5,0 -3	8,1 -0	,9 -0,	3 -0,8	0,5	-3,5	-5,4	0,5	-3,6
208-213	H1	5,8	1,7	3,8	-6,3	3,5	2,8	-2,5	-14,9	-3,5	-5,9	5,1	3,7	3,0	2,8	2,4	-1,0	0,2	-1,4	5,2	1,1	4,6	4,2	2,8	-3,1	0,5 -1	,5 -1	,4 -7,	0 1,0	-2,6	7,7	6,5	7,6	2,1
214-219	H1	-19,0	-28,6	-17,8	-49,6	-15,5	-39,2	-19,7	-47,1	-20,0	-48,3	-17,1	-41,9	-19,8	-39,7	-19,4	-47,0	-18,1	-32,4	-20,9	-29,4	-23,1	-40,1	-12,8 -	1,8 -	18,2 -30	6,9 -10	,4 -20,	3 -17,5	-42,7	-14,6	-29,3	-20,2	-36,4
214-233	H1	-1/,/	-13,2	-22,1	-23,0	-18,8	-17,2	-22,0	-20,8	-18,0	-18,0	-22,5	-20,5	-17,0	-13,5	-18,6	-1/,/	-15,6	-15,0	-15,1	-12,5	-22,0	-13,5	-17,3 -	5,5 -	17,8 -10	5,6 -13	,9 -12,	5 -16,9	-15,9	-18,6	-16,0	-19,4	-1/,/
220-233		-9,1	-8,1	-12,3	-8,4	-9,1	-3,5	-11,6	-7,4	-10,7	-7,0	-13,9	-11,7	-9,9	-4,6	-9,2	-4,3	-9,0	-8,1	-1,1	-7,5	-10,7	-2,2	-10,9	-5,0 -	10,2 -0	5,1 -9	,9 -6, 2 0	0 -10,1	-5,8	-11,7	-9,9	-9,1	-4,8
234-240		0,2 3.7	1,2	-0,3	0,3	-3,5	2,4	-4,3	-0,0	-2,2	-3,3	-5,7	-5,5	-3,3	2,3	-2,5 1 8	-1,2	-4,Z	-2,7	1,2	1 7	-2,0	4,3	-1,9	1.8	-3,0 -	3 -0	,3 -0, 0 7	2 -0,0	1,5	-3,0	-3,5	-0,0	-0,3
234-240	100p H1-H3 H3	-9.9	-3.9	-16.7	-4.4	-11.5	-1 1	-22,0	-4.8	-9.3	-2.2	-0,2	-6.4	-11 9	-1 1	-9.2	0.2	-9.0	-2.2	-2,5	-0.7	-10.6	3.6	-7.8	0.4	-9.0 -4	,,, -, . 88	,3 -1, 8 -2	-93	-0.9	-8.8	-4.6	-17.0	-1.0
239-257	loop H1-H3, H3	-13.0	-4.5	-18.5	-7.2	-11.3	-0.6	-21.9	-7.1	-11.3	-4.5	-19.3	-7.8	-11.5	-0.3	-11.0	-1.8	-8.8	-0.8	-4.4	-0.8	-11.4	4.6	-8.4	1.9 -	10.1 -	5.7 -8	.1 -3.	-9.7	-2.8	-13.7	-6.2	-15.9	1.0
241-257	loop H1-H3, H3	-5,6	-6,9	0,0	4,8	-5,8	-2,5	2,0	5,7	2,4	5,5	-9,1	-7,3	-6,1	-3,3	4,4	7,7	-8,1	-7,4	-3,7	-5,4	-5,9	-1,9	1,8	7,2	2,3	5,1 4	,5 8,	3 2,9	8,0	-10,8	-6,9	-8,1	-3,6
260-265	НЗ	-51,0	-73,3	-44,9	-78,8	-40,6	-75,4	-48,3	-84,2	-47,4	-82,2	-33,9	-80,8	-40,6	-72,7	-47,5	-79,6	-38,5	-68,6	-52,2	-72,2	-49,1	-55,6	-	- 0,6	41,5 -5	8,9	-56,	0 -43,7	-63,6	-20,3	-36,6	-35,6	-63,5
261-267	НЗ	-49,9	-67,8	-44,7	-78,1	-41,0	-69,7	-46,3	-81,9	-45,4	-78,6	-41,6	-64,5	-39,7	-64,7	-43,0	-70,5	-41,2	-64,3	-51,7	-69,6	-47,1	-54,4	-41,5 -	3,7 -	38,2 -54	,8 -40	,2 -54,	2 -39,4	-56,9	-27,7	-27,1	-35,9	-51,8
267-271	H3	2,7	-14,7	-3,4	-18,8	-3,3	-16,2	-4,7	-19,0	-4,8	-21,4	0,1	-13,3	-3,7	-16,1	-4,2	-18,8	-3,1	-13,0	2,7	-14,9	2,3	-12,5	-3,5 -	9,3	-2,1 -1	5,3 -2	,8 -18,	7 -3,3	-17,4	1,5	-10,2	-2,8	-10,2
271-278	H3	-1,1	-10,2	-1,8	-9,0	-0,5	-8,9	-1,5	-9,0	-1,8	-9,6	-2,6	-10,2	-1,2	-8,4	-1,6	-8,2	-0,4	-6,9	-0,9	-9,7	-0,5	-6,8	-2,0	-8,1	-1,3 -8	3,0 -1	,7 -9,	0 -1,2	-7,3	-2,2	-8,4	-1,0	-5,7
271-281	H3-H4	-1,1	-9,1	-3,9	-7,9	0,0	-7,6	-4,9	-8,8	-4,4	-9,2	-5,0	-11,5	-0,8	-7,8	-5,1	-7,7	-0,9	-7,0	-1,3	-8,1	-3,7	-6,3	-6,1	-8,1	-2,1 -	7,0 -5	,2 -7,	4 -3,2	-5,8	-4,4	-7,0	-0,8	-6,3
272-278	H3-H4	0,4	-9,0	-0,5	-8,3	1,6	-7,3	1,7	-5,5	0,2	-8,7	-1,6	-10,2	0,5	-7,2	0,4	-7,5	-0,1	-7,3	0,3	-8,2	0,3	-6,0	0,8	-5,4	0,2 -6	6,5 0	,8 -6,	3 0,2	-3,6	-1,0	-8,0	0,3	-5,4
272-281	H3-H4	-1,5	-9,5	-6,5	-11,1	-2,4	-9,4	-6,3	-11,2	-6,0	-11,5	-7,7	-13,5	-3,1	-8,8	-6,7	-9,4	-3,5	-7,0	-2,0	-8,7	-4,1	-6,5	-7,2 -	0,2	-4,8 -10	0,5 -6	,5 -9,	8 -5,1	-9,1	-7,2	-10,6	-3,5	-6,7
273-278	H3-H4	3,4	-15,7	-1,5	-16,9	2,4	-7,0	-6,7	-15,8	-8,0	-20,3	4,1	-8,3	4,2	-4,4	-5,4	-15,6	1,7	-1,8	-1,1	-18,3	0,3	-12,5	-6,7 -	8,0	-1,3 -1	5,3 1	,3 -16,	1 -2,9	-11,6	4,4	-5,1	1,1	-1,0
279-286	H4-H5	4,7	-6,8	2,9	-3,7	3,3	0,7	7,1	4,6	-0,3	-6,3	-2,1	-10,8	4,5	0,5	1,6	2,3	0,7	2,8	4,5	-5,3	-0,1	-1,6	E 1	-1,8	b , 3 -4	+,9 -b	,7 -0,	5,1	-4,9	-1,8	-7,2	0,1	-2,4
280-290	H4-H5	-4,0	-7.8	-2,0	-0,9	-1,1	-7,9	-3,9	-0,5	-3,1	-7,5	-0,7	-20,0	-2,3	-0,2	-3,1	-5,7	-2,1	-6,2	-3,7	-10,9	-0.2	-5,9	-0,1	.6.5	-0,2 -0	5,1 -4 5,8 -0	,0 -0, 4 -6	B 0.0	-5,7	-0,7	-10,2	-2,2	-7,9
282-290	H4-H5	0.4	-9.0	0.7	-7 4	0.2	-6.6	2.5	-5.4	-0.3	-7 1	-2.3	-10.4	0.3	-6.2	0.7	-6.8	-0.3	-4.9	-0.4	-9.1	-1.0	-7.9	1,4	5.3	12 -	57 3	2 -4	5 20	-5.5	-1.5	-8.2	0.5	-3.7
285-290	H5	3.3	-4.5	0.3	-5.2	-3.2	-6.2	-2.5	-5.2	-3.2	-7.7	-1.0	-3.2	-3.3	-6.3	-1.4	-8.9	-2.0	-3.1	2.9	-3.8	3.2	-3.1	-1.8	-9.2	0.6 -	5.4 -3	.4 -5.	2 -2.8	-4.5	0.1	0.6	-3.3	-5.1
290-294	H5	-32,3	-51,5	-27,2	-61,9	-27,2	-51,3	-29,8	-64,0	-26,6	-62,2	-25,5	-58,3	-29,0	-55,7	-26,7	-62,8	-29,1	-53,4	-28,1	-32,0	-32,1	-53,6	-28,0 -	60,3 -	23,9 -5	3,5 -30	,3 -60,	1 -25,4	-58,2	-15,9	-45,0	-27,5	-48,2
295-299	H5-βsheets	2,3	-6,8	-1,1	-8,8	0,4	-7,7	-2,7	-8,6	-3,6	-10,3	-1,8	-8,0	-2,6	-9,1	-3,4	-9,4	-3,4	-9,6	2,1	-7,2	3,6	-4,9	-3,8 -	0,4	-1,1 -	7,2 -2	,2 -9,	3 -2,2	-8,5	-1,3	-6,5	-2,5	-7,1
299-311	H5-βsheets	-19,4	-21,6	-18,5	-32,9	-18,0	-33,8	-18,2	-26,4	-17,4	-28,1	-19,4	-23,5	-16,2	-20,1	-16,4	-28,0	-17,4	-30,9	-21,6	-31,7	-20,7	-24,4	-17,0 -	23,5	-4,3 -	7,3 -16	,7 -17,	6 -15,1	-16,5	-16,3	-20,7	-16,0	-22,2
299-314	H5-βsheets	-29,3	-27,5	-30,3	-44,1	-29,0	-40,6	-30,9	-34,5	-29,4	-40,6	-27,2	-34,4	-26,3	-32,5	-27,7	-36,6	-26,7	-37,9	-33,4	-41,6	-30,6	-32,5	-28,5 -	- 0,6	18,3 -1	5,4 -26	,4 -25,	9 -25,3	-20,5	-20,1	-21,8	-23,3	-28,0
299-315	H5-βsheets	-29,4	-22,7	-34,3	-46,6	-29,5	-38,9	-32,5	-32,9	-33,4	-42,6	-36,3	-37,9	-29,8	-34,3	-31,6	-38,8	-31,0	-39,9	-36,7	-40,3	-32,8	-30,0	-30,7 -	- 10,7	19,9 -1	5,6 -29	,2 -22,	7 -26,4	-19,6	-27,3	-23,9	-26,6	-28,9
300-311	H5-βsheets	-19,7	-19,8	-18,5	-33,6	-18,6	-34,5	-19,5	-29,7	-16,6	-27,4	-19,3	-22,2	-16,7	-20,0	-15,3	-27,1	-17,7	-30,5	-21,7	-31,2	-20,7	-22,9	-17,5 -	2,8	-2,8 -	5,2 -18	,0 -17,	5 -15,0	-14,8	-15,4	-18,6	-16,2	-21,2
300-312	H5-βsheets	-26,1	-24,4	-25,4	-39,5	-24,6	-39,9	-28,4	-35,4	-23,9	-33,9	-25,0	-29,6	-22,5	-27,1	-21,9	-32,0	-23,5	-35,8	-28,4	-36,0	-27,1	-26,2	-24,3 -2	26,8 -	11,6 -1 ⁻	,2 -24	,4 -20,	-21,2	-19,0	-19,3	-20,2	-21,3	-26,2
300-315	Ho-psneets Reheate	-30,6	-21,1	-37,3	-48,5	-31,3	-39,5	-30,2	-33,8	-35,4	-44,0	-39,3	-39,4	-31,9	-34,2	-33,3	-40,1	-31,9	-39,8	-39,3	-41,0	-30,0	-28,9	-32,2 -	0,9 -	22,4 -10	2 2 22	,9 -22,	21 2	-19,7	-29,9	-24,2	-28,2	-28,4
312-310	Bsheets-H6	-24,0	-30.6	-09,1	-32.0	-37,4	-22,9	-30,5	-14,0	-02,0	-42,2	-32,0	-30,0	-31,0	-34,3	-02,5	-30,0	-32.3	-30,0	-40,7	-31,7	-33.8	-20,9	-30,5 -	2,0 -	273 _2	0 -25	,2 -12,	1 -25.5	-0,0	-24.5	-14,5	-45,1	-24,9
319-324	Bsheets-H6	-11.6	-11.8	-15.5	-12.0	-9.3	-12.2	-12.8	-7.2	-10.9	-11.6	-6.6	-7.3	-20,0	-9.5	-11.3	-7.5	-91	-11.3	-9.4	-10.5	-10.3	-6.9	-8.8	28	128 -	5.6 -1	, <u>-</u> -22, 7 -0	1 -7.6	-22,0	-24,5	1 4	-11.8	-7.5
319-326	βsheets-H6	-39,3	-38,7	-42,2	-45,2	-35,3	-43,8	-42,6	-47,4	-39,0	-45,0	-39,7	-43,0	-34,5	-38,8	-37,5	-38,7	-35,2	-39,6	-40,2	-39,5	-38,1	-28,3	-36,1 -	6,5 -	36,8 -34	,1 -33	,2 -32,	5 -34,6	-34,0	-30,2	-21,4	-35,0	-32,1
319-331	βsheets-H6	-49,5	-39,1	-41,8	-36,3	-47,6	-47,9	-55,0	-55,3	-50,5	-48,2	-47,5	-44,0	-42,5	-39,2	-47,7	-41,3	-38,7	-30,6	-38,4	-17,9	-46,6	-28,6	-40,0 -		35,1 -20	5,5 -41	,1 -26,	7 -37,9	-27,8	-32,8	-16,4	-41,4	-34,2
320-331	βsheets-H6	-57,9	-45,4	-46,5	-41,2	-53,1	-54,7	-61,6	-64,5	-56,3	-55,5	-41,5	-45,9	-46,6	-45,4	-53,0	-47,5	-40,6	-34,9	-42,6	-18,4	-54,4	-31,7	-47,2 -	6,1 -	40,4 -30	,4 -48	,0 -30,	4 -43,8	-32,0	-25,0	-20,9	-46,3	-38,5
321-331	βsheets-H6	-71,0	-56,1	-46,2	-42,9	-61,6	-59,8	-64,2	-66,9	-59,4	-59,7	-56,0	-53,6	-52,4	-50,8	-53,5	-50,1	-44,3	-36,8	-49,1	-22,0	-62,7	-37,2	-48,5 -	9,2 -	38,0 -3	,2 -47	,1 -30,	7 -43,7	-31,6	-37,8	-25,3	-51,5	-42,8
326-331	H6	-58,0	-30,7	-37,0	-25,9	-62,0	-43,8	-69,2	-55,9	-62,7	-44,1	-52,4	-32,4	-49,0	-32,6	-57,2	-39,8	-37,3	-11,6	-28,0	11,0	-55,7	-18,8	-42,5 -	6,7 -	33,0 -1	5,7 -48	,0 -14,	9 -40,3	-22,3	-32,6	-6,1	-48,7	-33,1
327-331	H6	-53,2	-36,6	-37,5	-31,2	-59,3	-47,9	-67,0	-54,2	-60,3	-48,6	-51,5	-39,6	-47,4	-40,7	-54,4	-41,9	-35,4	-18,8	-33,2	6,3	-48,3	-25,5	-39,4 -	- 1,4	33,8 -26	6,9 -48	,9 -28,	5 -36,2	-27,4	-31,1	-9,3	-48,9	-31,5
332-341	H7	-30,9	-52,4	-24,5	-58,7	-26,4	-51,6	-28,7	-61,1	-27,9	-59,7	-32,2	-56,5	-24,3	-51,1	-26,2	-55,0	-22,0	-44,1	-23,2	-32,7	-31,1	-44,4	-25,0 -	53,1 -	21,2 -4	5,1 -23	,4 -49,	0 -22,6	-50,7	-23,6	-39,9	-21,7	-43,3
334-341	H/	-32,2	-61,6	-24,4	-65,0	-25,1	-60,5	-27,0	-67,1	-27,8	-64,6	-25,0	-60,5	-23,8	-58,1	-24,8	-60,2	-22,3	-52,2	-23,8	-49,6	-30,4	-52,0	-25,3 -	3,0 -	21,4 -5	5,8 -21	,7 -55,	4 -24,9	-59,3	-19,2	-44,0	-21,2	-46,9
330-340		-33,3	-59,2	-25,9	-02,2	-30,5	-58,3	-20,4	-01,0	-28,3	-59,5	-29,4	-60,5	-30,9	-00,0	-20,9	-53,6	-27,1	-47,3	-21,0	-48,0	-31,3	-48,0	-23,7 -		21,9 -0 21,2 5	-22	,8 -48, 0 52	-22,2	-49,9	-21,8	-48,4	-20,3	-44,0
336-341	H7	-30,2	-66.4	-20,2	-68.2	-20,7	-59,5	-20,7	-60 1	-25,7	-69.4	-20,7	-66,6	-27,0	-50,2	-25,2	-66.8	-24,0	-50,5	-20,9	-51,9	-27,0	-59.8	-22,9 -	5 3	-96 -6	-20	,9 -00, 9 -65	-22,3 B -10/	-55,8	-22,7	-43,1	-24,2	-47,3
341-348	H7	-26.9	-47.9	-18.1	-46.5	-25.7	-46.3	-22.2	-51.3	-21 1	-49.2	-24 0	-48.8	-23.4	-42.0	-19.6	-46.3	-20.2	-38.9	-24.8	-46.4	-26.9	-42 7	-21.0 -	5.0 -	-5,0 -0. 16 7 -4	4 -21	4 -43	-17.6	-41 7	-20.8	-40.4	-23.0	-39.1
342-348	H7	-22.9	-41.5	-20.6	-47.4	-21.6	-40.7	-20.5	-51.7	-20.3	-49.5	-23.3	-43.5	-20.8	-39.6	-20.0	-46.5	-20,1	-37.3	-21.3	-40.6	-23.2	-36.6	-18.6 -	5.2 -	16,7 -4	.5 -19	.0 -43.	9 -17.4	-42.3	-18.7	-32.9	-20.4	-35.8
349-353	loop H7-H8	-3,7	-16,2	-8,4	-25,0	-9,4	-24,4	-11,4	-26,5	-8,1	-19,7	5,0	-9,5	-3,0	-22,6	-6,6	-23,0	-5,7	-21,4	-0,5	-12,1	-4,4	-14,6	-8,9 -	25,4	-7,1 -19	,6 -10	,8 -22,	7 -7,9	-22,8	3,1	-10,0	-8,6	-31,0
349-356	loop H7-H8, H8	-8,5	-21,1	-6,7	-20,1	-10,3	-21,5	-3,0	-19,0	-5,4	-19,8	-11,3	-30,1	-10,8	-22,8	-4,7	-18,8	-9,7	-20,4	-7,7	-19,9	-7,9	-18,8	-5,7 -	6,7	-4,2 -14	,7 -3	,0 -13,	2 -3,9	-16,0	-9,9	-29,1	-11,0	-21,9
350-356	loop H7-H8, H8	-10,7	-20,1	-11,9	-17,2	-8,3	-11,4	-14,5	-17,9	-13,6	-16,4	-11,3	-21,6	-9,6	-12,2	-13,1	-16,0	-11,6	-9,8	-11,2	-20,1	-11,5	-16,5	-18,1 -	7,5 -	12,2 -10	6,0 -14	,7 -17,	8 -12,6	-17,0	-8,2	-19,8	-10,0	-10,0
352-356	H8	3,1	-3,1	-0,4	-6,0	1,9	-4,7	1,3	-5,8	0,8	-6,8	-0,1	-6,0	1,0	-4,2	0,9	-5,6	1,0	-4,1	3,4	-2,2	2,6	1,1	0,2	4,9	0,5 -	5,9 0	,4 -5,	3 1,1	-4,6	0,4	-3,0	0,7	-2,3
357-361	H8	4,2	-1,9	-1,2	-2,8	-0,2	-3,0	-2,9	-4,4	-2,7	-3,0	-0,7	-4,3	-0,8	-3,1	-1,3	-3,2	-0,8	-2,5	3,3	-2,3	2,8	-2,3	-1,6	3,5	-0,8 -3	3,2 -2	,7 -4,	5 -2,9	-4,2	-0,5	-3,3	-0,4	-3,4
360-365	H8	-0,1	-7,7	-1,5	-5,6	-1,3	-5,7	-2,7	-6,1	-2,3	-6,2	-1,3	-4,8	-0,7	-4,9	-2,0	-5,8	-0,6	-4,3	-1,0	-8,0	-1,1	-6,3	-2,6	6,2	-1,3 -	5,2 -2	,7 -6,	-2,4	-4,6	-1,1	-3,8	-0,8	-4,4
362-376	H8, loop H8-H9	-19,4	-9,0	-14,9	-14,6	-18,5	-14,7	-16,6	-13,8	-16,7	-14,9	-22,0	-17,8	-16,1	-13,5	-14,8	-10,7	-12,7	-11,1	-13,3	-5,6	-18,6	-4,4	-16,0 -	0,7 -	13,9 -12	2,3 -17	,4 -11,	9 -16,4	-11,1	-18,1	-15,6	-16,2	-11,3
366-376	100p H8-H9, H9	-25,7	-10,7	-26,1	-15,6	-24,7	-13,1	-28,3	-16,8	-27,1	-15,3	-31,6	-18,6	-23,1	-10,2	-24,9	-10,3	-19,2	-9,9	-18,4	-5,4	-25,3	-5,5	-25,8 -	1,4 -	24,7 -1	5,9 -27	,1 -13,	4 -25,9	-13,5	-25,4	-16,0	-22,1	-11,7
300-311 266 279		-23,9	-7,5	-19,5	-12,1	-34,8	-15,8	-22,0	-13,3	-21,4	-12,6	-37,8	-16,0	-29,7	-13,7	-18,0	-7,0	-26,2	-12,0	-16,9	-4,1	-24,0	-4,3	-20,8	0,3 -	16.2	2 40	,7 -8,	+ -19,3	-10,0	-32,5	-13,9	-28,0	-14,7
300-318 377-386	юор на-ну, ну на	-21,2	-10,2	-17,3	-13,3	-21,2	-15,5	-19,6	-14,1	-17,2	-13,1	-18,9	-12,7	-19,1	-12,8	-15,8	-8,3	-15,0	-11,5	-14,7	-0,8	-20,9	-5,5	-17,0	-0,0 - 2.2	-16 1	,2 -18	, i -11,	7 50	-10,7	-10,8	-9,3	-10,0	-12,8
011-000		-0,1	-10,0	-4,5	-11,0	-0,9	- 14, 1	-0,0	-10,0	-0,0	-12,1	-3,5	-24,0	-0,0	-12,4	-4,5	-10,0	-3,1	-0,7	-5,0	-15,0	- 4 ,Z	-11,4	-0,1 -	2,2	-1,0 -1	,01 -0	, - 14,	-5,0	-11,0	-1,5	10,1	-0,0	-7,0

iaure	2
iguic	~

377-387	Н9	-4,5	-16,3	-4,5	-14,5	-4,7	-15,7	-4,5	-16,0	-4,5	-15,2	-6,5	-16,7	-4,1	-14,3	-3,9	-12,8	-3,9	-11,3	-5,7	-14,5	-4,9	-12,7 -4,5	-13,2	-3,9	-13,2	-4,7	-14,9	-3,8	-12,3	-5,6	-13,6	-3,7	-9,9
377-389	Н9	-3,2	-15,4	-2,7	-12,9	-4,9	-15,3	-3,1	-13,4	-3,0	-13,0	-5,8	-15,9	-4,4	-14,6	-3,0	-12,2	-4,3	-13,5	-4,2	-14,1	-3,8	-13,4 -3,6	-12,4	-3,0	-12,1	-2,4	-12,8	-2,5	-12,6	-5,4	-13,6	-4,4	-11,5
379-389	H9	-4,5	-10,6	-4,4	-12,5	-3,6	-10,3	-4,8	-12,1	-3,8	-12,6	-5,3	-16,8	-3,2	-8,7	-4,2	-11,3	-3,7	-7,0	-5,6	-11,3	-5,5	-7,0 -4,6	-11,8	-3,9	-10,3	-4,1	-12,5	-3,1	-9,5	-4,8	-13,9	-1,2	-5,7
382-389	Н9	-5,1	-14,7	-4,4	-13,0	-3,7	-12,7	-8,2	-14,8	-7,3	-14,9	-4,9	-11,1	-2,8	-10,8	-7,1	-12,8	-2,8	-9,4	-5,9	-13,9	-5,3	-9,8 -8,4	-15,3	-4,2	-11,4	-8,8	-15,3	-7,7	-12,6	-3,3	-8,6	-2,9	-6,2
385-389	Н9	-1,9	-11,5	-8,1	-13,9	-8,2	-16,1	-6,8	-15,0	-4,1	-13,8	-10,2	-11,1	-9,4	-13,4	-4,1	-11,7	-6,5	-7,9	-2,5	-10,7	-3,0	-8,6 -10,3	-15,8	-6,5	-16,8	-6,2	-15,4	-5,4	-14,8	-7,4	-3,8	-9,4	-11,2
390-404	H9-H10	-8,3	-13,7	-7,1	-15,5	-5,8	-9,7	-7,5	-14,9	-7,7	-16,1	-9,7	-14,8	-5,9	-9,6	-7,2	-14,6	-5,6	-11,3	-8,1	-14,1	-9,6	-10,5 -6,4	-14,3	-7,7	-16,6	-6,3	-15,1	-5,6	-13,7	-8,7	-12,8	-5,7	-8,2
392-404	H9-H10	-7,6	-11,3	-7,6	-14,2	-6,3	-8,1	-8,0	-13,7	-8,2	-15,3	-12,5	-16,0	-6,5	-8,1	-7,5	-13,1	-5,9	-10,6	-7,3	-11,6 -1	10,0	-7,8 -6,9	-13,1	-8,3	-15,5	-7,1	-13,4	-6,2	-12,5	-13,6	-14,2	-6,0	-7,4
392-407	H9-H10	-6,5	-17,5	-5,7	-18,2	-7,7	-16,3	-7,8	-17,2	-8,0	-16,6	-11,9	-20,9	-7,5	-15,7	-4,6	-13,6	-6,3	-14,6	-7,1	-14,3	-9,2	-13,7 -7,5	-16,0	-6,8	-16,7	-6,6	-14,6	-5,7	-16,5	-10,2	-18,2	-6,0	-15,0
408-413	H10/11	1,5	-3,0	-0,1	-8,7	-0,5	-9,6	1,8	-7,5	0,5	-8,0	-0,6	-5,9	-0,8	-6,2	0,6	-5,1	-0,9	-6,5	1,2	-3,1	2,3	-1,5 -0,3	-6,3	0,9	-4,7	1,9	-2,3	1,6	-4,0	0,3	-4,3	-1,8	-8,5
410-414	H10/11	2,6	-5,4	0,7	-11,7	-1,4	-11,6	3,7	-8,0	0,0	-12,1	-1,5	-11,6	-2,4	-9,6	0,1	-7,1	-3,9	-9,7	2,2	-1,3	0,5	-5,5 1,3	-7,2	1,3	-7,6	-1,8	-2,4	0,4	-4,9	-0,4	-8,2	-2,3	-10,1
412-420	H10/11	-19,4	-6,3	-25,0	-20,0	-18,2	-9,9	-22,3	-12,3	-22,4	-13,1	-25,2	-16,8	-23,0	-12,4	-16,8	-6,7	-15,7	-10,2	2,4	-4,2 -	16,2	-3,1 -19,7	-8,9	-20,1	-11,2	-23,4	-12,0	-20,8	-10,9	-16,8	-12,0	-13,9	-9,2
412-426	H10/11	-41,0	-21,0	-48,9	-36,7	-40,2	-21,9	-47,8	-36,3	-48,0	-31,8	-47,5	-31,4	-44,1	-27,5	-40,9	-21,5	-25,9	-12,9	-2,9	-7,9 -3	37,3	-13,1 -41,0	-18,0	-40,5	-18,5	-42,4	-17,7	-40,6	-18,7	-31,6	-17,9	-32,6	-16,0
412-427	H10/11	-43,9	-21,7	-47,5	-36,5	-42,2	-22,5	-47,7	-36,7	-47,3	-32,6	-45,7	-31,0	-47,1	-29,2	-40,7	-21,5	-25,6	-13,7	-2,3	-7,1 -3	39,8	-12,2 -40,3	-16,7	-39,1	-16,9	-40,3	-15,5	-39,8	-17,9	-29,5	-14,5	-34,2	-16,2
415-426	H10/11	-60,2	-29,7	-58,3	-42,5	-54,7	-28,3	-58,9	-45,8	-58,7	-40,8	-58,1	-35,2	-59,2	-36,8	-51,6	-30,7	-35,1	-16,2	-9,3	-12,0 -{	54,9	-18,9 -51,2	-24,3	-49,8	-23,8	-51,9	-20,5	-50,8	-24,4	-38,5	-17,6	-46,2	-20,5
415-427	H10/11	-61,0	-29,5	-63,5	-42,2	-57,4	-26,6	-65,8	-47,1	-64,6	-40,1	-59,6	-33,8	-61,8	-36,5	-56,6	-27,9	-33,4	-13,1	-7,0	-9,8 -	55,5	-16,8 -55,0	-20,2	-53,6	-19,2	-55,0	-17,0	-54,4	-20,6	-37,9	-15,0	-47,1	-17,6
427-439	H10/11-H12	-14,7	-7,2	-18,4	-10,2	-16,2	-5,8	-21,1	-13,1	-17,6	-10,2	-22,9	-13,0	-17,1	-7,0	-15,4	-6,9	-9,6	-3,1	-3,0	-2,8 -1	15,2	-0,6 -14,8	-3,7	-14,8	-5,4	-14,9	-3,0	-14,5	-3,2	-15,2	-7,6	-12,9	-2,1
427-441	H10/11-H12	-25,1	-9,6	-30,1	-17,0	-26,1	-6,3	-35,8	-22,9	-32,1	-16,0	-32,9	-17,2	-28,5	-12,1	-27,9	-10,5	-14,0	-4,9	-3,6	-4,0 -2	26,2	-3,4 -24,4	-3,8	-23,3	-6,5	-25,5	-1,3	-23,9	-3,8	-23,5	-12,2	-16,6	-3,2
427-442	H10/11-H12	-28,0	-13,8	-28,0	-17,3	-24,9	-12,4	-43,1	-19,5	-35,6	-20,8	-31,2	-18,8	-26,8	-15,9	-26,0	-12,8	-13,1	-8,7	-5,3	-5,2 -2	29,1	-6,6 -21,3	-6,4	-22,5	-9,2	-23,6	-4,0	-26,0	-6,2	-19,8	-12,3	-18,1	-6,8
427-443	H10/11-H12	-33,5	-15,9	-34,6	-21,9	-33,7	-12,4	-43,2	-29,0	-40,0	-21,7	-40,4	-20,5	-34,9	-19,4	-34,7	-14,1	-17,3	-4,6	-1.6	-5,1 -3	33,2	-7,6 -30,9	-4,6	-26,4	-3,7	-30,9	-1,6	-28,5	-3,7	-21,1	-7,7	-22,2	-1,3
428-439	H10/11-H12	-13,6	-6,5	-17,7	-10,5	-14,0	-3,3	-20,6	-13,2	-17,5	-10,5	-18,9	-10,6	-14,9	-4,8	-15,3	-6,2	-8,7	-1,5	-1,3	-1,1 -	14,1	0,2 -14,5	-2,9	-14,1	-4,3	-15,0	-1,9	-14,1	-2,5	-12,1	-4,7	-10,3	0,0
428-440	H10/11-H12	-22,2	-10,7	-25.9	-14,6	-18.8	-5,4	-29.8	-19,2	-25,4	-13,3	-23,6	-10,4	-19,7	-10,6	-22,6	-6,7	-9,6	-4,9	-1,3	-2,8 -2	21,5	-0,9 -20,5	-2,6	-19,5	-4,9	-19,4	-2,1	-20,3	-1,7	-13,3	-4,0	-11,6	-2,9
428-441	H10/11-H12	-26,9	-9,4	-31,1	-18.3	-27.0	-6.7	-38.3	-27,1	-35,2	-19,5	-33,0	-15,6	-30,0	-13,5	-30,6	-12,5	-15,7	-4,4	-2,1	-2,7 -2	27,5	-3,0 -26,1	-3,3	-24,3	-6,9	-28,4	-4,2	-25,8	-5,3	-18,7	-7,3	-19,7	-2,9
440-447	H12	-36.9	-17.7	-47.0	-29.4	-41.7	-19.8	-49.2	-34.2	-45.5	-28.6	-42.4	-23.6	-40.9	-23.1	-40.9	-20.6	-27.4	-7.9	-5.3	-3.1 -3	38.9	-10.2 -40.5	-13.5	-38.9	-12.9	-40.1	-10.5	-39.7	-12.6	-25.7	-8.8	-32.3	-6.6
441-446	H12	-38.5	-25.7	-37.0	-19.7	-38.7	-9.2	-36.4	-26.6	-39.1	-23.6	-34.7	-18.9	-35.7	-13.5	-35.0	-16.9	-15.6	-0.5	-8.4	-8.5 -3	38.5	-16.4 -35.3	-11.4	-29.5	-7.2	-31.6	-9.1	-34.1	-6.9	-23.7	-8.6	-24.2	0.1
	-	,-	- ,		- /	,	- /	,		,	- / -	- /	- , -	,	L	XRβ	- / -	- , -	- / -	- /	- / -	,-	-,,-	,	-,-	,	- ,-	- /	- ,	- / -	- /	- / -	,	
218-226	H1	-3,4	-12,4	-6,0	-9,1	-11,7	-10,4	-17,2	-9,2	-18,5	-13,9	-3,4	-17,1	-10,2	-10,1	-16,5	-16,5	-10,4	-8,9	-3,9	-13,7	-3,7	-12,6 -2,5	-13,0	-14,7	-13,6	-13,9	-9,3	-15,2	-13,1	-5,4	-13,6	-9,0	-10,0
226-230	H1	-0,1	-8,4	-5,1	-18,5	-2,3	-11,3	-1,3	-14,2	-2,5	-21,4	2,5	-6,3	-1,5	-8,7	-2,7	-24,0	-1,4	-11,5	0,1	-11,6	-1,0	-5,8 -1,4	-9,2	-2,1	-17,1	-3,1	-8,0	-4,3	-19,5	3,2	-11,6	-1,0	-11,3
226-231	H1	-1,8	-8,5	-1,8	-13,1	-2,4	-8,5	-0,9	-10,9	-1,3	-17,4	-1,3	-10,4	-1,3	-8,6	-2,5	-16,1	-2,3	-9,1	-1,6	-10,1	-1,3	-8,2 -1,0	-8,0	-1,0	-11,6	-0,5	-6,5	-1,1	-14,8	-1,1	-12,4	-1,2	-7,6
226-233	H1	-1,8	-11,6	-1,8	-14,2	-1,9	-10,2	-1,1	-12,0	-1,8	-17,0	-1,8	-13,3	-0,7	-11,1	-1,5	-16,2	-1,6	-11,2	-2,1	-12,6	-1,7	-10,7 -1,7	-11,1	-1,2	-11,9	-1,1	-7,6	-1,8	-14,3	-2,0	-15,0	-1,2	-9,9
227-233	H1	-1,8	-10,2	-1,0	-13,0	-1,1	-10,9	1,8	-7,1	0,9	-11,9	-1,6	-11,2	-0,7	-11,0	0,2	-10,5	-0,8	-10,8	-2,0	-11,4	-1,6	-10,0 -1,6	-10,2	-0,2	-9,1	-0,4	-5,3	-0,3	-7,9	-1,3	-11,5	-0,7	-10,7
228-233	H1	-2,4	-14,8	-0,5	-13,8	-1,5	-10,5	0,4	-11,5	-0,7	-13,7	-2,1	-15,6	-0,6	-11,5	-0,3	-14,0	-0,8	-11,0	-3,1	-16,7	-2,3	-13,9 -3,1	-14,2	-0,8	-10,9	0,1	-10,7	-0,7	-11,9	-2,6	-15,9	-0,9	-11,5
234-238	H1	-4,6	-23,8	-4,0	-25,4	-1,1	-12,2	-5,0	-16,1	-7,1	-23,5	-4,0	-27,0	-3,6	-11,2	-5,8	-23,5	-5,1	-6,2	-5,9	-26,7	-9,2	-23,2 -3,6	-23,6	-2,1	-10,0	-2,6	-15,6	-3,5	-15,7	-6,5	-29,4	-9,7	-28,9
274-279	Н3	-25,5	-87,7	-18,4	-80,4	-30,1	-79,2	-18,6	-80,2	-19,6	-81,1	-25,3	-87,2	-30,7	-79,8	-19,5	-80,4	-30,3	-80,2	-25,7	-89,1 -2	25,0	-87,3 -25,3	-87,2	-17,7	-79,6	-17,6	-77,5	-18,4	-77,1	-24,9	-85,7	-30,0	-76,2
274-281	H3	-31,8	-85,0	-20,6	-76,6	-29,4	-72,6	-21,2	-76,7	-21,3	-77,8	-31,2	-84,8	-29,1	-72,0	-21,9	-77,7	-29,3	-72,5	-32,1	-86,2 -3	31,2	-84,6 -31,8	-84,7	-19,9	-75,9	-19,8	-75,1	-21,0	-75,8	-31,1	-83,6	-28,9	-69,4
275-281	Н3	-30,9	-80,3	-20,1	-70,7	-30,0	-74,0	-20,0	-70,6	-20,5	-71,4	-30,5	-80,7	-29,6	-73,5	-20,3	-70,5	-29,9	-73,7	-30,8	-81,0 -3	30,6	-79,8 -30,5	-80,2	-19,1	-69,7	-19,1	-66,6	-19,4	-67,1	-30,4	-79,1	-28,9	-70,0
281-285	Н3	-1,0	-0,1	-2,5	-6,7	-1,1	-2,8	-1,1	-6,3	-2,3	-7,6	0,4	-1,6	-0,2	-2,6	-1,2	-8,7	0,2	-1,8	-0,6	-4,7	3,9	-4,3 1,5	-1,7	-0,2	-4,6	-2,3	-6,7	-3,2	-5,7	2,3	-0,8	-0,4	-4,4
285-292	H3, loop H3-H4	0,5	-2,8	-0,2	-2,7	-0,3	-2,9	0,0	-2,1	-0,6	-2,7	0,0	-2,8	0,1	-3,0	-0,2	-2,8	0,2	-2,6	0,8	-2,0	0,0	-2,9 0,3	-2,5	-0,2	-2,5	-0,2	-2,1	-0,1	-2,3	0,1	-3,3	0,3	-2,7
286-292	H3, loop H3-H4	1,9	-0,9	1,2	-1,6	1,2	-1,3	1,5	-0,6	1,0	-0,3	1,1	-1,2	2,2	-0,7	1,3	-0,8	1,6	-0,7	0,7	-1,8	1,3	-1,3 1,3	-1,0	1,6	-0,4	1,2	-0,9	1,6	-0,7	1,4	-1,6	1,8	-1,4
286-295	H3, loop H3-H4	-6,7	-7,3	-5,6	-5,6	-3,8	-3,8	-5,8	-5,2	-6,9	-5,6	-5,5	-6,1	-3,0	-3,6	-6,4	-5,4	-4,2	-3,5	-6,7	-7,4	-6,4	-7,3 -6,1	-6,3	-6,4	-6,0	-4,9	-5,2	-6,1	-5,3	-6,2	-7,3	-3,2	-3,8
290-295	H3, loop H3-H4	0,3	-9,4	-0,2	5,0	-3,4	2,8	-4,9	1,0	-10,8	-0,6	2,2	-8,7	-2,9	3,1	-9,9	-5,0	-3,5	2,1	0,2	-9,6	-2,7	-10,3 -1,6	-7,9	-1,3	3,2	-0,5	2,4	-7,5	4,1	-0,5	-10,2	-4,2	0,6
293-300	H4-H5	-4,4	-5,0	-4,2	-3,7	-3,5	-4,6	-7,0	-5,8	-8,0	-7,9	-4,1	-3,8	-2,1	-2,0	-6,6	-7,5	-2,2	-1,8	-4,5	-6,1	-5,2	-4,7 -4,4	-3,8	-8,0	-7,8	-6,8	-6,2	-7,5	-7,5	-3,9	-5,8	-3,4	-3,2
293-303	H4-H5	-8,6	-9,1	-5,3	-6,4	-5,1	-5,3	-5,4	-6,2	-6,0	-6,7	-7,9	-8,6	-4,7	-5,1	-5,6	-6,5	-4,7	-5,4	-8,6	-9,5	-8,7	-9,3 -8,4	-8,9	-5,7	-6,7	-5,6	-6,1	-5,8	-6,0	-8,0	-9,6	-5,0	-5,5
296-303	H5	-2,5	-2,7	-0,6	-1,0	-2,0	-1,4	-0,4	0,8	-1,3	-0,1	-2,1	-3,2	-0,8	-1,0	-0,8	-0,3	-1,8	-1,3	-2,7	-3,5	-3,1	-3,5 -2,7	-3,4	-0,7	0,4	-0,8	0,5	-0,2	-0,1	-2,6	-3,6	-1,7	-2,4
296-304	H5	-1,6	-1,3	-1,3	-1,7	-1,4	-0,7	-0,9	-0,6	-1,5	-1,5	-1,2	-1,2	-0,8	-0,5	-1,9	-1,2	-1,1	-0,4	-1,7	-1,6	-1,8	-1,6 -1,6	-1,2	-0,5	-1,2	-1,2	-1,2	-1,5	-1,3	-1,0	-2,0	-1,2	-0,9
304-308	H5	-30,9	-67,2	-24,5	-70,5	-33,8	-83,6	-23,4	-75,5	-24,3	-76,2	-31,5	-78,8	-31,4	-78,3	-23,1	-78,4	-32,6	-81,4	-25,6	-24,8 -3	32,0	-83,6 -31,4	-82,5	-23,6	-70,8	-20,2	-63,4	-23,0	-61,8	-31,1	-79,8	-31,1	-77,8
305-310	H5	-26,9	-38,1	-25,5	-53,3	-33,1	-52,2	-24,6	-53,6	-27,4	-53,8	-33,1	-52,3	-32,7	-50,0	-25,0	-59,7	-30,8	-40,6	-16,8	-9,1 -3	34,0	-53,7 -30,1	-54,2	-24,0	-40,9	-25,2	-45,9	-23,1	-32,2	-28,4	-50,4	-33,0	-53,8
313-326	H5, βsheets	-27,5	-28,8	-27,5	-34,7	-24,4	-32,9	-23,1	-23,7	-28,9	-35,5	-31,1	-41,7	-27,1	-37,1	-28,4	-34,6	-25,9	-36,8	-32,1	-44,2 -3	31,7	-41,8 -30,5	-39,5	-14,3	-5,3	-19,9	-20,5	-21,3	-14,5	-30,0	-41,6	-23,4	-30,2
314-326	H5, βsheets	-28,4	-30,5	-28,8	-36,8	-27,4	-37,8	-23,6	-27,3	-29,6	-37,4	-33,9	-43,9	-27,0	-37,7	-29,1	-36,9	-27,6	-38,6	-34,9	-46,5 -3	34,1	-44,1 -32,7	-42,0	-17,4	-11,8	-20,9	-24,5	-21,9	-18,2	-31,9	-42,4	-24,4	-32,0
330-340	βsheets, H6	-41,8	-45,6	-45,7	-48,7	-43,5	-46,6	-29,9	-34,1	-45,2	-45,7	-48,1	-45,5	-44,9	-46,3	-42,9	-47,0	-45,3	-47,8	-52,5	-54,3 -4	48,4	-49,6 -46,0	-48,2	-43,7	-38,4	-30,5	-26,2	-39,1	-29,7	-45,6	-44,8	-38,6	-33,7
333-340	βsheets, H6	-48,0	-58,7	-40,7	-50,9	-43,2	-51,1	-37,9	-40,9	-39,4	-49,0	-46,1	-54,9	-41,6	-50,6	-39,3	-46,3	-43,1	-52,8	-50,7	-62,3 -4	47,1	-53,1 -46,1	-53,5	-41,1	-45,0	-34,0	-29,4	-37,2	-35,1	-44,7	-49,3	-42,9	-41,2
333-345	βsheets, H6	-64,5	-62,3	-44,0	-43,8	-55,1	-48,3	-51,2	-42,1	-53,3	-51,7	-64,8	-59,7	-52,9	-47,6	-51,8	-47,9	-44,6	-35,1	-50,1	-44,3 -6	65,0	-58,1 -58,0	-51,4	-44,3	-41,7	-44,1	-29,6	-40,6	-30,6	-61,2	-52,3	-52,2	-37,7
333-346	βsheets, H6	-72,9	-71,2	-50,6	-47,6	-68,9	-55,2	-56,4	-42,6	-61,0	-60,9	-73,5	-66,5	-64,4	-58,0	-60,9	-55,5	-56,2	-37,0	-46,8	-43,9 -7	72,1	-60,9 -64,9	-50,8	-51,0	-44,4	-49,6	-31,9	-49,3	-33,3	-68,0	-54,4	-64,9	-45,1
341-346	H6-H7	-63,1	-48,7	-47,8	-31,1	-65,2	-36,8	-57,1	-24,4	-66,0	-50,0	-65,8	-48,6	-61,2	-40,0	-64,3	-46,6	-43,7	-4,0	-15,2	-2,9 -6	65,2	-45,7 -55,9	-28,9	-47,6	-24,7	-53,1	-14,8	-45,2	-19,9	-61,6	-39,6	-56,9	-21,1
347-355	H7	-42,0	-83,2	-40,9	-70,9	-41,3	-69,1	-42,7	-72,1	-43,3	-75,0	-41,8	-80,3	-41,2	-69,6	-42,7	-73,7	-41,5	-65,6	-24,2	-46,8 -4	41,9	-78,1 -41,4	-73,5	-40,3	-63,2	-39,5	-58,2	-42,7	-63,7	-40,5	-72,5	-40,4	-65,7
348-355	H7	-35,7	-77,8	-24,7	-67,8	-32,2	-65,3	-26,3	-68,3	-27,0	-70,8	-35,6	-73,0	-31,9	-62,7	-26,3	-71,7	-32,2	-60,0	-24,4	-51,9 -3	34,8	-72,2 -34,7	-68,8	-23,3	-62,1	-24,9	-58,1	-25,5	-62,5	-34,2	-66,6	-30,2	-62,4
349-354	H7	-31,9	-78,4	-26,2	-63,5	-31,3	-56,5	-25,6	-65,2	-26,3	-64,1	-32,3	-73,9	-30,6	-56,7	-25,6	-61,1	-29,1	-51,0	-16,3	-61,3 -3	32,1	-70,9 -32,1	-66,3	-24,4	-57,2	-22,1	-49,5	-25,3	-58,8	-30,9	-64,9	-29,5	-54,6
349-355	H7	-38,6	-76,7	-30,2	-67,6	-33,6	-65,5	-30,1	-66,3	-30,6	-65,6	-37,8	-71,9	-32,0	-62,9	-30,6	-63,5	-32,6	-60,7	-24,2	-57,1 -3	37,5	-68,6 -37,7	-66,3	-29,4	-59,9	-27,0	-54,5	-29,7	-58,9	-36,8	-62,0	-31,5	-61,8
350-354	H7	-20,3	-73,9	-13,9	-65,7	-14,7	-64,3	-9,6	-62,2	-9,8	-61,0	-19,2	-71,1	-13,5	-63,6	-8,9	-57,9	-14,8	-65,5	-20,6	-64,4 -2	20,2	-69,6 -18,2	-66,8	-10,9	-61,0	-9,6	-60,0	-10,4	-56,7	-16,0	-64,9	-13,8	-64,3
350-355	H7	-23,7	-77,0	-15,9	-70,3	-21,1	-68,8	-16,3	-69,6	-16,9	-68,7	-23,0	-74,2	-20,9	-66,3	-16,9	-67,2	-21,0	-70,7	-23,2	-67,5 -2	22,9	-71,0 -22,8	-70,9	-14,7	-66,3	-15,5	-67,2	-16,2	-63,5	-22,4	-65,3	-20,3	-66,8
356-369	H7-H8	-3,1	-11,5	-6,2	-11,7	-3,0	-13,4	-6,0	-7,8	-6,6	-9,4	-4,8	-16,9	1,1	-10,7	-9,3	-11,1	-1,6	-11,7	-6,9	-17,2	-9,1	-18,5 -7,6	-17,8	-4,1	-6,4	-9,0	-9,5	-0,7	-2,1	-8,4	-19,9	-2,3	-12,5
357-369	H7-H8	-1,4	-9,1	-3,4	-11,8	-3,2	-11,5	-3,0	-8,5	-4,3	-11,3	-2,8	-13,0	0,3	-9,7	-7,0	-11,1	-1,7	-11,0	-5,1	-14,9	-7,8	-15,0 -6,1	-14,2	-0,6	-6,1	-5,0	-9,3	4,2	-2,3	-5,9	-15,7	-2,5	-11,1
360-369	H7-H8	-5,8	-7,6	-2,3	2,4	-1,7	-4,1	-2,2	4,6	-3,3	4,1	-6,3	-6,6	2,1	-3,0	-4,2	3,9	0,4	-3,1	-6,5	-8,4	-8,8	-7,0 -6,9	-6,0	-1,4	3,3	-4,8	4,9	-0,3	4,1	-6,8	-8,6	-0,8	-3,8
374-378	H8	1,1	3,8	-1,4	-1,4	-1,3	-0,8	-2,0	-2,4	-4,0	-3,5	1,9	2,8	-1,0	-0,7	-4,3	-3,0	-0,7	-0,6	0,7	-0,7	2,1	2,2 -0,3	3,7	-0,8	-1,3	-1,7	-2,1	-1,9	-1,5	1,9	3,8	-0,9	-0,1
374-379	H8	-0,5	-0,6	-0,3	-0,7	-0,7	-1,3	-1,1	-1,6	-1,1	-2,0	0,0	-0,9	-1,3	-1,9	-1,4	-2,1	-0,5	-1,8	-0,2	-1,1	-0,3	-0,5 -0,2	-0,8	0,0	-1,2	-1,0	-1,5	-1,1	-1,2	-0,5	-0,7	-1,0	-0,9
374-394	H8-H9	-9,9	-13,0	-5,2	-7,4	-4,1	-5,7	-6,8	-8,3	-6,5	-8,6	-8,7	-12,2	-2,7	-5,1	-6,8	-9,1	-2,7	-3,8	-8,6	-10,1	-9,4	-12,1 -9,4	-12,8	-6,6	-8,3	-6,8	-8,4	-6,4	-7,4	-8,7	-13,6	-4,0	-7,3
376-394	Н8-Н9	-11,4	-15,2	-6,9	-10,2	-5,6	-7,4	-7,9	-11,4	-7,9	-11,6	-9,7	-13,8	-4,4	-7,4	-7,6	-11,4	-4,1	-6,6	-9,9	-12,1 -	11,1	-14,3 -10,5	-13,9	-8,1	-11,3	-8,0	-11,2	-7,5	-9,6	-9,8	-15,3	-5,5	-10,0
378-394	H8-H9	-14,6	-14,7	-8,0	-10,0	-7,9	-9,9	-9,6	-13,4	-9,7	-9,7	-12,7	-12,6	-6,1	-8,6	-8,5	-10,5	-6,6	-6,5	-13,1	-10,5 -1	14,5	-13,3 -13,6	-12,9	-9,1	-10,0	-9,8	-13,0	-8,9	-10,4	-12,6	-14,7	-8,2	-11,0
379-394	H8-H9	-13,6	-20,3	-8,4	-12,4	-7,3	-7,7	-10,2	-13,8	-10,5	-14,0	-12,0	-18,8	-6,1	-7,4	-9,1	-12,9	-5,4	-6,4	-11,8	-16,6 -	13,5	-19,2 -12,4	-18,0	-9,9	-13,6	-9,8	-14,0	-9,8	-10,9	-11,4	-19,9	-7,5	-10,4
380-394	H8-H9	-8,2	-13,2	-6,8	-10,4	-5,5	-5,8	-7,8	-12,2	-7,4	-10,8	-6,7	-11,3	-4,8	-6,9	-7,4	-11,5	-4,1	-4,5	-7,0	-7,9	-7,6	-11,5 -7,0	-11,3	-8,2	-11,9	-7,9	-12,2	-7,5	-9,2	-6,1	-12,8	-5,7	-10,2

380-401	H8-H9	-10,1	-15,5	-6,0	-12,1	-6,2	-9,1	-6,9	-13,5	-7,0	-13,5	-8,5	-14,4	-5,8	-9,0	-6,5	-13,6	-5,3	-8,6	-10,1	-12,8	-9,9	-15,1	-9,2	-14,6	-7,3	-13,2	-7,1	-13,6	-6,7	-11,7	-8,9	-16,0	-6,2	-11,6
380-403	H8-H9	-10,2	-15,5	-5,8	-10,6	-4,7	-7,6	-6,3	-11,4	-6,2	-11,4	-8,8	-14,0	-4,3	-7,5	-6,2	-11,4	-4,1	-6,9	-9,7	-12,8	-9,7	-14,8	-9,3	-14,4	-6,6	-11,0	-6,4	-11,5	-6,1	-9,8	-8,8	-15,0	-4,9	-9,6
389-394	H9	-12,8	-14,9	-3,7	-6,5	-6,0	-4,3	-7,3	-6,6	-7,6	-7,6	-8,7	-10,4	-4,7	-3,9	-7,8	-11,7	-1,5	-2,6	-10,9	-16,7	-12,7	-14,3	-13,4	-11,9	-5,3	-2,1	-5,4	-7,3	-5,8	-5,9	-10,4	-13,0	-4,3	-5,0
393-403	H9	1,5	-0,5	2,6	1,9	-0,6	-0,2	1,6	-0,3	-0,3	-0,7	1,0	-0,5	-1,2	-0,5	-0,1	0,0	0,6	0,1	0,4	-0,9	1,3	-1,5	2,1	0,2	2,3	1,9	1,8	1,7	0,5	0,3	-0,2	-1,3	0,3	-0,3
395-401	H9	-1,3	-2,9	-1,3	-3,1	-0,6	-1,2	0,2	-1,6	-1,2	-2,1	-1,3	-4,6	-1,0	-2,1	-1,7	-3,3	-0,1	-1,5	-1,8	-3,4	-0,1	-2,8	-0,2	-3,9	-0,7	-2,4	-0,6	-2,2	-0,5	-1,1	-1,4	-3,7	-1,0	-3,0
395-403	H9	-1,2	-3,4	-0,3	-3,0	-0,8	-3,3	-0,4	-2,5	-0,2	-3,1	-1,8	-3,6	0,5	-2,5	-0,5	-2,4	0,1	-3,0	-1,9	-3,3	-1,6	-3,9	-2,0	-4,1	0,0	-2,7	-0,5	-2,8	-0,5	-1,7	-1,7	-3,7	0,2	-2,8
404-418	H9-H10	-6,0	-7,3	-6,4	-3,6	-6,6	-4,5	-7,3	-2,5	-9,3	-3,3	-6,3	-6,3	-4,0	-3,3	-7,6	-4,0	-5,0	-3,8	-5,4	-7,3	-6,5	-7,1	-5,3	-5,9	-6,1	-3,1	-5,6	-2,1	-5,5	-2,9	-5,4	-8,0	-1,8	-4,3
405-418	H9-H10	-9,6	-11,0	-5,4	-6,7	-9,2	-6,7	-7,4	-5,9	-10,9	-8,1	-10,0	-9,2	-6,6	-5,4	-7,9	-8,7	-7,6	-5,5	-8,9	-10,6	-10,4	-10,9	-9,1	-9,3	-5,5	-6,6	-5,8	-5,4	-6,8	-9,3	-9,7	-11,3	-5,0	-5,9
406-418	H9-H10	-6,0	-5,8	-5,5	1,5	-7,4	-5,8	-6,8	3,0	-8,0	4,4	-6,3	-6,7	-3,7	-4,6	-8,6	2,3	-5,3	-3,6	-8,0	-5,6	-6,0	-3,8	-5,2	-5,2	-6,3	3,7	-5,2	4,0	-4,3	2,4	-7,7	-8,6	-2,5	-5,5
406-421	H9-H10	-9,5	-16,2	-9,9	-15,0	-8,8	-10,0	-10,5	-11,9	-12,3	-12,6	-10,3	-15,6	-6,4	-10,0	-11,4	-13,5	-7,2	-9,6	-8,8	-9,8	-9,8	-16,3	-9,2	-15,3	-9,9	-13,0	-9,3	-12,2	-8,9	-11,4	-9,0	-17,3	-4,2	-10,8
407-421	H9-H10	-9,8	-15,1	-11,5	-16,6	-8,7	-11,1	-12,0	-14,0	-12,0	-13,7	-9,5	-16,9	-6,1	-10,4	-11,8	-15,6	-6,2	-9,6	-8,5	-10,9	-9,1	-17,2	-9,2	-16,0	-10,7	-14,9	-10,2	-14,1	-9,1	-13,1	-8,7	-18,4	-3,0	-10,7
423-428	H10/11	-4,0	-4,6	-4,6	-10,4	-5,3	-5,8	-4,3	-6,2	-6,9	-11,3	-2,8	-5,7	-2,5	0,9	-4,8	-13,5	-3,0	-2,9	0,0	-1,4	-2,7	-6,0	-3,1	-7,7	0,1	-2,1	-2,5	-9,2	-2,0	-10,2	-2,3	-4,9	-3,1	-4,7
424-428	H10/11	-7,2	-10,0	-5,8	-15,7	-9,1	-10,4	-5,5	-11,6	-8,8	-17,0	-4,6	-12,1	-3,6	-5,8	-6,7	-19,8	-5,3	-7,5	-0,7	-1,5	-5,9	-11,3	-5,8	-12,2	-1,3	-7,7	-4,6	-12,3	-5,2	-13,2	-5,2	-11,2	-5,0	-8,2
426-434	H10/11	-36,3	-43,5	-33,6	-37,0	-30,8	-23,3	-31,1	-30,5	-35,8	-34,8	-36,0	-40,3	-33,2	-32,3	-30,6	-32,5	-29,2	-21,8	-14,1	-15,4	-37,4	-38,9	-36,2	-38,9	-31,2	-31,7	-32,2	-30,6	-30,1	-31,0	-33,5	-35,6	-31,9	-30,6
426-440	H10/11	-62,5	-59,0	-57,3	-53,7	-56,9	-37,6	-55,9	-49,3	-57,3	-52,6	-62,7	-55,5	-59,9	-50,8	-54,6	-48,1	-47,1	-21,7	-23,7	-22,6	-62,5	-53,4	-61,8	-49,8	-54,8	-46,6	-54,4	-36,5	-54,1	-42,6	-58,8	-49,0	-56,2	-38,3
426-441	H10/11	-64,7	-58,4	-59,4	-53,9	-58,6	-34,8	-58,1	-48,5	-59,1	-52,8	-64,0	-52,5	-62,2	-50,6	-56,8	-47,2	-47,3	-18,8	-19,5	-18,0	-64,5	-51,2	-63,7	-46,6	-56,6	-46,0	-55,0	-32,4	-56,1	-41,7	-60,3	-47,1	-57,9	-35,9
428-440	H10/11	-74,9	-64,5	-65,2	-56,4	-65,9	-41,8	-65,6	-52,7	-66,8	-57,2	-74,5	-60,6	-68,8	-55,2	-65,2	-51,8	-54,0	-24,3	-29,8	-30,7	-74,6	-57,5	-73,6	-53,3	-63,3	-49,9	-62,6	-37,2	-63,9	-44,3	-72,1	-52,3	-64,9	-41,3
429-440	H10/11	-76,0	-67,5	-69,1	-60,0	-70,8	-46,1	-68,1	-56,1	-69,3	-60,1	-75,7	-61,7	-75,6	-61,9	-67,4	-54,7	-58,3	-22,1	-26,9	-25,4	-75,5	-59,7	-74,0	-54,1	-68,1	-52,7	-65,2	-37,1	-66,3	-46,0	-72,4	-53,8	-71,0	-43,0
429-441	H10/11	-76,7	-66,8	-70,2	-58,9	-72,3	-40,9	-69,7	-54,3	-70,9	-59,4	-76,1	-58,9	-77,1	-59,6	-69,5	-52,7	-58,4	-18,0	-22,7	-22,4	-76,0	-56,6	-74,5	-50,6	-69,0	-50,3	-65,1	-32,1	-68,1	-44,9	-72,9	-52,1	-72,5	-39,5
441-453	H10/11-H12	-28,0	-19,7	-17,0	-11,6	-16,8	-9,6	-17,6	-11,9	-19,5	-12,0	-27,1	-16,8	-20,5	-11,5	-17,9	-10,9	-15,5	-3,9	-12,6	-11,4	-28,0	-19,4	-23,6	-16,4	-17,1	-9,1	-15,3	-3,9	-17,0	-6,7	-25,3	-17,7	-18,0	-6,8
441-456	H10/11-H12	-50,0	-30,8	-46,2	-38,4	-41,9	-24,8	-47,5	-40,4	-46,2	-34,6	-52,2	-27,5	-42,9	-26,3	-45,7	-33,9	-35,0	-9,0	-16,8	-12,4	-50,3	-31,7	-47,5	-26,5	-46,9	-34,8	-42,7	-30,6	-45,2	-30,9	-47,7	-26,6	-40,9	-14,0
441-457	H10/11-H12	-55,0	-32,7	-42,5	-23,8	-37,5	-26,7	-44,9	-28,2	-46,1	-30,2	-53,6	-29,3	-37,8	-25,1	-45,1	-29,4	-28,1	-3,6	-12,2	-9,8	-56,1	-36,5	-52,1	-29,4	-42,2	-21,4	-38,9	-5,9	-43,6	-15,8	-51,7	-30,6	-31,9	-11,5
442-453	H10/11-H12	-24,9	-16,0	-16,8	-11,3	-16,9	-8,0	-18,1	-11,6	-19,6	-11,7	-23,7	-14,0	-18,4	-9,7	-18,2	-10,6	-15,5	-0,9	-8,7	-7,6	-24,9	-15,8	-21,5	-13,4	-17,2	-7,8	-15,7	-2,3	-17,1	-5,6	-22,8	-14,5	-16,9	-4,8
442-456	H10/11-H12	-52,4	-31,9	-44,6	-25,8	-37,6	-23,9	-48,2	-30,7	-50,6	-32,5	-52,0	-29,4	-35,7	-21,4	-49,6	-29,9	-25,9	-1,7	-12,5	-9,9	-53,6	-34,3	-50,9	-28,1	-46,8	-24,8	-44,5	-8,6	-44,6	-16,4	-50,7	-28,6	-29,1	-7,8
454-461	H12	-49,7	-32,9	-47,3	-27,8	-49,0	-31,3	-46,8	-31,9	-46,5	-32,0	-50,7	-32,1	-47,9	-30,0	-45,5	-31,3	-41,3	-9,5	-15,5	-10,7	-52,3	-36,0	-50,6	-31,8	-48,2	-30,9	-44,4	-16,4	-46,4	-24,0	-47,9	-31,8	-45,9	-18,7

Supplementary Table 5: Peptides with highest contribution to the discrimination between lipogenic and non-lipogenic compounds. *Related to Figure 3*

Pontido	LXR isoform & Labelling	Amino Acid Soquence	Secondary	OPLS	S-DA	Lipogenic (n = 5)	vs non-lipogenic (n :	= 7): unpaired t-test
replice	Time	Annio Acid Sequence	Structure	р	p(corr)	P-value	P-value summary	t, df*
		тс	G OPLS-DA: LXRα/SR	RC1 and LXF	Rβ/SRC1 HI	DX-MS		
239-257	LXRα/SRC1/30 sec	RVTPWPMAPDPHSREA RQQRFAHF	loop H1-H3, H3	0,056996	0,740641	0,0061	**	t=3,265, df=13
319-331	LXRa/SRC1/30 sec	FSYNREDFAKAGL	βsheets-H6	0,076847	0,822716	0,0017	**	t=3,945, df=13
326-331	LXRa/SRC1/30 sec	FAKAGL	H6	0,142916	0,711162	0,0089	**	t=3,072, df=13
327-331	LXRa/SRC1/30 sec	AKAGL	H6	0,131653	0,742891	0,0037	**	t=3,523, df=13
427-442	LXRa/SRC1/30 sec	ALRLQDKKLPPLLSEI	H10/11-H12	0,101271	0,702581	0,0153	*	t=2,790, df=13
427-443	LXRα/SRC1/30 sec	ALRLQDKKLPPLLSEIW	H10/11-H12	0,117756	0,698298	0,0094	**	t=3,046, df=13
260-265	LXRa/SRC1/600 sec	LAIVSV	H3	0,135231	0,801881	0,003	**	t=3,635, df=13
261-267	LXRa/SRC1/600 sec	AIVSVQE	H3	0,117213	0,800223	0,0027	**	t=3,687, df=13
321-326	LXRa/SRC1/600 sec	YNREDF	βsheets-H6	0,069397	0,787831	0,0016	**	t=3,983, df=13
319-331	LXRa/SRC1/600 sec	FSYNREDFAKAGL	βsheets-H6	0,154177	0,911449	<0,0001	****	t=6,064, df=13
320-331	LXRa/SRC1/600 sec	SYNREDFAKAGL	βsheets-H6	0,176587	0,889276	0,0001	***	t=5,497, df=13
321-331	LXRa/SRC1/600 sec	YNREDFAKAGL	βsheets-H6	0,1991	0,9126	<0,0001	****	t=6,465, df=13
327-331	LXRa/SRC1/600 sec	AKAGL	H6	0,224377	0,824784	0,0004	***	t=4,771, df=13
334-340	LXRa/SRC1/600 sec	EFINPIF	H7	0,183499	0,757711	0,0018	**	t=3,898, df=13
334-341	LXRa/SRC1/600 sec	EFINPIFE	H7	0,094322	0,77736	0,0027	**	t=3,692, df=13
335-340	LXRa/SRC1/600 sec	FINPIF	H7	0,066668	0,76997	0,0034	**	t=3,568, df=13
335-341	LXRa/SRC1/600 sec	FINPIFE	H7	0,079184	0,900451	<0,0001	****	t=6,845, df=13
336-341	LXRα/SRC1/600 sec	INPIFE	H7	0,077918	0,845374	0,0002	***	t=5,033, df=13
412-426	LXRa/SRC1/600 sec	VSLRTLSSVHSEQVF	H10/11	0,119165	0,831866	0,0005	***	t=4,640, df=13
412-427	LXRα/SRC1/600 sec	VSLRTLSSVHSEQVFA	H10/11	0,131013	0,866482	0,0001	***	t=5,328, df=13
414-426	LXRa/SRC1/600 sec	LRTLSSVHSEQVF	H10/11	0,144189	0,872449	0,0001	***	t=5,511, df=13
415-426	LXRa/SRC1/600 sec	RTLSSVHSEQVF	H10/11	0,167289	0,895212	<0,0001	****	t=6,025, df=13
415-427	LXRa/SRC1/600 sec	RTLSSVHSEQVFA	H10/11	0,052973	0,837297	0,0002	***	t=5,080, df=13
427-439	LXRa/SRC1/600 sec	ALRLQDKKLPPLL	H10/11-H12	0,092414	0,866215	0,0004	***	t=4,788, df=13
428-439	LXRa/SRC1/600 sec	LRLQDKKLPPLL	H10/11-H12	0,087049	0,930961	<0,0001	****	t=7,148, df=13
427-441	LXRa/SRC1/600 sec	ALRLQDKKLPPLLSE	H10/11-H12	0,13526	0,94579	<0,0001	****	t=7,141, df=13
428-440	LXRa/SRC1/600 sec	LRLQDKKLPPLLS	H10/11-H12	0,056373	0,824116	0,0007	***	t=4,416, df=13
427-442	LXRa/SRC1/600 sec	ALRLQDKKLPPLLSEI	H10/11-H12	0,076216	0,840913	0,0003	***	t=4,839, df=13
428-441	LXRα/SRC1/600 sec	LRLQDKKLPPLLSE	H10/11-H12	0,102263	0,841338	0,0006	***	t=4,474, df=13
427-443	LXRα/SRC1/600 sec	ALRLQDKKLPPLLSEIW	H10/11-H12	0,13172	0,903497	<0,0001	****	t=5,843, df=13
440-447	LXRa/SRC1/600 sec	SEIWDVHE	H12	0,098766	0,7811	0,0024	**	t=3,750, df=13

Significance selection criteria included correlation coefficients (|p(corr)| > 0.7) and the coefficients of contribution to the model separation between TG classes (p > 0.05).

* t: t-values, df: degrees of freedom

Supplementary Table 6: Peptides with highest contribution to the discrimination between compounds inducing high and low levels of the intestine Abca1. Related to Figure 4

$\left[O \left(1 \right) \right] = 0.7$ and the coefficients of contribution to the model separation between ADCAT classes ($p > 0.7$) and the coefficients of contribution to the model separation between ADCAT classes ($p > 0.7$).	orr > 0.7) and the coefficients of contribution to the model separation between ABCA1 classes (p > 0.05).
--	--

Pontido	LXR isoform &	Amino Acid Sequence	Secondary	OPL	S-DA	High ABCA1 (n =	12) vs low ABCA1 (n	= 4): unpaired t-test
replide	Labelling Time	Annio Acia Sequence	Structure	р	p(corr)	P-value	P-value summary	t, df*
		1	ABCA1 OPLS-D	A: LXRα an	d LXRβ HD	X-MS		1
260-265	LXRα/30 sec	LAIVSV	H3	0,150564	0,894756	<0,0001	****	t=6,545, df=14
261-267	LXRα/30 sec	AIVSVQE	H3	0,137346	0,904123	<0,0001	****	t=5,645, df=14
264-269	LXRα/30 sec	SVQEIV	H3	0,161037	0,927907	<0,0001	****	t=6,163, df=14
270-275	LXRα/30 sec	DFAKQL	H3	0,096683	0,744891	0,0003	***	t=4,766, df=14
312-316	LXRα/30 sec	SITFL	βsheets	0,138416	0,80345	0,0002	***	t=5,049, df=14
319-324	LXRa/30 sec	FSYNRE	βsheets-H6	0,088788	0,781694	0,0006	***	t=4,444, df=14
319-326	LXRα/30 sec	FSYNREDF	βsheets-H6	0,085006	0,724336	0,0028	**	t=3,611, df=14
320-326	LXRα/30 sec	SYNREDF	βsheets-H6	0,09595	0,735341	0,0014	**	t=3,970, df=14
319-331	LXRα/30 sec	FSYNREDFAKAGL	βsheets-H6	0,108478	0,700074	0,0027	**	t=3,629, df=14
320-331	LXRα/30 sec	SYNREDFAKAGL	βsheets-H6	0,118371	0,778358	0,0003	***	t=4,852, df=14
260-265	LXRα/600 sec	LAIVSV	H3	0,275759	0,87557	0,0008	***	t=4,267, df=14
261-267	LXRα/600 sec	AIVSVQE	H3	0,215162	0,89756	0,0004	***	t=4,624, df=14
264-269	LXRα/600 sec	SVQEIV	H3	0,205503	0,861406	0,001	**	t=4,124, df=14
270-275	LXRα/600 sec	DFAKQL	H3	0,080182	0,718343	0,0027	**	t=3,636, df=14
290-296	LXRα/600 sec	LKTSAIE	H5	0,099353	0,737769	0,0004	***	t=4,563, df=14
299-311	LXRα/600 sec	LLETSRRYNPGSE	H5-βsheets	0,074506	0,728003	0,0012	**	t=4,039, df=14
299-312	LXRα/600 sec	LLETSRRYNPGSES	H5-βsheets	0,074421	0,699539	0,004	**	t=3,432, df=14
300-311	LXRα/600 sec	LETSRRYNPGSE	H5-βsheets	0,074396	0,750937	0,0006	***	t=4,389, df=14
300-312	LXRα/600 sec	LETSRRYNPGSES	H5-βsheets	0,092217	0,806184	0,0004	***	t=4,671, df=14
299-314	LXRα/600 sec	LLETSRRYNPGSESIT	H5-βsheets	0,095125	0,798007	0,0014	**	t=3,964, df=14
299-315	LXRα/600 sec	LLETSRRYNPGSESITF	H5-βsheets	0,098119	0,791755	0,0022	**	t=3,738, df=14
300-315	LXRα/600 sec	LETSRRYNPGSESITF	H5-βsheets	0,102035	0,796625	0,0018	**	t=3,851, df=14
316-326	LXRα/600 sec	LKDFSYNREDF	βsheets-H6	0,07239	0,784793	0,0058	**	t=3,250, df=14
319-324	LXRα/600 sec	FSYNRE	βsheets-H6	0,078487	0,731671	0,0232	*	t=2,549, df=14
319-326	LXRα/600 sec	FSYNREDF	βsheets-H6	0,107692	0,860933	0,0011	**	t=4,087, df=14
320-326	LXRα/600 sec	SYNREDF	βsheets-H6	0,112167	0,846516	0,0024	**	t=3,685, df=14
321-326	LXRa/600 sec	YNREDF	βsheets-H6	0,137569	0,908762	0,0001	***	t=5,358, df=14
319-331	LXRα/600 sec	FSYNREDFAKAGL	βsheets-H6	0,106789	0,885911	0,0003	***	t=4,861, df=14
320-331	LXRa/600 sec	SYNREDFAKAGL	βsheets-H6	0,120963	0,892896	<0,0001	****	t=5,382, df=14
321-331	LXRα/600 sec	YNREDFAKAGL	βsheets-H6	0,113321	0,785537	0,0018	**	t=3,909, df=13
333-341	LXRa/600 sec	VEFINPIFE	H7	0,160406	0,795071	0,0002	***	t=4,931, df=14
334-341	LXRα/600 sec	EFINPIFE	H7	0,136552	0,752029	0,0007	***	t=4,303, df=14
335-341	LXRα/600 sec	FINPIFE	H7	0,122503	0,719301	0,0017	**	t=3,874, df=14
341-348	LXRα/600 sec	EFSRAMNE	H7	0,127799	0,758272	0,0008	***	t=4,277, df=14
342-348	LXRa/600 sec	FSRAMNE	H7	0,116114	0,777342	0,0004	***	t=4,557, df=14

* t: t-values, df: degrees of freedom

Supplementary Table 7: Average differences in deuteration levels of the LXR/NCOR1 complexes in comparison with the apo states. *Related to Figure 5*

Sequence	Start	End	MaxUptake, Da		ΔHDX (apo	- apo/NCC	DR1), %	1000	P-value
				30 sec	60 sec	180 sec	600 sec	1800 sec	
SILPQLSPEQLGM	200	213	7,65	2,37	4,37	2,28	-0,6	1,91	1,22E-01
PQLSPEQLGM	204	213	4,95	0,23	2,72	0,74	-2,03	0,82	5,51E-01
EKLVA	214	219	3,31	-8,26	-8,45	-8,56	-5,82	0,25	9,15E-09
	214	233	11,39	-8,89	-2,08	-4,45	-6,58	-0,15	7,57E-03
	220 221	233	7,11	-0,87	0,12	-2,89	-0,98 -6.57	-1,08	1,85E-01
RSFSDRI	221	233	2 49	-7,5	1.82	0.82	-0,37	2 27	9.64E-01
RVTPWPM	234	240	2,10	-5,22	-0.95	-4,51	-7,91	-1,33	2,37E-01
RVTPWPMAPDPHSRE	234	248	5,5	-4,8	1,6	-1,52	-3,15	-0,9	4,64E-01
RVTPWPMAPDPHSREARQQRFA	234	257	8,96	-5,11	-0,85	-2,77	-5,64	-1,39	2,09E-01
MAPDPHSREARQQRFAHF	239	257	6,4	-8,41	-0,33	-0,52	-4,49	2,2	6,79E-02
PDPHSREARQQRFAHF	241	257	6,6	-3,17	2,89	-0,28	-2,75	2,03	7,85E-01
AIVSV	260	265	3,69	-19,97	-19,92	-21,49	-22,67	2,47	1,39E-10
	261	267	4,24	-18,41	-16,89	-21,50	-17,70	-3,8	2,32E-11
	204	209	3,03	-15,98	-0.83	-1.96	-15,05	-5,9	7.64F-01
AKQLPGFLQL	271	281	5.91	0.49	2.63	-0.04	-2.51	-2.51	1.61E-01
KQLPGF	272	278	3	-0,4	-0,11	-0,26	-3,88	-4,9	8,23E-01
KQLPGFLQL	272	281	5,13	-1,61	-1,18	-2,85	-5,74	-5,14	2,39E-01
QLSREDQIALL	280	290	6,25	-0,98	-1,35	-2,8	-3,64	-6,27	3,41E-01
REDQIAL	282	289	4,17	-0,01	-0,23	-2,03	-4,67	-2,46	6,25E-01
REDQIALL	282	290	4,71	4,35	3,73	1,64	-1,45	1,74	9,12E-07
	290	296	3,84	-12,42	-17,2	-19,8	-14,88	-5,35	3,73E-09
	295 200	299	∠,33 6 27	סט, ו - ר_	-1,00 _1 17	-1,22 -2.22	-4,22 _4 3	-4,4 -2 36	1,17⊑-01 1 02F₋01
LETSRRYNPGSES	299	312	7.69	-4 62	-2.17	-3.12	-4 19	-3.04	4.97E-03
LETSRRYNPGSESIT	299	314	9.05	-5.26	-3.51	-5,85	-6.37	-3,46	7,00E-03
LETSRRYNPGSESITF	299	315	9,65	-5,3	-3,53	-4,64	-6,78	-3,02	4,28E-03
ETSRRYNPGSE	300	311	5,67	-1,83	-0,7	-1,29	-2,95	-1,07	3,15E-01
ETSRRYNPGSES	300	312	6,29	-3,31	-1,36	-1,48	-3,18	0,03	8,59E-02
ETSRRYNPGSESITF	300	315	8,89	-7,05	-4,92	-5,51	-6,81	-2,83	3,70E-04
SRRYNPGSE	302	311	4,74	0,05	2,88	0,54	-0,97	3,39	5,21E-01
	312	310	2,41	-7,Z	-3,20	-4,32	-3,97	0,73	1,13E-02
SYNREDEAKAGI	310	331	7.31	-0,09	-3,62	-7,40	-9,21	-3,27	2 81E-04
SYNREDFAKAGL	320	331	5.57	-11.01	-6.51	-6.63	-7.53	-3,94	4.03E-04
/NREDF	321	326	2,69	-8,78	-6,55	-8,67	-8,76	-4,19	1,20E-03
/NREDFAKAGL	321	331	4,35	-17,91	-11,24	-6,1	-6,27	0,43	3,16E-06
AKAGL	326	331	2,99	-3,65	0,42	0,75	-1,35	2,66	3,04E-01
KAGL	327	331	2,29	-4,73	0,74	0,34	-0,09	2,94	3,01E-01
QVEFINPIFE	332	341	4,6	-1,87	-3,98	-4,37	-6	-4,27	9,40E-02
	333	341	4,26	-2,29	-7,92	-4,02	-8,06	-0,19	5,46E-02
	334 335	341	3,0 2,28	-4,3	-7,80	-0,27	-9,97	-2,28 _/ 17	1,30E-03
	335	341	3.03	-3,69	-2,00	-0,4	-11 22	-4,17	3.94E-04
NPIFE	336	341	2.44	-3.35	-5.25	-8.66	-11.63	-3.45	1.37E-03
SRAMNE	342	348	3,61	0,54	-0,86	-1,88	-4,7	1,35	7,76E-01
QLND	349	353	2,39	0,13	-0,27	-0,51	-0,8	2,45	7,07E-01
QLNDAE	349	355	3,84	-2,56	-0,85	-3,73	-3,2	-1,85	7,27E-02
IDAEF	352	356	2,11	0,48	0,51	0,1	-3,91	-0,44	6,15E-01
	357	361	2,4	-1,78	-1,18	-2	-3,48	-3,48	2,09E-03
	360	365	3,57	-1,18	-1,11	-1,6 2.07	-3,25	-2,96	1,00E-02
SIFSADRPNVODOI	362	376	3,23 8 Q1	_4 11	-4 5	_4 R	-4,05	-4,77	1.06F-02
ADRPNVQDQL	366	376	5.75	-2.5	0.29	0.18	-3.64	-0.2	5.98E-01
SADRPNVQDQLQ	366	377	6.55	2,13	3,32	0,29	-4,15	-0,7	3,31E-01
SADRPNVQDQLQV	366	378	6,94	1,12	0,74	-0,29	-4,27	-0,88	6,50E-01
QVERLQHTY	377	385	3,75	2,19	1,63	2,42	3,44	4,58	1,11E-01
QVERLQHTYV	377	386	4,76	1,95	1,69	0,18	2,08	-0,29	5,23E-02
	377	387	5,69	-0,74	-1,78	-1,79	-3,21	-2,29	8,68E-02
	3/7	389	7,23	-1,18	-2,2	-2,96	-4,38	-4,4	1,07E-02
	319 200	309 102	4,88 2 11	1,08 _4 04	-1,40 _2 1	-3,0∠ _2 12	-2,00 _5 52	-0,75 -7.22	ອ,∪ວ⊏-01 3 15⊑_01
IAYVSIHHPHDRI ME	390	402	4 55	-4,04	-2,1	-5.02	-9,62	-4.83	1.13E-01
VSIHHPHDRL	392	402	2	-7.46	-8.1	-10.34	-13.72	-3.78	7,91E-03
VSIHHPHDRLMF	392	404	3,52	-3,28	-2,19	-2,98	-7,01	-3,76	4,46E-02
VSIHHPHDRLMFPRM	392	407	5,42	-4,5	-3,84	-3,67	-7,38	-1,22	3,24E-04
MKLVS	408	413	3,26	0,39	0,73	-1,11	-3,13	1,3	9,75E-01
	410	414	2,38	-2,31	-1,01	-3,8	-4,4	2,58	2,91E-01
	412	420	5,5	-2,05	-2,28	-2,01	-7,54	-5,23	4,27E-01
	412	426	/,83	-6,52	-1,34	-3,63	-8,56	-3,43	0,31E-02
	41Z /11	427 106	0,40 6 07	-0,04 -5 11	-∠,∪3 _2 12	-4,01 _3.05	-0,00 _6 76	-3,39 _0 52	0,00E-02
RTLSSVHSFOVFA	414	420	6 73	-7 21		-3,55	-9.85	-3.38	7.39F-02
RTLSSVHSEQVF	415	426	5.54	-6.01	-2.93	-3.7	-8.75	-3.25	8.02E-02
RTLSSVHSEQVFA	415	427	6.1	-6,73	_,••• -1	-2,96	-7,72	-1,73	1,19E-01
LRLQDKKLPPLL	427	439	5,94	-3,27	0,84	-0,63	-4,14	0,74	5,82E-01
LRLQDKKLPPLLS	427	440	7,11	-4,46	0,27	-1,37	-6,48	0,26	3,93E-01
	107	441	7.35	-5.07	0.61	0,69	-4,52	1,02	4,71E-01
LRLQDKKLPPLLSE	427	111	.,	-,	-,				
ALRLQDKKLPPLLSE ALRLQDKKLPPLLSEI	427	442	8,13	-1,6	1,99	1,27	-2,94	1,11	9,91E-01

	428	440	6.2	-5	-0.21	-1.9	-5.43	0.33	2.90E-01
LRLQDKKLPPLLSE	428	441	6,37	-1,13	1,41	1,07	-3,67	2,48	9,49E-01
LRLQDKKLPPLLSEI	428	442	6,78	-3,02	0,41	0,38	-4,43	0,88	6,64E-01
LRLQDKKLPPLLSEIW	428	443	7,78	1,23	3,25	2,38	-0,96	0,81	5,15E-01
	440	447	4,19	-5,62	-0,4	-2,55	-6,79	-1,5	2,28E-01
	443	447	LXRB vs. LXRB/N	COR1	2,19	3,91	-0,34	1,04	5,550-01
VQLTA	218	222	2,77	1,27	1,7	1,22	0,43	0,71	4,12E-01
VQLTAAQE	218	225	5,16	2,24	0,96	-0,82	-0,25	-1,97	3,03E-01
VQLTAAQEL	218	226	5,72	3,28	2,67	1,1	2,83	-2,34	2,19E-02
	221	226	3,25	5,17	4,17	0,42	6,09 1.60	2,8	3,70E-02
	220	230	4,22	0.03	-0.48	-2,55	-2.62	-12,99	7.65E-01
MIQQLVA	227	233	4,25	-0,18	-0,66	-2,5	-3,33	-12,52	8,89E-01
IQQLVA	228	233	3,49	-1,84	-1,84	-1,68	-3,45	-13,07	5,34E-01
VAAQL	232	236	2,86	1,37	-0,32	-1,83	-4,1	-3,88	7,79E-01
	234	238	2,5	4,31	3,51	5,16	3,64	1,43	2,95E-02
AIISVQE	274	279	4.25	-12,05	-13,92	-22,08	-23,00	-14.17	4,43E-09 2.44E-13
FAKQVPGF	285	292	3,57	2,85	2,35	1,57	1,93	-1,43	4,18E-03
FAKQVPGFLQL	285	295	6,01	-0,86	-2,69	-1,42	-2,13	-5,89	4,72E-01
AKQVPGF	286	292	2,81	0,06	0,5	0	-1,41	-6,38	2,57E-01
	286	295	5,35	-0,51	-0,89	-0,96	-2,16	-5,37	2,15E-02
GREDQ	293 296	300	3,0 3,86	-0,94 -0.42	-0,76	-0,7	-1,29	-3,11	6,00E-01
GREDQIALL	296	304	4,48	0,33	-0,01	-0,65	-0,23	-1,72	5,53E-01
LLKASTIE	303	310	4,59	-12,41	-17,52	-21,04	-16,82	-14,99	5,34E-10
LKASTIE	304	310	3,83	-16,85	-21	-21,36	-12,81	-3,72	1,26E-10
KASTIE	305	310	2,96	-14,79	-15,34	-17,22	-13,91	-4,25	9,89E-10
	313	325	5,43	7,3	3,94 4 4 3	0,62	2,14 2.13	-2,41	3,34E-05 4 24E-07
LETARRYNHETEC	314	326	5.28	6.07	4,43	0.81	0.31	-0.77	1.73E-04
LKDFTYSKDDF	330	340	4,82	-0,27	-1,19	-4,05	-4,91	-6,77	9,74E-01
FTYSKDDF	333	340	3,63	-1,19	-1,25	-2,81	-5,23	-6,83	8,15E-01
FTYSKDDFHRAGL	333	345	5,41	1,74	1,53	-2,06	-5,33	-5,68	1,22E-01
	333	346	6,1 2,46	1,07	2,25	-0,71	-3,18	-4,4	1,72E-01
HRAGLOV	341	340	2,40	0.81	-1,04	2 25	-5,75	-9,58	6.73E-01
HRAGLQVE	341	348	3,54	2,75	5,39	3,3	1,25	-0,56	1,33E-01
VEFINPIFE	347	355	4,41	2,98	0,69	-0,05	0,93	-0,36	1,72E-01
EFINPIFE	348	355	3,67	-0,48	0,74	0,99	0,88	1,15	8,67E-01
	349	354	2,38	-0,19	-1,64	-3,18	-3,76	-1,25	4,43E-01
	349	355	3,07	0,2 _1 19	-1,5 -2 04	-1,87	-0,23	-2,11	5,78E-01 4 22E-01
FSRAMRRLGLDDAE	356	369	6,84	-0,72	-1,04	-1,99	-1,99	-4,39	7,96E-01
SRAMRRLGLDDAE	357	369	6,61	-2,91	-0,77	-1,7	-2,45	-6,34	3,96E-01
MRRLGLDDAE	360	369	4,45	-0,23	0,12	-0,91	0,28	-0,46	9,07E-01
	374	378	2,77	-0,02	-1,89	-0,94	-0,79	-1,07	6,47E-02
	374	394	3,5 12 22	-0,52	-0,87	-0,91	-1,43	-1,2	2,05E-03 5,83E-01
INIFSADRPNVQEPGRVEA	376	394	10,97	-1,3	-1,94	-3,09	-3,92	-4,62	8,75E-02
IFSADRPNVQEPGRVEA	378	394	8,94	-3,32	-2,33	-2,11	-3,18	-5,67	1,21E-01
FSADRPNVQEPGRVEA	379	394	8,19	-1,02	-2,01	-2,92	-2,48	-2,93	2,58E-01
SADRPNVQEPGRV	380	392	6,59	-0,01	-2,14	-2,7	-2,37	-4,14	5,59E-01
	380	394 401	7,84 12,75	-0,44	-2,4	-3,52 -3,87	-3,40	-4,22	2,34E-01
SADRPNVQEPGRVEALQQPYVEA	380	403	13,97	-1,29	-2,72	-3,38	-3,52	-5,83	3,40E-03
PGRVEA	389	394	2,76	-0,04	-1,98	-4,04	-0,86	-1,64	5,01E-01
	395	401	3,48	0,09	-0,17	-1,04	-1,48	-7,21	5,90E-01
	404	418	8,54	-0,61	-1,94	-2,38	-3,68	-6,09	5,23E-01
	405 406	418 418	6.77	0,69 _3 19	-2,19	-2,08 -6 15	-2,52 -3.64	-5,14 -4 53	9,45E-01
YTRIKRPQDQLRFPRM	406	421	8,57	-0,98	-2,14	-2,54	-2,37	-6,72	4,44E-01
TRIKRPQDQLRFPRM	407	421	7,88	-1,71	-3,69	-4,95	2,17	-2,87	5,61E-02
KLVSL	424	428	2,43	-1,14	-3,92	-4,76	-3,35	-5,02	3,85E-01
VSLRTLSSV	426	434	5,58	-3,78	-4,33	-4,76	-4,66	-4,91	7,39E-03
	420	440 441	7,90	-4,62 -2.88	-4,10	-5,54 _/ 81	-7,15	-9,55	0,07E-03
LRTLSSVHSEQVF	428	440	6.12	-5.55	-8.26	-7.3	-8.86	-10.3	8,86E-02
RTLSSV	429	434	2,99	0,78	0,23	0,24	0,62	-2,21	5,07E-01
RTLSSVHSEQVF	429	440	5,56	-4,72	-4,52	-6,37	-6,92	-8,74	9,75E-03
RTLSSVHSEQVFA	429	441	6,14	-4,09	-4,48	-5,85	-6,5	-8,57	2,31E-02
	441 444	453	6,08	-2,86	-0,52	-2,05	-3,28	-3,89	6,84E-01
ALRLODKKI PPI I SFI	44 I 441	454 456	0,89 7 48	-1,23 1,35	-1,51 3.05	-1,82 0.02	-1,02 2 14	-2,49 -3.07	7,70E-01 3,24F-01
ALRLQDKKLPPLLSEIW	441	457	8.52	2,45	0.95	-0,12	1,44	1.02	4,27E-01
LRLQDKKLPPLL	442	453	5,37	0,35	0,35	-1,7	-0,04	-0,97	8,37E-01
SEIWDVHE	454	461	4,24	-0,48	-0,75	-1,78	-3,96	-2,1	8,33E-01
WDVHE	457	461	1,85	3,07	-0,82	-0,43	0,44	-1,03	4,00E-01

 Number of replicates: 3

 Number of exposure times: 6

 % of deuterium: 95 %

 Statistical significance value: 1 %

 Statistically significant peptides are highlighted in grey

Supplementary Table 8: Contributions of LXRα and LXRβ peptides to separation between lipogenic and non-lipogenic classes of ligands (TG p(corr)) and Related to Figure 6

	LXR isoform &			TG	ABCA1
Peptide	Labelling	Amino Acid Sequence	Secondary Structure	p(corr)	p(corr)
	Time		110	P(0017)	P(001770
260-265	LXRa/30 sec	LAIVSV	H3	0,182522	0,894756
261-267	LXRa/30 sec	AIVSVQE	H3	0,159467	0,904123
264-269	LXRα/30 sec	SVQEIV	H3	0,188553	0,927907
316-326	LXRα/30 sec	LKDFSYNREDF	βsheets-H6	0,284438	0,666177
260-265	LXRα/10 min	LAIVSV	H3	0,115661	0,87557
261-267	LXRα/10 min	AIVSVQE	H3	0,172573	0,89756
264-269	LXRα/10 min	SVQEIV	H3	0,109048	0,861406
299-312	LXRα/10 min	LLETSRRYNPGSES	H5-βsheets	0,215267	0,695628
300-312	LXRα/10 min	LETSRRYNPGSES	H5-βsheets	0,288253	0,806184
299-314	LXRα/10 min	LLETSRRYNPGSESIT	H5-βsheets	0,214434	0,798007
299-315	LXRα/10 min	LLETSRRYNPGSESITF	H5-βsheets	0,189743	0,791755
300-315	LXRα/10 min	LETSRRYNPGSESITF	H5-βsheets	0,203299	0,796625
316-326	LXRα/10 min	LKDFSYNREDF	βsheets-H6	0,079581	0,784793
319-324	LXRα/10 min	FSYNRE	βsheets-H6	0,208335	0,731671
319-326	LXRα/10 min	FSYNREDF	βsheets-H6	0,199409	0,860933
320-326	LXRα/10 min	SYNREDF	βsheets-H6	0,178388	0,846516
321-326	LXRα/10 min	YNREDF	βsheets-H6	0,284359	0,908762
249-257	LXRα/30 sec	ARQQRFAHF	H3	0,418542	0,676627
299-314	LXRα/30 sec	LLETSRRYNPGSESIT	H5-βsheets	0,417924	0,52989
299-315	LXRα/30 sec	LLETSRRYNPGSESITF	H5-βsheets	0.396382	0.632145
300-315	LXRα/30 sec	LETSRRYNPGSESITF	H5-βsheets	0.353796	0,605197
312-316	LXRa/30 sec	SITFL	ßsheets	0.468028	0.80345
319-324	LXRq/30 sec	ESYNRE	Bsheets-H6	0 450246	0 781694
319-326	LXRq/30 sec	ESYNREDE	Bsheets-H6	0 482254	0 724336
320-326	LXRg/30 sec	SYNREDE	Bsheets-H6	0.468115	0 735341
321-326	LXRa/30 sec	VNREDE	Rsheets-H6	0.432617	0.63457
200-311	LXRa/10 min		H5-Bebeete	0,402017	0,00407
299-311	LXRa/10 min		H5 Reports	0,331433	0,720003
204 224	LXRa/10 min		Robooto HG	0,302295	0,750957
220 220	LXR0/10 min		Reheate H6	0,433073	0,007709
323-333			Poheets, HG	0,417300	0,545559
332-338		FTYSKDD	Psheets, Ho	0,330463	0,504645
332-339		FITSKUDF	psneets, Ho	0,424319	0,024162
334-339	LXRp/10 min	YSKUDF	psneets, Ho	0,392926	0,509046
270-275	LXRa/30 sec	DFAKQL	H3	0,693751	0,744891
319-331	LXRa/30 sec	FSYNREDFAKAGL	psneets-Hb	0,565468	0,698778
320-331	LXRa/30 sec	SYNREDFAKAGL	Bsheets-H6	0,638015	0,778358
321-331	LXRa/30 sec	YNREDFAKAGL	βsheets-H6	0,572388	0,574976
326-331	LXRa/30 sec	FAKAGL	H6	0,678162	0,654782
327-331	LXRα/30 sec	AKAGL	H6	0,639354	0,649576
270-275	LXRα/10 min	DFAKQL	H3	0,624923	0,718343
319-331	LXRα/10 min	FSYNREDFAKAGL	βsheets-H6	0,532743	0,885911
320-331	LXRα/10 min	SYNREDFAKAGL	βsheets-H6	0,593985	0,892896
326-331	LXRα/10 min	FAKAGL	H6	0,694186	0,625754
334-340	LXRα/10 min	EFINPIF	H7	0,620582	0,677953
334-341	LXRα/10 min	EFINPIFE	H7	0,562785	0,752029
335-340	LXRα/10 min	FINPIF	H7	0,614977	0,663262
335-341	LXRα/10 min	FINPIFE	H7	0,567325	0,719301
336-341	LXRα/10 min	INPIFE	H7	0,503321	0,666359
341-348	LXRα/10 min	EFSRAMNE	H7	0,530387	0,758272
342-348	LXRα/10 min	FSRAMNE	H7	0,685637	0,777342
313-325	LXRβ/10 min	LETARRYNHETEC	H5, βsheets	0,623272	0,527395
333-344	LXRβ/10 min	TYSKDDFHRAGL	βsheets, H6	0,635216	0,541832
290-296	LXRα/10 min	LKTSAIE	H5	0,743081	0,737769
327-331	LXRα/10 min	AKAGL	H6	0,759729	0,692876
333-341	LXRα/10 min	VEFINPIFE	H7	0,727585	0,795071
332-344	LXRβ/10 min	FTYSKDDFHRAGL	βsheets, H6	0,733755	0,522827
340-347	LXRβ/10 min	HRAGLQVE	H6-H7	0,738019	0,506801
412-426	LXRa/30 sec	VSLRTLSSVHSEQVF	H10/11	0,715587	0,19401
412-427	LXRa/30 sec	VSLRTLSSVHSEQVFA	H10/11	0,721315	0,234654
414-426	LXRa/30 sec	LRTLSSVHSEQVF	H10/11	0,734507	0,246694
414-427	LXRa/30 sec	LRTLSSVHSEQVFA	H10/11	0,74986	0,288152
415-426	LXRa/30 sec	RTLSSVHSEQVF	H10/11	0,74078	0,281914
415-427	LXRa/30 sec	RTLSSVHSEQVFA	H10/11	0,748133	0,308221
427-442	LXRa/30 sec	ALRLQDKKLPPLLSFL	H10/11-H12	0,692639	0,329802
428-441	LXRg/30 sec	LRLQDKKLPPI I SF	H10/11-H12	0.773292	0.303054
427-443	LXRg/30 sec	ALRI ODKKI PPLI SEIW	H10/11-H12	0 775786	0.350804
428-442	LXRg/30 sec		H10/11-H12	0 741346	0.310625
428-443	LXRg/30 sec		H10/11-H12	0 711789	0.228448
120 140				0,	0,220110

440-447	LXRα/30 sec	SEIWDVHE	H12	0,825616	0,269342
441-446	LXRα/30 sec	EIWDVH	H12	0,920834	0,405315
214-219	LXRα/10 min	IEKLVA	H1	0,825104	0,483172
332-344	LXRβ/30 sec	FTYSKDDFHRAGL	βsheets, H6	0,887247	0,289212
332-345	LXRβ/30 sec	FTYSKDDFHRAGLQ	βsheets, H6	0,870471	0,244108
340-345	LXRβ/30 sec	HRAGLQ	H6-H7	0,818952	0,144587
340-346	LXRβ/30 sec	HRAGLQV	H6-H7	0,837063	0,063208
340-347	LXRβ/30 sec	HRAGLQVE	H6-H7	0,791383	0,109854
340-348	LXRβ/30 sec	HRAGLQVEF	H6-H7	0,833864	-0,01266
348-353	LXRβ/30 sec	FINPIF	H7	0,705961	0,055966
348-354	LXRβ/30 sec	FINPIFE	H7	0,70169	0,103884
427-439	LXRβ/30 sec	LRTLSSVHSEQVF	H10/11	0,695051	-0,2291
428-439	LXRβ/30 sec	RTLSSVHSEQVF	H10/11	0,717002	-0,20853
428-440	LXRβ/30 sec	RTLSSVHSEQVFA	H10/11	0,724354	-0,20452
440-452	LXRβ/30 sec	ALRLQDKKLPPLL	H10/11-H12	0,713708	-0,19998
440-453	LXRβ/30 sec	ALRLQDKKLPPLLS	H10/11-H12	0,713626	-0,1705
440-456	LXRβ/30 sec	ALRLQDKKLPPLLSEIW	H10/11-H12	0,723603	-0,21667
303-309	LXRβ/10 min	LKASTIE	H5	0,698917	-0,19051
304-309	LXRβ/10 min	KASTIE	H5	0,7409	-0,15521
332-345	LXRβ/10 min	FTYSKDDFHRAGLQ	βsheets, H6	0,736355	0,453479
340-345	LXRβ/10 min	HRAGLQ	H6-H7	0,796951	0,351468
340-346	LXRβ/10 min	HRAGLQV	H6-H7	0,756441	0,303586
340-348	LXRβ/10 min	HRAGLQVEF	H6-H7	0,768548	0,356207
347-354	LXRβ/10 min	EFINPIFE	H7	0,718621	0,196037
348-353	LXRβ/10 min	FINPIF	H7	0,79585	0,164408
348-354	LXRβ/10 min	FINPIFE	H7	0,769606	0,190399
425-433	LXRβ/10 min	VSLRTLSSV	H10/11	0,712973	-0,20832
425-439	LXRβ/10 min	VSLRTLSSVHSEQVF	H10/11	0,792896	0,010273
425-440	LXRβ/10 min	VSLRTLSSVHSEQVFA	H10/11	0,7865	0,038314
427-439	LXRβ/10 min	LRTLSSVHSEQVF	H10/11	0,785936	0,061934
428-439	LXRβ/10 min	RTLSSVHSEQVF	H10/11	0,803832	0,122333
428-440	LXRβ/10 min	RTLSSVHSEQVFA	H10/11	0,785316	0,133228
214-219	LXRα/30 sec	IEKLVA	H1	0,679262	0,297033
333-341	LXRα/30 sec	VEFINPIFE	H7	0,610977	0,408623
335-340	LXRα/30 sec	FINPIF	H7	0,678346	0,255072
412-420	LXRα/30 sec	VSLRTLSSV	H10/11	0,568705	-0,09631
415-420	LXRα/30 sec	RTLSSV	H10/11	0,614924	0,049547
412-424	LXRα/30 sec	VSLRTLSSVHSEQ	H10/11	0,496817	0,138156
333-344	LXRβ/30 sec	TYSKDDFHRAGL	βsheets, H6	0,682076	0,224845
347-354	LXRβ/30 sec	EFINPIFE	H7	0,577512	0,111056
425-433	LXRβ/30 sec	VSLRTLSSV	H10/11	0,510977	-0,29788
425-439	LXRβ/30 sec	VSLRTLSSVHSEQVF	H10/11	0,661735	-0,25375
425-440	LXRβ/30 sec	VSLRTLSSVHSEQVFA	H10/11	0,665791	-0,27201
440-455	LXRβ/30 sec	ALRLQDKKLPPLLSEI	H10/11-H12	0,685638	-0,32356
453-460	LXRβ/30 sec	SEIWDVHE	H12	0,609005	-0,37618
454-459	LXRβ/30 sec	EIWDVH	H12	0,496634	-0,47956
454-460	LXRβ/30 sec	EIWDVHE	H12	0,603427	-0,32202
273-278	LXRβ/10 min	LAIISV	H3	0,4962	0,028651
273-280	LXRβ/10 min	LAIISVQE	H3	0,543743	0,225202
274-280	LXRβ/10 min	AIISVQE	H3	0,520806	0,229433
303-307	LXRβ/10 min	LKAST	H5	0,652175	-0,22507
312-324	LXRβ/10 min	LLETARRYNHETE	H5, βsheets	0,628957	0,424607
312-325	LXRβ/10 min	LLETARRYNHETEC	H5, βsheets	0,591779	0,431342
346-354	LXRβ/10 min	VEFINPIFE	H7	0,661985	0,303505
349-354	LXRβ/10 min	INPIFE	H7	0,519429	-0,02464

between high and low ABCA1 inducers (ABCA1 p(corr))

AZ1

AZ2

AZ3

AZ4

AZ6

Supplementary Figure 1. Compounds used in this study and structurally related to AZ876 having (a) a central cyclic sulphone amide scaffold or (b) a maleimide core. *Related to Figure 1*

Supplementary Figure 2. Relationship between administered dose and drug induced intestinal *Abca1* mRNA levels. Observed individual fold *Abca1* induction (markers) and model fit (solid line: population mean, dotted lines: 90% confidence interval) of the different drugs included in the assessment. In vivo potency could not be identified for some compounds as no dose-response was available and the observed *Abca1* increase was in the range of the maximal induction (E_{max}). *Related to Table 2*

Supplementary Figure 3. Goodness-of-fit plots of the intestinal Abca1 induction model. Individual weighted residuals of Abca1 induction versus dose (a) and population fitted fold Abca1 induction (b). Observed versus population fitted fold of Abca1 induction on a linear (c) and logarithmic scale (d). Related to Table 2

Supplementary Figure 4. Relationship between drug concentration in blood and plasma TG increase. Observed individual fold TG induction (markers) and model fit (solid line: population mean, and dotted lines: 90% confidence interval) of the different drugs included in the assessment. Concentration needed to generate a 2-fold induction of TG levels (C_2) could not be identified for some compounds as no trends in increased TG levels were observed within the explored drug concentration range. *Related to Table 2*

Supplementary Figure 5. Goodness-of-fit plots of the plasma TG model. Individual weighted residuals of TG induction versus drug concentration in plasma (a) and population fitted fold increase in plasma TG (b). Observed versus population fitted fold increase in plasma TG concertation on a linear (c) and logarithmic scale (d). Related to Table 2

Supplementary Figure 6. HDX-MS kinetics of selected LXR peptides. Time point deuteration kinetics of LXR α and LXR β LBDs in apo state (grey) and incubated with T0901317 (cyan), AZ876 (red), AZ2 (green) or AZ7 (blue) showing peptides from H3 (a), H4-H5 (b), H5-S1 (c), H7 (d), H10-H11 (e) and H12 (f). Peptide location within LXR LBD is mapped on the LXR β crystal structure (1PQC.pdb). HDX-MS data were collected in triplicate, and deuteration data are normalized to the fully deuterated control (± standard deviation). *Related to Figure 2*

Supplementary Figure 7. Differential HDX-MS analysis of LXRα-ligand interactions. Protection from deuterium exchange upon ligand binding mapped onto LXRα crystal structure (2ACL.pdb), differential HDX levels are the average of two time points (30 and 600 sec). A negative difference value corresponds to a protection from deuterium uptake upon ligand binding, with large absolute values corresponding to a strong effect. Deuterium uptake values for all peptides were corrected to back exchange using the fully deuterated control. HDX-MS measurements were performed in triplicates. *Related to Figure 2*

Supplementary Figure 8. Differential HDX-MS analysis of LXRβ-ligand interactions. Protection from deuterium exchange upon ligand binding mapped onto LXRβ crystal structure (1PQC.pdb), differential HDX levels are the average of two time points (30 and 600 sec). A negative difference value corresponds to a protection from deuterium uptake upon ligand binding, with large absolute values corresponding to a strong effect. Deuterium uptake values for all peptides were corrected to back exchange using the fully deuterated control. Regions of the LXRb structure not covered by HDX-MS are shown in dark grey. HDX-MS measurements were performed in triplicates.

Related to Figure 2

HPHD RLMF P RMLMKL V S L R T L S S V H S E Q V F A L R L Q D K K L P P L L S E I WD V H E

Total: 112 Peptides, 98.8% Coverage, 4.94 Redundancy

CITFLKDFTYSKDDFHRAGLQVEFINPIFEFSRAMRRLGLDDAEYALLIAINIFSADRPNVQEPGRVEALQQPYVEALLSYTRIKRPQDQLRFPRMLMKLVSLRTLSS 330 335 385 395 405 415 420 425

Total: 102 Peptides, 83.7% Coverage, 4.65 Redundancy

Supplementary Figure 9. Sequence coverage achieved in the HDX-MS experiment. The peptides obtained via peptic digestion and LC-MS analysis are shown as blue bars along the protein sequence for LXR α (a) and LXR β (b) LBDs. Related to Figure 2

Supplementary Figure 10. Binding modes of WAY-254011 (a), AZ3 (b), AZ6 (c) and AZ8 (d) to LXRβ. In the LXRβ complexes, AZ3, AZ6 and AZ8 bind in a similar manner with the cyclic sulfonamide or maleimide core wedged between H3, H11 and H12, and the sulfone or carbonyl forming a hydrogen bond to His435. The phenyl (AZ3 and AZ6) and benzyl (AZ8) groups fill the pocket between H6 and H8, and form hydrophobic interactions with residues from H8, H6, H7 and H3. The nitrogen in the linker forms a hydrogen bond to the main chain carbonyl of Phe271 in helix H3. The linker is stacking against H3. The polar substituents at the end of the linker are within hydrogen bonding distance to Arg319 and the main chain nitrogen of Leu330.

Related to Figure 2

а

С

Supplementary Figure 11. Stabilization of the LXRβ His435-Trp457 activation switch by LXR ligands. (a) TO-091317 (PDB ID: 1PQC), (b) WAY-254011, (c) 24,25EC (PDB ID: 1P8D), (d) AZ3, (e) AZ6, (f) AZ8, (g) GW3965 (PDB ID: 1PQ6), and (h) BMS-852927 (PDB ID: 5JY3). Hydrogen bonds are shown in red dash lines. Interactions between GW3965 (i) or BMS-852927 (j) and residues of LXRβ H11-H12 at 4.5 Å cutoff shown in yellow. (k) In BMS-852927/LXRβ complexes H11 is shifted away from the ligand by 3.5 Å which leads to the loss or weakening of the interactions. *Related to Figure 2*

Supplementary Figure 12. OPLS-DA model of TG effects based on LXRa/LXRB HDX-MS data. OPLS-DA score plot (a) showing the degree of separation of the model between lipogenic (yellow) and non-lipogenic (purple) compounds (N = 12, R2X(cum) = 26.9%, R2Y(cum) = 72.8%, Q2(cum) = 45.4%, P-value = 0,066) and permutation plot of the OPLS-DA model (b). A permutation test performed with 100 random permutations in an OPLS-DA model showing R2 (green circles) and Q2 (blue boxes) values from the permuted analysis (bottom left) significantly lower than the corresponding original values (top right). Related to Figure 3

а

b

LXRα/SRC1	pKd	SE pKd	Kd, µM
T0901317	5,823	0,015	1,50
WAY-254011	5,875	0,038	1,33
F1	6,132	0,023	0,74
AZ876	6,036	0,046	0,92
AZ1	5,975	0,053	1,06
AZ2	6,003	0,031	0,99
AZ3	6,21	0,028	0,62
AZ4	5,628	0,024	2,35
GW3965	5,184	0,055	6,55
BMS-852927	4,974	0,069	10,61
AZ6	5,823	0,022	1,50
AZ7	5,347	0,033	4,49
LXR-623	4,667	0,186	21,52
AZ8	4,594	0,381	25,47
AZ9	5,143	0,029	7,19
AZ5	4,96	0,175	10,97
24,25EC	5,03	0,075	9,33

Supplementary Figure 13. SPR analysis of ligand-induced LXR α /SRC1 interactions. Obtained response curves (a) are shown in the 0.02 – 10 μ M concentration range of LXR α . (b) Equilibrium binding affinity parameters derived from fitting the steady-state region of the sensorgram data to nonlinear regression. *Related to Figure 3*

LXRβ/SRC1	pKd	SE pKd	Kd, µM
T0901317	5,807	0,059	1,56
WAY-254011	5,863	0,073	1,37
F1	6,205	0,060	0,62
AZ876	5,881	0,101	1,32
AZ1	5,926	0,079	1,19
AZ2	6,063	0,082	0,86
AZ3	5,880	0,088	1,32
AZ4	5,904	0,069	1,25
GW3965	6,012	0,065	0,97
BMS-852927	4,704	0,453	19,77
AZ6	5,965	0,057	1,08
AZ7	5,988	0,046	1,03
LXR-623	5,761	0,045	1,73
AZ8	5,711	0,062	1,94
AZ9	5,923	0,040	1,19
AZ5	5,925	0,032	1,19
24,25EC	5,596	0,034	2,53

b

Supplementary Figure 14. SPR analysis of ligand-induced LXR β /SRC1 interactions. Obtained response curves (a) are shown in the 0.02 – 10 μ M concentration range of LXR β . (b) Equilibrium binding affinity parameters derived from fitting the steady-state region of the sensorgram data to nonlinear regression. *Related to Figure 3*

Supplementary Figure 15. Fractional uptake difference heatmap showing the variations of deuterium uptake between apo- and ligand-bound LXRa (a) and LXRb (b) LBD peptides pre-incubated with the SRC1 peptide. Color scheme is identical to Figure 2. Deuterium uptake values for all peptides were corrected to back exchange using the fully deuterated controls. Missing peptides are shown in dark grey. Secondary structure is noted on top of the heatmap. HDX-MS measurements were performed in triplicates and average values are shown. The complete peptide list and numerical values of differences in deuteration between apo and ligand-bound states are shown in the Supplementary Table 4. *Related to Figure 3*

а

Supplementary Figure 16. OPLS-DA TG model obtained using the LXR α /SRC1 and LXR β /SRC1 HDX-MS datasets. OPLS-DA score plot (a) showing the degree of separation of the model between lipogenic (yellow) and non-lipogenic (purple) compounds (N = 12, R2X(cum) = 63.8%, R2Y(cum) = 88.1%, Q2(cum) = 73.7%, P-value = 0,033); corresponding S-plot (b) and its zoomed-in part representing limits used for the selection of differential peptides with the highest contribution to class separation (|p(corr)| > 0.7, p > 0.05). Orange dots: LXR α /SRC1 peptides, cyan dots: LXR β /SRC1 peptides. (c) A permutation test performed with 100 random permutations in an OPLS-DA model showing R2 (green circles) and Q2 (blue boxes) values from the permuted analysis (bottom left) significantly lower than the corresponding original values (top right). *Related to Figure 3*

Supplementary Figure 17. OPLS-DA model of ABCA1 effects built using the HDX-MS dataset. OPLS-DA score plot (a) showing the degree of separation of the model between ligands inducing high (green dots) and low (blue dots) levels of intestine *ABCA1* (N = 16, R2X(cum) = 49.9%, R2Y(cum) = 91.1%, Q2(cum) = 76.6%, P-value = 1,75E-03) and permutation plot of the OPLS-DA model (b). A permutation test performed with 100 random permutations in an OPLS-DA model showing R2 (green circles) and Q2 (blue boxes) values from the permuted analysis (bottom left) significantly lower than the corresponding original values (top right). *Related to Figure 4*

Supplementary Figure 18. Details of the interactions between LXRα and the cofactor peptides. LXRα interacting with the SRC1 peptide (3IPQ.pdb) (a) and the NCOR1-ID2 peptide (b). NCOR1 peptide is from the FXR-NCOR crystal structure (4WVD.pdb) superimposed with the LXRα (3IPQ.pdb). Surfaces created by helices H3 and H5 are colored by the amino acid hydrophobicity scale¹.

1. Eisenberg D. et al. Amino acid scale: Normalized consensus hydrophobicity scale. J. Mol. Biol. 179, 125-142 (1984).

Related to Figures 4 and 5

Supplementary Figure 19. In vitro reporter gene (a) and coactivator recruitment (b) assays do not predict intestinal Abca1 induction by LXR compounds. Compound classes based on ABCA1 activity are shown under each graph for clarity: "high ABCA1" ligands in green, "low ABCA1" in blue, compounds with no assigned ABCA1 class in grey. Reporter gene assay: data ± standard deviation (for n values, see Table 1), SRC1 coactivator recruitment assay: data ± standard error. Related to Figures 4 and 5

LXRα/NCOR1	pKd	SE pKd	Kd, μM
аро	6,104	0,179	0,79
T0901317	5,918	0,013	1,21
WAY-254011	6,212	0,049	0,61
F1	5,902	0,020	1,25
AZ876	6,404	0,027	0,39
AZ1	6,370	0,037	0,43
AZ2	6,062	0,038	0,87
AZ3	6,230	0,036	0,59
AZ4	6,369	0,041	0,43
GW3965	6,016	0,022	0,96
BMS-852927	6,783	0,064	0,16
AZ6	6,103	0,009	0,79
AZ7	6,276	0,009	0,53
LXR-623	6,195	0,012	0,64
AZ8	6,117	0,019	0,76
AZ9	6,280	0,057	0,52
AZ5	6,222	0,011	0,60
24,25EC	6,249	0,012	0,56

b

Supplementary Figure 20. SPR analysis of ligand-modulated LXR α /NCOR1 interactions. Obtained response curves (a) are shown in the 0.02 – 10 μ M concentration range of LXR α . (b) Equilibrium binding affinity parameters derived from fitting the steady-state region of the sensorgram data to nonlinear regression. *Related to Figure 5*

b

LXRα/NCOR1	pKd	SE pKd	Kd, μM
аро	6,324	0,166	0,47
T0901317	5,040	0,095	9,12
WAY-254011	-	-	-
F1	5,122	0,032	7,55
AZ876	5,961	0,036	1,09
AZ1	-	-	-
AZ2	-	-	-
AZ3	-	-	-
AZ4	-	-	-
GW3965	5,977	0,029	1,05
BMS-852927	6,828	0,103	0,15
AZ6	4,623	0,163	23,82
AZ7	5,640	0,055	2,29
LXR-623	5,903	0,032	1,25
AZ8	6,261	0,049	0,55
AZ9	5,645	0,085	2,26
AZ5	5,296	0,107	5,06
24.25EC	6.251	0.049	0.56

Supplementary Figure 21. SPR analysis of ligand-modulated LXR β /NCOR1 interactions. Obtained response curves (a) are shown in the 0.02 – 10 μ M concentration range of LXR β . (b) Equilibrium binding affinity parameters derived from fitting the steady-state region of the sensorgram data to nonlinear regression. *Related to Figure 5*

Supplementary Figure 22. OPLS-DA model for Gal4 LXR α pEC50 based on the LXR α HDX-MS dataset. PCA (a) and OPLS-DA score plot (b) showing the degree of separation between compounds with pEC50 < 6.5 (brown) and pEC50 ≥ 6.5 (yellow) derived from in vitro LXR α reporter gene assay (N = 17, R2X(cum) = 61.4%, R2Y(cum) = 63.7%, Q2(cum) = 44.3%, P-value = 0,109861); corresponding S-plot (c) and its zoomed-in part representing limits used for the selection of differential peptides with the highest contribution to class separation (|p(corr)| > 0.7, p > 0.05). Peptides are colored by the corresponding LXR α secondary structure elements. (d) A permutation test performed with 100 random permutations in an OPLS-DA model showing R2 (green circles) and Q2 (blue boxes) values from the permuted analysis (bottom left) significantly lower than the corresponding original values (top right). (e) Significant peptides (|p(corr)| > 0.7, p > 0.05) mapped on the LXR α LBD crystal structure (2ACL.pdb). SUS plots of the Gal4 LXR α pEC50 vs. TG (f) and ABCA1 (g) OPLS-DA models showing that the pEC50 and TG but not ABCA1 models have peptides of equally high importance clustering along the diagonal. For clarity, peptides with low coefficients of contribution to the class separation for both models (p < 0.05) were excluded. *Related to Figure* 6

Supplementary Figure 23. OPLS-DA model for Gal4 LXR β pEC50 based on the LXR β HDX-MS dataset. PCA (a) and OPLS-DA score plot (b) showing the degree of separation between compounds with pEC50 < 6.5 (brown) and pEC50 ≥ 6.5 (yellow) derived from in vitro LXR β reporter gene assay (N = 17, R2X(cum) = 63.5%, R2Y(cum) = 67.7%, Q2(cum) = 52.7%, P-value = 0,0464174); corresponding S-plot (c) and its zoomed-in part representing limits used for the selection of differential peptides with the highest contribution to class separation (|p(corr)| > 0.7, p > 0.05). Peptides are colored by the corresponding LXR β secondary structure elements. (d) A permutation test performed with 100 random permutations in an OPLS-DA model showing R2 (green circles) and Q2 (blue boxes) values from the permuted analysis (bottom left) significantly lower than the corresponding original values (top right). (e) Significant peptides (|p(corr)| > 0.7, p > 0.05) mapped on the LXR β LBD crystal structure (1PQC.pdb). SUS plots of the Gal4 LXR β pEC50 vs. TG (f) and ABCA1 (g) OPLS-DA models showing that the pEC50 and TG but not ABCA1 models have peptides of equally high importance clustering along the diagonal. For clarity, peptides with low coefficients of contribution to the class separation for both models (p < 0.05) were excluded. *Related to Figure* 6

Supplementary Note 1 Synthetic procedures

Content:

- Synthesis Schemes
- General Information
- Synthesis Procedures for Compounds AZ1-AZ9
- References to previously published compounds

Synthesis Schemes

Scheme S1. Synthesis of final compound AZ1

Reagents and conditions: (a) 0.4 M 9-BBN, dry THF, 0 $^{\circ}C$ -rt, 16 h; (b) 3 M K₃PO₄, 1,1'-bis (diphenylphosphino)ferrocene palladium (II) chloride, DMF, rt, 48 h; (c) 4 M HCl in dioxane, EtOAc, 24 h; (d) K₂CO₃, DMSO, 100 $^{\circ}C$, 1 h, microwave heating; (e) TBTU, DIPEA, (CH₃)₂NH x HCl, DMF, 1 h, rt.

Scheme S2. Synthesis of final compounds AZ2 and AZ3

Reagents and conditions: (a) HCl in EtOAc (sat), rt, 6 h; (b) Et₃N, CH₃CN, 130 °C microwave heating, 40 min; (c) 2 M NH₃ in MeOH, THF, rt; (d) 0.5 M 9-BBN, dry THF, 0 °C–rt, 1 h; (e) 3 M K₃PO₄, 1,1'-bis (diphenylphosphino)ferrocene palladium (II) chloride, dry DMF, 110 °C microwave heating; 20 min; (f) chiral chromatography; (g) 3-buten-1-amine, Et₃N, CH₃CN, rt, 1.5 h; (h) 0.5 M 9-BBN, dry THF, 0 °C–rt, 2 h; (i) 3 M K₃PO₄, 1,1'-bis (diphenylphosphino)ferrocene palladium (II) chloride, THF, 90 °C microwave heating; 10 min.

Scheme S3. Synthesis of key intermediate for final compounds AZ4, AZ6 and AZ7

Reagents and conditions: (a) H_2SO_4 , MeOH, reflux, 2.5 h; (b) DIPEA, DMSO, 150 °C microwave heating, 1 h; (c) LiOH, THF/water (1:1), rt, 3 h; (d) 1 M BH₃-THF complex , THF, -78 °C–rt, 4 h; (e) MsCl, Et₃N, DCM, rt, 4 h; (f) tetrabutylammonium cyanide; CH₃CN, rt, 2 h; (g) conc HCl, MeOH, reflux, 2 h.

Scheme S4. Synthesis of final compounds AZ4, AZ6 and AZ7

Reagents and conditions: (a) Et₃N, dry DMF, 120 °C microwave heating, 15 min; (b) LiI, pyridine, 130 °C microwave heating, 3 h; (c) Et₃N, dry DMF, 120 °C microwave heating, 20 min; (d) LiI, pyridine, 150 °C microwave heating, 1.5 h; (e) *tert*-butylamine, Et₃N, THF, 0 °C, 15 min; (f) diethyl oxalate, KOtBu, THF, 0–65 °C, 50 min; (g) 4-toluenesulfonic acid monohydrate, toluene/DMF, 120 °C, 50 min; (h) LiOH, THF/water, rt, 2 h.

Scheme S5. Synthesis of final compound AZ5

Reagents and conditions: (a) Et₃N, DMF, 130 °C microwave heating, 40 min; (b) TFA, DCM, rt, 1.5 h; (c) DIPEA, 5,6-dichloronicotinic acid, dry DMSO, 150 °C microwave heating, 1 h; (d) DIPEA, TBTU, dimethylamine hydrochloride, dry DMF, rt, 2 h.

Scheme S6. Synthesis of final compound AZ8

Reagents and conditions: (a) benzylamine, dry DCM, 0 °C, 2 h; (b) diethyl oxalate, KOtBu, dry THF, rt, 30 min; (c) 4-phenylbutylamine, 4-toluenesulfonic acid monohydrate, toluene/DMF, 120–130 °C microwave heating, 30–50 min.

Scheme S7. Synthesis of final compound AZ9

Reagents and conditions: (a) 4-toluenesulfonic acid monohydrate, dry toluene/DMF, 130 °C microwave heating, 40 min.

General Information

All reagents and solvents were obtained from commercially available suppliers and used without purification. Microwave heating was achieved in a Biotage initiator synthesiezer. Flash chromatography was performed on Biotage automated flash systems with UV detection using prepacked silica gel columns (SNAP Cartridge KP-Sil, 50 μ m silica particles with a surface area of 500 m²/g. Sizes from 10 g to 100 g silica was used) supplied by Biotage. The used phase separators was supplied from IST. Preparative HPLC was conducted on a Kromasil C18 column (10 μ m 250 x 50 ID mm) using a variable gradient of acetonitrile in H₂O/CH₃CN/formic acid 95/5/0.2 buffer over 20–30 minutes with a flow of 100 mL/min. The instrument was combined with an UV/VIS detector 155 from Gilson. Analytical UHPLC/MS was obtained on a Waters Aquity system with a Waters SQD mass spectrometer. The UHPLC was equipped with a BEH C18 column (1.7 μ m 2.1 × 50 mm) using a 46 mM ammonium carbonate/NH₃ buffer at pH 10

and a HSS C18 column (1.8 μ m 2.1× 50 mm) using a 11 mM ammonium formate buffer at pH 3 with a flow rate of 1 mL/min. The mass spectrometer used electrospray ionization (ESI) in both positive and negative mode. ¹ HNMR and ¹³C NMR spectra were generated on 300, 400 or 500 MHz Bruker Avance spectrometers. Chemical shifts (δ) are given in parts per million (ppm), with the residual solvent signal used as reference. Coupling constants (*J*) are reported as Hz. NMR abbreviations are used as follows: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, dd = double doublet, m = multiplet.

All final compounds AZ1-AZ9 have a purity (UV) of >94 %.

Synthesis of final compound AZ1 (Scheme S1)

4-(3-Carboxyphenyl)butylammonium hydrochloride (4). 9-BBN (0.4 M in hexane, 8.75 mL, 3.50 mmol) was added to a solution of *tert*-butyl *N*-but-3-enylcarbamate (0.5 g, 2.92 mmol) in 10 mL dry THF whilst cooled in an ice bath. The reaction was allowed to warm to rt and left to stir overnight (16 h). 3 M K₃PO₄ (aq. 1.24 g, 5.84 mmol), *tert*-butyl 3-bromobenzoate (0.75 g, 2.92 mmol), 1,1'-bis (diphenyphosphino)ferrocene palladium (II) chloride (0.12 g, 0.15 mmol) and 2 mL DMF were added. The mixture was stirred at rt , under N₂ over the weekend. The reaction was concentrated under reduced pressure, EtOAc and brine was added. The organic phase was washed four times with brine, evaporated and then further purifed by flash chromatography (Biotage HPFC, Si-column) using a gradient of 0–10 % MTBE in toluene. Gave 0.97 g of *tert*-butyl 3-[4-(*tert*-butoxycarbonylamino)butyl]benzoate (**3**). To **3** (0.90 g, 2.59 mmol) in 8 mL EtOAc was added 8 mL of 4 M HCl in dioxane. The mixture was stirred at rt over night. The solid was filtered off, washed with EtOAc and dried under reduced pressure. Gave 0.46 g (99 %) of the title compound. ¹H NMR (500 MHz, (CD₃)₂SO) δ 12.90 (s, 1H), 7.93 (s, 3H), 7.73 – 7.83 (m, 2H), 7.45 – 7.52 (m, 1H), 7.36 – 7.45 (m, 1H), 2.79 (t, *J* = 7.4 Hz, 2H), 2.67 (t, *J* = 7.5 Hz, 2H), 1.48 – 1.75 (m, 4H).

2-tert-Butyl-4-chloro-1,1-dioxo-5-phenyl-isothiazol-3-one (5). Synthesis described in Li, L. et al. Derivatives of Isothiazole-3(2*H*)-one 1,1-dioxides as Liver X Receptor Modulators. PCT Int. Appl. WO 2006/73363, July 13th, 2006.

3-[4-[(2-tert-Butyl-1,1,3-trioxo-5-phenyl-isothiazol-4-yl)amino]butyl]benzoic acid (6). A

mixture of **5** (0.3 g, 1.00 mmol), **4** (0.23 g, 1.00 mmol) and K₂CO₃ (0.42 g, 3.00 mmol) in 6 mL DMSO was heated at 100 °C for 1 h. More **5** (30 mg, 0.10 mmol) was added and the heating was continued at 100 °C for 15 min. The solvent was evaporated and EtOAc (5 mL), 1 N HCl (4 mL) and brine (2 mL) was added. The phases were seperated and the organic phase was washed again with a mixture of brine (2 mL) and 1 N HCl (1 mL). The organic phase was evaporated to dryness and the residue was purified by flash chromatography (Biotage HPFC, Si-column) using a gradient of 12–100 % EtOAc (containing 1 % AcOH) in toluene. Gave 0.17 g (37 %) of the title compound. ¹H NMR (500 MHz, CDCl₃) δ 7.92 – 7.99 (m, 1H), 7.8 – 7.87 (m, 1H), 7.47 – 7.53 (m, 2H), 7.37 – 7.47 (m, 4H), 7.31 – 7.36 (m, 1H), 5.25 (t, *J* = 6.0 Hz, 1H), 2.87 (q, *J* = 6.4 Hz, 2H), 2.53 (t, *J* = 7.0 Hz, 2H), 1.74 (s, 9H), 1.39 – 1.46 (m, 4H), OH peak overlaps with water peak.

3-[4-[(2-tert-Butyl-1,1,3-trioxo-5-phenyl-isothiazol-4-yl)amino]butyl]-N,N-dimethyl-

benzamide (*AZ1*). TBTU (48 mg, 0.15 mmol) was added to a mixture of **6** (57 mg, 0.12 mmol) and DIPEA (65 μ L, 0.37 mmol) in DMF. After preactivation over 15 min dimethylamine hydrochloride (15 mg, 0.19 mmol) was added and the reaction was stirred for 1 h. EtOAc was added and the organic phase was washed twice with brine, once with sat. NaHCO₃ and K₂CO₃ then again with brine. The organic layer was evaporated to dryness and the remaining crude was purified by flash chromatography (Biotage HPFC, Si-column) using an isocratic system of toluene/EtOAc, 1:2, to give 48 mg (79 %) of the title compound. ¹H NMR (500 MHz, CDCl₃) δ 7.46 – 7.52 (m, 2H), 7.4 – 7.46 (m, 3H), 7.26 – 7.32 (m, 1H), 7.19 – 7.24 (m, 1H), 7.08 – 7.17 (m, 2H), 5.25 (t, *J* = 6.0 Hz, 1H), 3.04 (d, *J* = 73.2 Hz, 6H), 2.77 – 2.91 (m, 2H), 2.41 – 2.56

(m, 2H), 1.73 (s, 9H), 1.34 – 1.47 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 171.9, 159.9, 142.2, 136.7, 135.2, 131.8, 129.8, 129.7, 128.8, 128.5, 127.2, 125.3, 124.8, 107.1, 61.7, 44.1, 39.8, 35.6, 35.3, 29.2, 28.2, 27.8.

Synthesis of final compound AZ2 (Scheme S2)

tert-Butyl N-(1-methylbut-3-enyl)carbamate (7). Synthesis described in Veenstra S. J., Schmid P. One-pot Synthesis of Protected Homoallyl Amines. *Tetrahedron Letters.* **1997**, *38*, 997.

Pent-4-en-2-amine hydrochloride (8). Compound **7** (5.96 g, 32.17 mmol) was dissolved in 5 mL EtOAc and cooled on ice. 55 mL of HCl in EtOAc (sat.) was added. The reaction solution was stirred at rt for 6 h. The reaction was followed by TLC using EtOAc/heptane (40:60) as mobile phase (Rf: 0.7). The solvent was evaporated under reduced pressure to give 5.6 g (99 %) of the title compound as a light brown oil. ¹H NMR (500 MHz, CDCl₃) δ 8.26 (s, 2H), 5.62–5.78 (m, 1H), 5.09–5.23 (m, 2H), 3.22–3.36 (m, 1H), 2.41–2.54 (m, 1H), 2.26–2.38 (m, 1H), 1.33 (d, *J* = 6.6 Hz, 3H).

4-Chloro-2-isopropyl-1,1-dioxo-5-phenyl-isothiazol-3-one (9). Prepared as described in Li, L. et al. Derivatives of Isothiazole-3(2*H*)-one 1,1-dioxides as Liver X Receptor Modulators. PCT Int. Appl. WO 2006/73363, July 13th, 2006.

2-Isopropyl-4-(1-methylbut-3-enylamino)-1,1-dioxo-5-phenyl-isothiazol-3-one (10). A

mixture of **8** (2 g, 12.65 mmol), **9** (3.62 g, 12.65 mmol) and Et₃N (7.02 mL, 50.61 mmol) in CH₃CN (40 mL) was heated in the microwave at 130 °C for 40 min. The black crude solution was evaporated. EtOAc was added. The organic phase was washed once with 1 M NaHCO₃, twice with water and once with brine, dried using a phase separator and evaporated. The crude was further purified by HPFC (Si-column) using a gradient of EtOAc/heptane, 0–20 % EtOAc, detection at 300 nm, to give 1.84 g (43 %, 5.50 mmol) of the title compound as an orange solid after evaporation of solvent. ¹H NMR (500 MHz, CDCl₃) δ 7.48–7.57 (m, 2H), 7.41–7.48 (m, 3H), 5.35–5.48 (m, 1H), 5.16 (d, *J* = 8.8 Hz, 1H), 4.97–5.06 (m, 1H), 4.85–4.97 (m, 1H), 4.33–

4.47 (m, 1H), 3.20–3.32 (m, 1H), 1.92–2.12 (m, 2H), 1.58 (d, *J* = 6.9 Hz, 6H), 0.97 (d, *J* = 6.5 Hz, 3H).

6-Bromopyridine-2-sulfonamide (12). 6-Bromopyridine-2-sulfonyl chloride (0.91 g, 3.02 mmol) was dissolved in THF (12 mL). 2 M NH₃ in MeOH (15 mL) was added. Gave a cloudy reaction that was stirred at rt for 2.5 h. More 2 M NH₃ in MeOH (6 mL) was added and the reaction mixture was stirred over night. The solvent was evaporated to give a white solid. EtOAc was added, the organic phase was washed with 1 M HCl and water, dried using a phase separator and evaporated. The compound was dissolved in DMSO and purified by preparative HPLC on a Kromasil C8 column (10 µm 250 x 50 ID mm) using a gradient of 10–60 % CH₃CN in H₂O/CH₃CN/formic acid 95:5:0.2 buffer over 25 min with a flow of 100 mL/min. The compounds were detected by UV at 230 nm. The CH₃CN was evaporated and the water phase was extracted twice with EtOAc, dried using a phase separator and evaporated to give 0.52 g (73 %, 2.20 mmol) the title compound as a white solid. ¹H NMR (500 MHz, CD₃OD δ 7.94–8.00 (m, 1H), 7.86–7.94 (m, 1H), 7.76–7.82 (m, 1H).

6-[Rel-(4R)-4-[(2-isopropyl-1,1,3-trioxo-5-phenyl-isothiazol-4-yl)amino]pentyl]pyridine-2-sulfonamide (AZ2). Compound **10** (1 g, 2.99 mmol) was dissolved in dry THF (21 mL) in a microwave vial and cooled in an ice-bath. (1s,5s)-9-Borabicyclo[3.3.1]nonane (0.5 M, 11.96 mL, 5.98 mmol) was added and the yellow reaction solution was stirred at rt for 1h. A solution of 3 M K₃PO₄ (1.90 g, 8.97 mmol, aq), **12** (0.71 g, 2.99 mmol) dissolved in dry DMF (3 mL) and 1,1'-bis (diphenylphosphino)ferrocene palladium (II) chloride (0.36 g, 0.45 mmol) were quickly added to the yellow reaction solution. The solution was evacuated and filled with nitrogen. The mixture was heated in the microwave for 20 min at 110 °C. The solvent was evaporated and DCM was added. The organic phase was washed with water, the organic phase was separated using a phase separator and evaporated. The crude was purified by HPFC (Biotage system, Si-column) using a gradient of 30–80 % EtOAc (containing 4 % 2 M NH₃ in

MeOH) in heptane. The compounds were detected at 310 nm. Gave 0.60 g (40 %, 1.22 mmol,) of the title compound, a white solid, as a racemic mixture after evaporation of solvents. The enantiomers were separated by chiral chromatography on a Chiralpak IA 250 mm x 20 mm, 5 μ m HPLC column. 12 mg (10 mg/mL in DCM) was injected and eluted with heptane/EtOAc at a flow rate of 18 mL/min and detected at 300 nm. The second eluted compound was collected and evaporated to yield the title compound (269 mg, 99.7 % ee) [a]²⁰_D +88.4 (c 1.0, CH₃CN). ¹H NMR (500 MHz, CDCl₃) δ 7.71–7.82 (m, 2H), 7.39–7.47 (m, 2H), 7.32–7.39 (m, 3H), 7.17–7.19 (m, 1H), 5.31 (d, *J* = 9.3 Hz, 1H), 5.18 (s, 2H), 4.26–4.40 (m, 1H), 3.09–3.24 (m, 1H), 2.54–2.76 (m, 2H), 1.45–1.56 (m, 8H), 1.16–1.39 (m, 2H), 0.89 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.4, 157.8, 157.1, 137.3, 133.7, 130.6, 128.8, 127.8, 125.2, 124.1, 117.2, 104.8, 48.0, 46.6, 35.7, 34.5, 24.4, 19.9, 19.2, 19.1. HRMS (ESI) m/z: 493.1567 (calcd for C₂₂H₂₉N₄O₅S₂ [M+H]⁺, 493.1574).

Synthesis of final compound AZ3 (Scheme S2)

4-(But-3-enylamino)-2-isopropyl-1,1-dioxo-5-phenyl-isothiazol-3-one (*13*). Et₃N (5 mL, 36.07 mmol) was added to a solution of **9** (10 g, 35.00 mmol) and but-3-en-1-amine (2.74 g, 38.50 mmol) in CH₃CN (120 mL) at room temperature. The reaction was stirred at that temperatur for 1.5 h. The reaction was concentrated, dissolved in DCM and washed with 1 M NaHCO₃, 1 M HCl and water. The organic phase was filtered through a phase separator and concentrated. The brown crude was further purified by flash chromatography using a Biotage HPFC system (Si-column). Isocratic run with 15 % EtOAc (containing 4 % of 2 M NH₃ in MeOH) in heptane. Gave the title compound (5.96 g, 53 %, 18.60 mmol) as a light yellow solid after evaporation of solvent. ¹H NMR (500 MHz, CDCl₃) δ 7.50–7.61 (m, 2H), 7.43–7.50 (m, 3H), 5.48–5.66 (m, 1H), 5.24–5.40 (m, 1H), 5.06–5.12 (m, 1H), 4.99–5.06 (m, 1H), 4.32–4.51 (m, 1H), 2.87–2.97 (m, 2H), 2.10–2.21 (m, 2H), 1.60 (d, *J* = 6.9 Hz, 6H).

6-[4-[(2-Isopropyl-1,1,3-trioxo-5-phenyl-isothiazol-4-yl)amino]butyl]pyridine-2-

sulfonamide (AZ3). Compound 13 (0.6 g, 1.87 mmol) was dissolved in dry THF (4 mL) and cooled on an icebath. 0.5 M (1s,5s)-9-borabicyclo[3.3.1]nonane (9.36 mL, 4.68 mmol) was added and the reaction stirred for 2 h warming to room temperature. To this, whilst bubbling N₂, was added sequentially, and quickly, a 3 M solution (aq) of K₃PO₄ (3.12 mL, 9.36 mmol), 12 (0.444 g, 1.87 mmol) as a solution in THF (3 mL) and finally 1,1'-bis (diphenylphosphino)ferrocene palladium (II) chloride (0.151 g, 0.19 mmol). The reaction solution was sealed in a microwave vial, evacuated and flushed with N2 three times and then heated in the microwave at 90 °C for 10 minutes. To the reaction mixture was added DCM (60 mL) and water (30 mL), the organic phase was separated and the aqueous layer extracted again with DCM (30 mL). The organics were pooled, passed over a phase separator and reduced in vacuo. The resulting oil was taken up in DMSO (4 mL) and purified by preparative HPLC (Kromasil C8 column, 10 µm 250 x 50 ID mm) using a gradient of 20-60 % CH₃CN in H₂O/CH₃CN/acetic acid 95/5/0.2 buffer over 30 minutes with a flow of 100 mL/min. The compounds were detected by UV at 230 nm. The solvents were evaporated and the residue dissolved in DCM and purified on a 50 g Biotage SNAP flash silica column. The compound was eluted with a gradient of 0-100 % EtOAc in heptane over 20 CV. Gave the title compound (0.586 g, 65.4 %) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.77–7.89 (m, 2H), 7.45–7.53 (m, 2H), 7.38–7.45 (m, 3H), 7.27–7.29 (m, 1H), 5.65–5.74 (m, 1H), 5.31 (s, 2H), 4.34–4.47 (m, 1H), 2.89 (q, J = 6.4 Hz, 2H), 2.78 (t, J = 7.3 Hz, 2H), 1.60–1.67 (m, 3H), 1.57 (d, J = 6.9 Hz, 6H), 1.37–1.48 (m, 2H). The multiplett at 1.60–1.67 overlaps with the water peak. ¹³C NMR (126 MHz, CDCl₃) δ 162.4, 158.8, 158.1, 138.4, 135.5, 131.6, 129.6, 128.6, 126.3, 125.1, 106.6, 47.6, 44.3, 36.5, 27.7, 26.2, 20.2. HRMS (ESI) m/z: 479.1425 (calcd for C₂₁H₂₇N₄O₅S₂ [M+H]⁺, 479.1418).

Synthesis of final compound AZ4 (Scheme S3 and S4)

Methyl 6-[4-(tert-butoxycarbonylamino)-1-piperidyl]-5-chloro-pyridine-3-carboxylate (17). 5,6-Dichloronicotinic acid (3 g, 15.63 mmol) was suspended in MeOH (100 mL). Sulfuric acid (5 mL) was added and the mixture was heated to reflux for 2.5 h. The reaction mixture was cooled to rt and concentrated. DCM (100 mL) and 1 M NaOH (40 mL) was added. The phases were separated and the organic phase was washed with 1 M NaOH (40 mL), dried (MgSO₄) and concentrated to give 2.89 g (89 %, 14.03 mmol) of methyl 5,6-dichloropyridine-3carboxylate (15) as a white solid. Compound 15 (1.39 g, 6.74 mmol) and boc-4-aminopiperidine (1.48 g, 7.42 mmol) was added to two microwave vials and dissolved in dry DMSO (13 mL). DIPEA (2.35 mL, 13.49 mmol) was added to each vial. The reaction mixtures were heated in the microwave for 1 h at 150 °C. The reaction mixtures were combined, diluted with DCM and washed with water using a phase separator. The solvent was evaporated and the crude was further purified by a Biotage SP1 TM HPFC system (Si-column) using isocratic conditions for 3 CV with 7 % EtOAc/trietylamine (99.5:0.5) in heptane/EtOAc/ Et₃N (90:9.5:0.5 followed by a gradient of 7-60 % EtOAc/ Et₃N (99.5:0.5) for 10 CV. Finally the title compound was eluted using isocratic conditions for 2 CV with 60 % EtOAc/ Et₃N (99.5:0.5). Gave 3.03 g (60 %, 8.19 mmol) of the title compound as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 8.73 (d, J = 2.0 Hz, 1H), 8.12 (d, J = 2.0 Hz, 1H), 4.52 (bs, 1H), 4–4.13 (m, 2H), 3.91 (s, 3H), 3.74 (bs, 1H), 3-3.12 (m, 2H), 2.01-2.14 (m, 2H), 1.52-1.60 (m, 2H), 1.47 (s, 9H).

6-[4-(tert-Butoxycarbonylamino)-1-piperidyl]-5-chloro-pyridine-3-carboxylic acid (18).

Compound **17** (3.02 g, 8.17 mmol) was dissolved in THF (22 mL) and water (22 mL). LiOH (0.25 g, 10.62 mmol) was added and the reaction was stirred for 3 h. The reaction solution was diluted with diethyl ether and neutralized with acetic acid (1 mL). The organic layer was separated, dried (Na₂SO₄), filtered and evaporated to give 3.09 g (99 %, 8.69 mmol) of the title compound as a white solid. LC–MS (ESI) m/z: 356 (calcd for C₁₆H₂₃ClN₃O₄ [M+H]⁺, 356). ¹H NMR (500 MHz, CD₃OD) δ 8.68 (d, J = 1.9 Hz, 1H), 8.12 (d, J = 1.9 Hz, 1H), 3.99–4.12 (m,

2H), 3.53–3.66 (m, 1H), 2.97–3.14 (m, 2H), 1.91–2.05 (m, 2H), 1.53–1.69 (m, 2H), 1.45 (s, 9H).

tert-Butyl N-[1-[3-chloro-5-(hydroxymethyl)-2-pyridyl]-4-piperidyl]carbamate (19).

Compound **18** (4.01 g, 11.27 mmol) was dissolved in dry THF (60 mL) and cooled in an isopropanol/CO₂ bath. 1 M borane THF-complex (45 mL, 45.08 mmol) was added slowly and dropwise. The reaction was allowed to slowly reach rt. After 4 h the reaction was quenched with MeOH (2 mL). The reaction was concentrated, diluted with DCM and washed with water using a phase separator. The organic phase was evaporated to give 3.78 g (98 %, 11.06 mmol) of the title compound as a white solid. LC–MS (ESI) *m*/*z*: 342 (calcd for C₁₆H₂₅ClN₃O₃ [M+H]⁺, 342). ¹H NMR (500 MHz, CD₃OD) δ 8.12 (d, *J* = 1.6 Hz, 1H), 7.72 (d, *J* = 1.7 Hz, 1H), 4.55 (s, 2H), 3.66–3.79 (m, 2H), 3.47–3.61 (m, 1H), 2.82–2.97 (m, 2H), 1.90–2.03 (m, 2H), 1.57–1.72 (m, 2H), 1.47 (s, 9H).

[6-[4-(tert-Butoxycarbonylamino)-1-piperidyl]-5-chloro-3-pyridyl]methyl methanesulfonate

(20). Compound 19 (3.78 g, 11.06 mmol) was dissolved in dry DCM (60 mL) and cooled in an ice-bath. Methanesulfonyl chloride (0.51 mL, 6.63 mmol) was added during stirring, followed by dropwise addition of Et_3N (1.15 mL, 8.29 mmol). The reaction was stirred at rt for 3 h. Additional methanesulfonyl chloride (0.51 mL, 6.63 mmol) and Et_3N (1.15 mL, 8.29 mmol) was added and the mixture was stirred at rt for 1 h. The reaction mixture was diluted with DCM, washed with sat. NaHCO₃ solution and water, using a phase separator, and evaporated. The crude was purified by flash chromatography using Biotage SP4 TM HPFC system (Si-column). The title compound was eluted using isocratic conditions with 5 % of $EtOAc/Et_3N$ (99.5:0.5) for 3 CV followed by a gradient for 10 CV with 5–80 % of $EtOAc/Et_3N$ (99.5:0.5) and finally isocratic conditions for 2 CV with 80 % $EtOAc/Et_3N$ (99.5:0.5). Gave 1.69 g (36 %, 4.04 mmol) of the title compound. ¹H NMR (500 MHz, CDCl₃)

δ 8.15 (d, *J* = 2.0 Hz, 1H), 7.65 (d, *J* = 2.1 Hz, 1H), 4.52 (s, 3H), 3.76–3.91 (m, 2H), 3.69 (s, 1H), 2.89–3.05 (m, 2H), 2.01–2.14 (m, 2H), 1.54–1.63 (m, 6H), 1.48 (s, 9H).

tert-Butyl N-[1-[3-chloro-5-(cyanomethyl)-2-pyridyl]-4-piperidyl]carbamate (21). Compound **20** (1.70 g, 4.04 mmol) was dissolved in dry CH₃CN (50 mL) and tetrabutylammonium cyanide (2.17 g, 8.08 mmol) was added. The mixture was stirred at rt for 2 h. The reaction mixture was evaporated, diluted with EtOAc and washed with water, dried (MgSO₄), filtered and evaporated to give 1.41 g (99 %, 4.03 mmol) of the title compound. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 2.2 Hz, 1H), 7.56 (d, J = 2.2 Hz, 1H), 4.47 (s, 1H), 3.72–3.82 (m, 2H), 3.63 (s, 3H), 2.86–2.98 (m, 2H), 1.98–2.10 (m, 2H), 1.48–1.61 (m, 3H), 1.43 (s, 9H).

Methyl 2-[6-[4-[(2-tert-butyl-1,1,3-trioxo-5-phenyl-isothiazol-4-yl)amino]-1-piperidyl]-5-

chloro-3-pyridyl]acetate (23). Compound **21** (1.88 g, 5.36 mmol) was refluxed in MeOH (100 mL) and conc. HCl (100 mL) for 2 h. The MeOH was evaporated. The reaction mixture was neutralized to pH ~7 with 2 M Na₂CO₃ solution and solid K₂CO₃ then extracted with EtOAc, dried (Na₂SO₄), filtered and evaporated to give 1.07 g (70 %, 3.77 mmol) of methyl 2-[6-(4-amino-1-piperidyl)-5-chloro-3-pyridyl]acetate (**22**) as yellow oil. LC–MS (ESI) *m/z*: 284 (calcd for C₁₃H₁₉ClN₃O₂ [M+H]⁺, 284). Compound **5** (1.43 g, 4.77 mmol) was dissolved in dry DMF (6 mL) in a microwave vial and cooled in an ice-bath. Compound **22** (1.49 g, 5.25 mmol) dissolved in dry DMF (9 mL) was added followed by Et₃N (0.80 mL, 5.72 mmol). The reaction mixture was heated in the microwave at 120 °C for 15 min. The mixture was diluted with DCM, washed with water, separated using a phase separator and evaporated. The crude product was purified with a SP4 TM HPFC system (Si-column (CV=120 mL), A = heptane/EtOAc/Et₃N (95:4.5:0.5), B = EtOAc/Et₃N (99.5:0.5), isocratic conditions with 6 % B for 2 CV followed by a gradient with 6–55 % B for 10 CV, finally isocratic conditions with 55 % B for 2 CV. Gave 2.19 g (83 %, 4.00 mmol) of the title compound as a light yellow solid after evaporation of solvents. LC–MS (ESI) *m/z*: 547 (calcd for C₂₆H₃₂ClN₄O₅S [M+H]⁺, 547). ¹H NMR (500 MHz,

CDCl₃) δ 7.98 (d, *J* = 2.1 Hz, 1H), 7.47–7.56 (m, 3H), 7.39–7.47 (m, 3H), 5.24 (d, *J* = 8.9 Hz, 1H), 3.69 (s, 3H), 3.52–3.61 (m, 2H), 3.50 (s, 2H), 2.96–3.17 (m, 1H), 2.31–2.47 (m, 2H), 1.69–1.80 (m, 11H), 1.45–1.55 (m, 2H).

2-[6-[4-[(2-tert-Butyl-1,1,3-trioxo-5-phenyl-isothiazol-4-yl)amino]-1-piperidyl]-5-chloro-3-

pyridyl]acetic acid (AZ4). Three microwave vials were charged with **23** (0.69 g, 1.26 mmol) and anhydrous LiI (1.35 g, 10.9 mmol). Pyridine (11 mL) was added to each vial. The reactions were heated in the microwave at 130 °C for 1 h. Additional LiI (1.01 g, 7.57 mmol) was added to each vial and the reactions were heated in the microwave for 2 h at 130 °C. The reaction mixtures were combined, diluted with EtOAc, washed with 1 M HCl (aq) and dried (MgSO₄). The crude was purified by anion exchange chromatography (ISOLUTE NH₂, 10 g column). The column was rinsed with CH₃CN and MeOH, the product eluated with MeOH/AcOH (98:2) to give 0.93 g (46 %, 1.74 mmol) of the title compound. ¹H NMR (500 MHz, CD₃OD) δ 8.00 (d, *J* = 2.0 Hz, 1H), 7.65 (d, *J* = 2.0 Hz, 1H), 7.48–7.59 (m, 5H), 3.50–3.64 (m, 4H), 3.03–3.16 (m, 1H), 2.24–2.34 (m, 2H), 1.68–1.82 (m, 12H), 1.55–1.68 (m, 2H). ¹³C NMR (126 MHz, CD₃OD) δ 159.5, 157.2, 145.8, 139.8, 134.7, 131.9, 129.5, 128.3, 125.7, 122.5, 105.7, 60.8, 50.3, 31.5, 26.4. HRMS (ESI) m/z: 533.1601 (calcd for C₂₅H₃₀ClN₄O₅S [M+H]⁺, 533.162).

Synthesis of final compound AZ5 (Scheme S5)

tert-Butyl (3S)-3-[[(2-tert-butyl-1,1,3-trioxo-5-phenyl-isothiazol-4-yl)amino]methyl]pyrrol-idine-1-carboxylate (25). Compound 5 (2 g, 6.67 mmol) was dissolved in dry DMF (15 mL). (*S*)-3-(Aminomethyl)-1-*N*-boc-pyrrolidine (1.60 g, 8.01 mmol) was added followed by Et₃N (1.09 mL, 8.01 mmol). The reaction mixture was heated in the microwave for 40 min at 130 °C. The mixture was diluted with DCM, washed with 1 M NaHCO₃ solution, 1 M HCl and water. The phases were separated using a phase separator. The crude product was purified with a Biotage HPFC system using isocratic conditions with EtOAc (containing a small amount of NH₃) in heptane (30:70). Gave the 2.31 g (74 %, 4.98 mmol) of the title compound as a white

solid. ¹H NMR (400 MHz, CDCl₃) & 7.39–7.52 (m, 5H), 5.28 (s, 1H), 3.10–3.38 (m, 3H), 2.67–

2.98 (m, 3H), 2.02–2.23 (m, 1H), 1.63–1.86 (m, 10H), 1.43 (s, 9H), 1.27–1.38 (m, 1H).

2-tert-Butyl-1,1-dioxo-5-phenyl-4-[[(3R)-pyrrolidin-3-yl]methylamino]isothiazol-3-one (26). Compound 25 (2.31 g, 4.98 mmol) was stirred in TFA (20 mL) and DCM (40 mL) at rt. After 1.5 h the solvent was evaporated and the crude was coevaporated with toluene twice. The residue was dissolved in DCM and washed with water, dried using a phase separator and evaporated to give a transparent oil. DCM was added which made the desired product precipitated as a white solid that was filtered off and dried. Gave 1.4 g (77 %, 3.85 mmol) of the title compound. ¹H NMR (400 MHz, CD₃OD) δ 7.42–7.59 (m, 5H), 3.04–3.23 (m, 4H), 2.89–3.03 (m, 2H), 2.60–2.69 (m, 1H), 2.18–2.29 (m, 1H), 1.71–1.82 (m, 1H), 1.68 (s, 9H), 1.32–1.48 (m, 2H).

6-[(3S)-3-[[(2-tert-Butyl-1,1,3-trioxo-5-phenyl-isothiazol-4-yl)amino]methyl]pyrrolidin-1-

yl]-5-chloro-N,N-dimethyl-pyridine-3-carboxamide (*AZ5*). DIPEA (1.99 mL, 11.54 mmol) was added to a solution of **26** (1.4 g, 3.85 mmol) and 5,6-dichloronicotinic acid (0.81 g, 4.24 mmol) in dry DMSO (10 mL). The reaction mixture was heated in the microwave for 1 h at 150 °C. The reaction mixture was diluted with EtOAc and washed with 1 M HCl solution and water, dried using a phase separator and evaporated. Gave 1.68 g (58 %, 2.27 mmol, 70 % pure) of crude 6-[(3*S*)-3-[[(2-*tert*-butyl-1,1,3-trioxo-5-phenyl-isothiazol-4-yl)amino]methyl]pyrrolidin-1-yl]-5-chloro-pyridine-3-carboxylic acid (**27**) that was used directly. Compound **27** (1.68 g, 2.27 mmol), DIPEA (1.46 mL, 9.06 mmol) and TBTU (1.09 g, 3.40 mmol) were dissolved in dry DCM (35 mL). Dimethylamine hydrochloride (0.28 g, 3.40 mmol) was added. The mixture was stirred at rt for 2 h. The mixture was diluted with DCM and washed with 1 M HCl (aq), 1 M NaHCO₃ (aq) and water, dried using a phase separator and evaporated. The crude product was purified by flash chromatography (Biotage HPFC system) using an isocratic system of heptane/EtOAc containing 4 % NH₃ in EtOH, 40:60, followed by a second run using EtOAc

(with 4 % NH₃ in EtOH) /heptane (50:50). Gave 0.73 g of the title compound (59 %, 1.34 mmol) as a white solid after evaporation of solvents. ¹H NMR (500 MHz, CDCl₃) δ 8.16 (d, *J* = 2.0 Hz, 1H), 7.66 (d, *J* = 2.0 Hz, 1H), 7.49 – 7.53 (m, 2H), 7.42 – 7.47 (m, 3H), 5.33 – 5.49 (m, 1H), 3.66 – 3.77 (m, 2H), 3.63 (dd, *J* = 11.0, 7.0 Hz, 1H), 3.31 (dd, *J* = 11.0, 7.2 Hz, 1H), 3.10 (s, 6H), 2.90 – 3.04 (m, 2H), 2.18 – 2.30 (m, 1H), 1.86 – 1.96 (m, 1H), 1.75 (s, 9H), 1.40 – 1.52 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 168.4, 159.5, 134.8, 131.6, 129.8, 128.7, 124.7, 121.8, 115.4, 61.6, 52.9, 49.1, 46.3, 38.3, 29.2, 27.6. HRMS (ESI) m/z: 546.1951 (calcd for C₂₆H₃₃ClN₅O₄S [M+H]⁺, 546.1937).

Synthesis of final compound AZ6 (Scheme S3 and S4)

Methyl 2-[5-chloro-6-[4-[(2-isopropyl-1,1,3-trioxo-5-phenyl-isothiazol-4-yl)amino]-1-

piperidyl]-3-pyridyl]acetate (28). Compound **22** (0.66 g, 2.32 mmol), **9** (0.65 g, 2.27 mmol) and Et₃N (0.38 mL, 2.73 mmol) were dissolved in dry DMF (7 mL) and divided between two microwave vials. The reaction mixtures were heated in the microwave for 20 min at 120 °C. The mixtures were diluted with DCM and washed with water. The organic phase was separated using a phase separator, and evaporated. The crude product was further purified by a Biotage SP4 TM HPFC system. The title compound was eluted using isocratic conditions with heptane/EtOAc/Et₃N (90:9.5:0.5), for 3 CV followed by a gradient with 0–70 % EtOAc/Et₃N (99.5:0.5) in heptane/EtOAc/Et₃N (90:9.5:0.5). Gave 0.68 g (55 %, 1.27 mmol) of the title compound. ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, *J* = 2.0 Hz, 1H), 7.50–7.59 (m, 3H), 7.42–7.49 (m, 3H), 5.26 (d, *J* = 8.9 Hz, 1H), 4.35–4.49 (m, 1H), 3.70 (s, 3H), 3.54–3.65 (m, 2H), 3.51 (s, 2H), 3.06–3.21 (m, 1H), 2.36–2.52 (m, 2H), 1.73–1.82 (m, 2H), 1.59 (d, *J* = 6.9 Hz, 6H), 1.48–1.55 (m, 2H).

2-[5-Chloro-6-[4-[(2-isopropyl-1,1,3-trioxo-5-phenyl-isothiazol-4-yl)amino]-1-piperidyl]-3pyridyl]acetic acid (AZ6). Two microwave vials were charged with 28 (0.17 g, 0.32 mmol) and LiI (0.69 g, 5.16 mmol). Pyridine (3.5 mL) was added to each vial. The vials were heated in the microwave oven for 1 h at 150 °C. Additional LiI (0.17 g, 1.29 mmol) was added to each vial as LCMS showed starting material left, and the reactions were heated in the microwave for 30 min at 150 °C. The reaction mixtures were combined, diluted with EtOAc, washed with 1 M HCl solution and dried using MgSO₄. The crude was further purified by anion exchange chromatography using an Isolute PEAX column (5 g). The column was rinsed with DCM and CH₃CN followed by DCM/MeOH (99:1). The product was eluated with DCM/MeOH/AcOH (92:5:2) to give 0.28 g (83 %, 0.54 mmol) of the title compound. ¹H NMR (500 MHz, CDCl₃) δ 7.99 (s, 1H), 7.48–7.58 (m, 3H), 7.40–7.48 (m, 3H), 5.28 (d, *J* = 8.6 Hz, 1H), 4.33–4.47 (m, 1H), 3.56 (d, *J* = 12.4 Hz, 2H), 3.50 (s, 2H), 3.05–3.19 (m, 1H), 2.35–2.46 (m, 2H), 1.70–1.81 (m, 2H), 1.46–1.62 (m, 8H). ¹³C NMR (126 MHz, CDCl₃) δ 172.9, 157.6, 156.3, 144.8, 138.8, 133.3, 130.5, 127.7, 124.0, 123.2, 121.7, 105.5, 49.2, 46.6, 39.5, 35.8, 31.2, 19.1. HRMS (ESI) m/z; 519.146 (calcd for C₂₄H₂₈ClN₄O₅S [M+H]⁺, 519.1464).

Synthesis of final compound AZ7 (Scheme S3 and S4)

N-tert-Butyl-3-phenyl-propanamide (30). Hydrocinnamoyl chloride (13.21 mL, 88.96 mmol) was added dropwise to a solution of *tert*-butylamine (11.22 mL, 0.11 mol) and Et₃N (14.88 mL, 0.11 mol) in THF (100 mL) at 0 °C under N₂. After stirring for 15 min the mixture was concentrated. The residue was dissolved in EtOAc and extracted with sat. aq. NaHCO₃-solution. Evaporation of the solvent gave 16.78 g (91 %, 81.73 mmol) of the desired product as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.28–7.32 (m, 2H), 7.17–7.25 (m, 3H), 5.10 (bs, 1H), 2.96 (t, *J* = 7.6 Hz, 2H), 2.35–2.45 (m, 2H), 1.30 (s, 9H).

3-Benzyl-1-tert-butyl-4-hydroxy-pyrrole-2,5-dione (31). Compound **30** (9.37 g, 45.64 mmol) was dissolved in 200 mL dry THF and diethyl oxalate (27.90 mL, 0.21 mol) was added. The mixture was cooled in an ice-bath. Under N₂ atmosphere, KOtBu (23.05 g, 0.21 mol) was added carefully. After the addition, the ice-bath was removed and the mixture was stirred for 20 min, then heated to 65 °C for 30 min. The THF was evaporated. EtOAc (150 mL) was added to the

residue. The resulting mixture was cooled in an ice bath and water (20 mL) was added, followed by 10 % HCl until pH 1. The aqueos phase was exctracted three times with EtOAc (20 mL). The organic phases were combined, dried (MgSO₄) and evaporated to give 17 g of crude product that was purified by column chromatography (ISOLUTE Si-column, 70 g/150 mL x 2) using a gradient of EtOAc in heptane , 5–75 % EtOAc, to give 10.6 g (99 %, 41.1 mmol) of the title compound as a solid. ¹H NMR (400 MHz, (CD₃)₂SO) δ 11.87 (s, 1H), 7.21–7.31 (m, 2H), 7.12–7.21 (m, 3H), 3.48 (s, 2H), 1.47 (s, 9H).

Methyl 2-[6-[4-[(4-benzyl-1-tert-butyl-2,5-dioxo-pyrrol-3-yl)amino]-1-piperidyl]-5-chloro-3-pyridyl]acetate (32). In two microwave vials were added **22** (500 mg, 1.76 mmol), **31** (450 mg, 1.76 mmol), catalytic amounts of 4-toluenesulfonic acid, monohydrate, toluene (10 mL) and DMF (1 mL). The reaction mixtures were heated at 120 °C for 50 min. The reaction mixtures were concentrated. To the residues were added EtOAc and sat. aq. NaHCO₃ solution, the organic phases were separated, dried and concentrated. The crude products were purified using two Si-columns with an isocratic system of heptane/EtOAc 80:20, Rf = 0.1, to give totally 1.24 g (68 %, 2.36 mmol) of the desired product. ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, *J* = 2.0 Hz, 1H), 7.54 (d, *J* = 2.0 Hz, 1H), 7.23–7.33 (m, 2H), 7.12–7.19 (m, 3H), 5.07 (d, *J* = 9.7 Hz, 1H), 3.61–3.73 (m, 7H), 3.52 (s, 2H), 3.39–3.50 (m, 1H), 2.63–2.76 (m, 2H), 1.70–1.80 (m, 2H), 1.51–1.63 (m, 11H).

2-[6-[4-[(4-Benzyl-1-tert-butyl-2,5-dioxo-pyrrol-3-yl)amino]-1-piperidyl]-5-chloro-3-

pyridyl]acetic acid (AZ7). Compound **32** (1.25 g, 2.38 mmol) was dissolved in THF (14 mL). A solution of lithium hyroxide monohydrate (0.60 g, 14.28 mmol) in water (3.5 mL) was added during stirring. The reaction mixture was stirred at rt for 2 h. The THF was evaporated. HCl (0.1 M) was added dropwise to the residue until the precipitation stopped. The aqueous layer was extracted with EtOAc. The organic layer was dried using Na₂SO₄, filtered and evaporated. The crude was purified by preparative HPLC (Kromasil C8 10 μm, 250 mm x 50 mm column

with a flow of 100 mL/min) using a gradient of 40–60 % CH₃CN in H₂O/CH₃CN/formic acid (95:5:0.2) buffer over 30 min. Gave 1.08 g (88 %, 2.11 mmol) of the title compound as yellow solid. **AZ7** (100 mg, 0.20 mmol) was dissolved in a small amount of EtOAc by heating. Heptane was added (EtOAc/heptane, 3:1). The solution was left at room temperature, in open air. Gave 75 mg (75 %, 0.15 mmol) of the title compound as a crystalline yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 8.07 (s, 1H), 7.58 (s, 1H), 7.26–7.35 (m, 3H) overlaps with solvent peak, 7.15–7.25 (m, 3H), 5.11 (d, *J* = 9.5 Hz, 1H), 3.63–3.78 (m, 4H), 3.59 (s, 2H), 3.41–3.54 (m, 1H), 2.73 (t, *J* = 12.0 Hz, 2H), 1.70–1.85 (m, 2H), 1.52–1.67 (m, 11H). ¹³C NMR (126 MHz, CDCl₃) δ 175.4, 175.2, 169.2, 157.5, 141.0, 140.3, 139.9, 128.7, 127.9, 126.3, 123.5, 122.7, 95.9, 57.0, 47.9, 36.6, 33.4, 29.2, 27.6. HRMS (ESI) m/z: 511.2099 (calcd for C₂₇H₃₂ClN₄O₄ [M+H]⁺, 511.2107).

Synthesis of final compound AZ8 (Scheme S6)

N-Benzyl-3-phenylpropanamide (34). Hydrocinnamoyl chloride (8.81 mL, 59.30 mmol) was dissolved in dry DCM (100 mL) and cooled to 0 °C with an icebath. Benzylamine (12.94 mL, 0.12 mol) was added and the reaction was stirred at 0 °C for 2 h. The solvent was evaporated and the crude product was dissolved in EtOAc and washed with water (300 mL) and 1 % HCl (300 mL, aq.). The organic phase was dried (Na₂SO₄), filtered and concentrated. The crude product was purified with column chromatography on silica gel using heptane/EtOAc (80:20) as eluent. Gave 8.0 g (56 %, 33.43 mmol) of the title compound. ¹H NMR (500 MHz, CDCl₃) δ 7.14–7.35 (m, 10H), 5.66 (s, 1H), 4.42 (d, *J* = 5.6 Hz, 2H), 3.02 (t, *J* = 7.6 Hz, 2H), 2.54 (t, *J* = 7.6 Hz, 2H).

1,3-Dibenzyl-4-hydroxy-1H-pyrrole-2,5-dione (35). Compound **34** (3.72 g, 15.54 mmol) was dissolved in dry THF (50 mL). Diethyl oxalate (9.5 mL, 69.95 mmol) and KOtBu (7.85 g, 69.95 mmol) was added and the reaction was stirred at rt for 30 min. The reaction mixture was acidified with 2 M HCl to pH 3 and diluted with water. The water phase was extracted with

EtOAc (2 x 200 mL), the combined organic phases was dried (Na₂SO₄), filtered and evaporated. The crude product was purified with column chromatography on silica gel using heptane/EtOAc (90:10) as eluent. Gave 1.63 g (35 %, 5.56 mmol) of the title compound. ¹H NMR (400 MHz, (CD₃)₂SO) δ 12.38 (bs, 1H), 7.10–7.38 (m, 10H), 4.54 (s, 2H), 3.57 (s, 2H).

1,3-Dibenzyl-4-(4-phenylbutylamino)pyrrole-2,5-dione (AZ8). Compound 35 (0.5 g, 1.70 mmol), 4-phenylbutylamine (351 µl, 2.22 mmol) and 4-toluenesulfonic acid, monohydrate (32 mg, 0.17 mmol) was dissolved in toluene/DMF (4:1) and the reaction was run in the microwave oven at 120 °C for 20 min and then at 130 °C for 50 min. The solvents were evaporated and the crude was dissolved in EtOAc (200 mL). The organic phase was washed with 1 % HCl (aq) solution, dried (Na₂SO₄), filtered and evaporated. The crude was further purified by flash chromatography using a Biotage SP1 system. The compound was eluted with heptane/EtOAc (90:10). Gave 0.5 g (69 %, 1.18 mmol) of the titel compound. ¹H NMR (500 MHz, CDCl₃) δ 7.24–7.37 (m, 9H), 7.13–7.22 (m, 4H), 7.08–7.13 (m, 2H), 5.02–5.13 (m, 1H), 4.65 (s, 2H), 3.72 (s, 2H), 3.19–3.31 (m, 2H), 2.52 (t, *J* = 7.4 Hz, 2H), 1.50–1.57 (m, 2H), 1.42–1.50 (m, 2H). The multiplett at 1.42–1.50 overlaps with the water peak. ¹³C NMR (126 MHz, CDCl₃) δ 168.0, 143.0, 141.6, 140.5, 136.9, 128.7, 128.6, 128.4, 128.3, 127.9, 127.6, 126.3, 126.0, 43.7, 41.6, 35.3, 29.9, 28.2, 27.5. HRMS (ESI) m/z: 425.2229 (calcd for C₂₈H₂₉N₂O₂ [M+H]⁺, 425.2224).

Synthesis of final compound AZ9 (Scheme S7)

4-[2-[(4-Benzyl-1-tert-butyl-2,5-dioxo-pyrrol-3-yl)amino]ethyl]benzenesulfonamide (AZ9).

Compound **31** (0.66 g, 2.53 mmol), 4-(2-aminoethyl)benzensulfonamide (0.66 g, 3.29 mmol) and 4-toluenesulfonic acid monohydrate (48 mg, 0.25 mmol) was dissolved in a mixture of dry toluene/DMF (3:1, 15 mL). The reaction was run in the microwave oven at 130 °C for 40 min. Toluene was evaporated and the crude was dissolved in water (200 mL). The pH of the water phase was set to 2 using 1 % HCl (aq). The water phase was extracted with EtOAc (200 mL),

the organic phase was dried using Na₂SO₄, filtered and evaporated. The crude was further purified by flash chromatography on a Biotage system (Biotage SP4) using heptane/EtOAc 65:35 as eluent to give 0.69 g (61 %, 1.56 mmol) of the title compound as a crystalline solid. Mp: 142 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.83 (d, *J* = 8.3 Hz, 2H), 7.28–7.34 (m, 2H), 7.18–7.25 (m, 1H), 7.11–7.18 (m, 4H), 5.01–5.11 (m, 1H), 4.89 (s, 2H), 3.71 (s, 2H), 3.50 (q, *J* = 6.9 Hz, 2H), 2.79 (t, *J* = 7.0 Hz, 2H), 1.58 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 175.1, 169.0, 143.1, 141.8, 140.5, 140.3, 129.4, 128.8, 127.8, 126.9, 126.3, 96.9, 57.1, 44.2, 36.5, 29.1, 27.3. HRMS (ESI) m/z: 442.1806 (calcd for C₂₃H₂₈N₃O₄S [M+H]⁺, 442.1795).

References to synthesis of previously published compounds

Synthesis for previously published compounds are described in the following references.

BMS-852927

Kick, E. K. *et al.* Discovery of Highly Potent Liver X Receptor beta Agonists. *ACS Med Chem Lett* **7**, 1207-1212, doi:10.1021/acsmedchemlett.6b00234 (2016).

WAY-252623

Wrobel, J. *et al.* Indazole-based liver X receptor (LXR) modulators with maintained atherosclerotic lesion reduction activity but diminished stimulation of hepatic triglyceride synthesis. *J Med Chem* **51**, 7161-7168, doi:10.1021/jm800799q (2008).

WAY-254011

Hu, B. *et al.* Discovery of phenyl acetic acid substituted quinolines as novel liver X receptor agonists for the treatment of atherosclerosis. *J Med Chem* **49**, 6151-6154, doi:10.1021/jm0609566 (2006).

GW-3965

Collins, J. L. *et al.* Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines. *J Med Chem* **45**, 1963-1966 (2002).

Т 0901317

Li, L. *et al.* Preparation of bis(trifluoromethyl)hydroxymethylbenzenesulfonamides, -ureas, and -carbamates as liver X receptor modulators. WO2000054759A2 (2000).

F1

Lebreton, L., Dumas, C., Massardier, C. & Bondoux, M. New sulfonylindoline derivative LXR receptor modulators, their preparation, and their therapeutic use. FR2886293A1 (2006).

AZ876

Bostroem, J. *et al.* Preparation of non-anilinic isothiazol-3(2H)-one 1,1-dioxide derivatives for use as Liver X Receptor modulators. WO2006073363A1 (2006).