Engineering dual-glycan responsive expression systems for tunable production of heterologous proteins in *Bacteroides thetaiotaomicron*

Darryl R. Jones^{1¶}, Marshall B. Smith^{1,2¶}, Richard McLean¹, Julie M. Grondin¹, Carolyn R. Amundsen¹, G. Douglas Inglis^{1,2}, L. Brent Selinger², and D. Wade Abbott^{1,2*}

¹Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada, T1J 4B1

²Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada, T1K 3M4

Figure S1: Comparison of NanoLuc activity from two different genomic loci. pINT integrates NanoLuc into the vacant PUL75 locus. pNBU2 integrates NanoLuc, and the entire pNBU2 plasmid, into a tRNA^{ser} locus. To demonstrate that genomic locus did not affect transgene expression, each recombinant pINT strain was compared to its pNBU2 counterpart. (a) NanoLuc activity under control of the P_{ON} promoter when induced by GLC (black), DX (blue), or AG (yellow). (b) NanoLuc activity under control of the P_{DX} promoter on varying concentrations of GLC and DX. (c) NanoLuc activity under control of the P_{DX} promoter in modified SusR^{DX} strains on GLC (black), DX (blue), or AG (yellow) or mixed DX and AG (green). (e) NanoLuc activity under control of the P_{AG} promoter in modified SusR^{DX} and AG (green). (f) NanoLuc activity under control of either P_{DX} or P_{AG} in strains with modified SusR^{DX} and HTCS^{AG} on GLC (black), DX (blue), or AG (yellow) or mixed DX and AG (green). Significant differences are indicated with brackets. Lack of brackets indicates no significant difference. 32/48 (67%) of comparisons between the two loci do not result in statistically significant difference. Asterisks represent level of significance (*= p < 0.05, **= p < 0.01, ***= p < 0.001).

Figure S2: Schematic regulatory maps of strains engineered in this study. Promoters (colored arrows) are placed upstream of open reading frames (pointed rectangles) on the genome. Blue arrow = dextran responsive (bt3091), yellow arrow = arabinogalactan responsive (bt0268). Regulatory proteins (rounded boxes) are induced by carbohydrates and effect downstream expression of reporter proteins.

