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Supplementary Figure 1 Recombination hotspots coincide with genomic islands (GI). Panels 

(top to bottom) represent recombination detected in 5 monophyletic groups with columns 

highlighting recombination pattern in chromosome I (left) and II (right). Number of 

recombination events observed at each site were plotted on the vertical axis, revealing 

recombination hotpots. Shaded in purple are GIs previously characterized in K96243 strains, 

many of which coincide with recombination hotpots. Recombination events per mutation (r/m) 

across investigated groups were quantified by median of r/m on each branch.  
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Supplementary Figure 2 Recipients and donors of recombination. (a) summarises number of 

recent recombination events (defined as recombination fragments detected at the tip of the 

phylogeny and limited to a single isolate) in the studied groups. Red and blue boxplots highlight 

the distribution of recent recombination in clinical and environmental isolates, respectively.  

(b) and (c) characterise blocks of recombination fragments detected from clinical and 

environmental recipients, respectively. Histograms in (b) and (c) show distribution of length 

of recipient blocks. Shaded in white are all recipient blocks used as queries for blast searches. 

In grey are recipient blocks where identical hits were detected from the rest of the population. 

(d) and (e) summarises the distribution of donating probability of isolates for clinical and 

environmental recipients, respectively. The probability is grouped by origin of donors – clinical 

isolate donors (red) and environmental isolate donors (blue). Two-sided Mann-Whitney U test 

was used to compare the preference in each recipient-donor category. 
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Supplementary Figure 3 Epidemiological analyses of clinical and all environmental isolates 

collected from each patient and his or her household. a) present 6 cases of melioidosis where 

both clinical and environmental isolates were clustered in the same monophyletic group. The 

pairwise SNP distance of two clinical isolates cultured from the same patient was plotted as a 

threshold (10 SNPs). Signals from recombination were removed from the analysis. (b) 

Boxplots compare the pairwise SNP distance between clinical and environmental isolates 

cultured from the same household (grey); and randomly paired clinical and environmental 

isolates from elsewhere (white). Two-sided Mann-Whitney U test was used to compare the 

genetic distance within household sampling vs randomly paired samples 
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Supplementary Figure 4 Tests for true and randomized signals (a) Measurement of 

phylogenetic signals correlated with bacterial clinical and environmental origins. Each panel 

summarises a distribution of Pagel’s obtained from data with true bacterial origin (purple) vs 

100 permuted data with randomised bacterial origins (grey). The plots represent results from 

individual monophyletic groups. Log-likelihood (y-axis) was used to estimate the fitness of 

source following tree transformation by Pagel’s λ (x-axis). A multiplication to internal 

branches with λ = 0 created a basal tree, while a multiplication with λ = 1 kept the tree 

unchanged. (b) Randomisation were performed for both discovery (top) and validation 

(bottom) datasets to determine an empirical p-value cut-off for the analyses. Histograms 

display scores generated from randomized associations. For each tested gene, 100 permutations 

with true genotypes but randomized source of isolate (clinical or environmental) was 

performed. P-values from true associations were plotted as vertical lines. Candidate genes from 

discovery and validation dataset that achieved significant association at p-value < 0.01 with 

Benjamini-Hochberg correction were also significant at an empirical p-value < 0.01 (purple 

lines).  
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Supplementary Figure 5 The genetic architecture of toxin-complexes, dominant hits 

comprising toxin genes that have been characterised previously in other bacterial species and 

transposable elements. Gene order was obtained from reference and newly assembled genomes 

from the discovery cohort. Integrase/transposases spanning the complexes were highlighted in 

grey. Architecture of protein domains in tcdB1, tcdB2, tccC3, tcdA4 and Salmonella virulence 

plasmid A protein gene were also annotated. 
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Supplementary Figure 6 Architecture of protein domains of the filamentous hemagglutinin 

(BPSS2053), and the truncated form associated with the environmental isolates. A maximum 

likelihood phylogenetic tree (left) was constructed from 49 fhaB alleles found in the discovery 

dataset rooted on fhaB from an Australian outgroup (Bp668). Protein domains (right) were 

annotated onto each allele, highlighting the truncated form of filamentous hemagglutinin. The 

diagram also highlights loss of toxin deaminase, and gain of Colicin E5 ribonuclease domain 

at the C-terminus, respectively. The latter was present at an elevated frequency in clinical 

versus environmental isolates. 


