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Supplementary Figure 1 Recombination hotspots coincide with genomic islands (GI). Panels
(top to bottom) represent recombination detected in 5 monophyletic groups with columns
highlighting recombination pattern in chromosome I (left) and II (right). Number of
recombination events observed at each site were plotted on the vertical axis, revealing
recombination hotpots. Shaded in purple are GIs previously characterized in K96243 strains,
many of which coincide with recombination hotpots. Recombination events per mutation (r/m)

across investigated groups were quantified by median of r/m on each branch.



Supplementary Figure 2

a Number of recent recombination events detected at tips of each monophyletic group
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Supplementary Figure 2 Recipients and donors of recombination. (a) summarises number of
recent recombination events (defined as recombination fragments detected at the tip of the
phylogeny and limited to a single isolate) in the studied groups. Red and blue boxplots highlight
the distribution of recent recombination in clinical and environmental isolates, respectively.
(b) and (c) characterise blocks of recombination fragments detected from clinical and
environmental recipients, respectively. Histograms in (b) and (¢) show distribution of length
of recipient blocks. Shaded in white are all recipient blocks used as queries for blast searches.
In grey are recipient blocks where identical hits were detected from the rest of the population.
(d) and (e) summarises the distribution of donating probability of isolates for clinical and
environmental recipients, respectively. The probability is grouped by origin of donors — clinical
isolate donors (red) and environmental isolate donors (blue). Two-sided Mann-Whitney U test

was used to compare the preference in each recipient-donor category.



Supplementary Figure 3
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Supplementary Figure 3 Epidemiological analyses of clinical and all environmental isolates
collected from each patient and his or her household. a) present 6 cases of melioidosis where
both clinical and environmental isolates were clustered in the same monophyletic group. The
pairwise SNP distance of two clinical isolates cultured from the same patient was plotted as a
threshold (10 SNPs). Signals from recombination were removed from the analysis. (b)
Boxplots compare the pairwise SNP distance between clinical and environmental isolates
cultured from the same household (grey); and randomly paired clinical and environmental
isolates from elsewhere (white). Two-sided Mann-Whitney U test was used to compare the

genetic distance within household sampling vs randomly paired samples
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Supplementary Figure 4 Tests for true and randomized signals (a) Measurement of
phylogenetic signals correlated with bacterial clinical and environmental origins. Each panel
summarises a distribution of Pagel’s obtained from data with true bacterial origin (purple) vs
100 permuted data with randomised bacterial origins (grey). The plots represent results from
individual monophyletic groups. Log-likelihood (y-axis) was used to estimate the fitness of
source following tree transformation by Pagel’s A (x-axis). A multiplication to internal
branches with A = 0 created a basal tree, while a multiplication with A = 1 kept the tree
unchanged. (b) Randomisation were performed for both discovery (top) and validation
(bottom) datasets to determine an empirical p-value cut-off for the analyses. Histograms
display scores generated from randomized associations. For each tested gene, 100 permutations
with true genotypes but randomized source of isolate (clinical or environmental) was
performed. P-values from true associations were plotted as vertical lines. Candidate genes from
discovery and validation dataset that achieved significant association at p-value < 0.01 with
Benjamini-Hochberg correction were also significant at an empirical p-value < 0.01 (purple

lines).



Supplementary Figure 5
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Supplementary Figure 5 The genetic architecture of toxin-complexes, dominant hits
comprising toxin genes that have been characterised previously in other bacterial species and
transposable elements. Gene order was obtained from reference and newly assembled genomes
from the discovery cohort. Integrase/transposases spanning the complexes were highlighted in
grey. Architecture of protein domains in tcdB1, tcdB2, tccC3, tcdA4 and Salmonella virulence

plasmid A protein gene were also annotated.
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Supplementary Figure 6 Architecture of protein domains of the filamentous hemagglutinin
(BPSS2053), and the truncated form associated with the environmental isolates. A maximum
likelihood phylogenetic tree (left) was constructed from 49 fhaB alleles found in the discovery
dataset rooted on fhaB from an Australian outgroup (Bp668). Protein domains (right) were
annotated onto each allele, highlighting the truncated form of filamentous hemagglutinin. The
diagram also highlights loss of toxin deaminase, and gain of Colicin E5 ribonuclease domain
at the C-terminus, respectively. The latter was present at an elevated frequency in clinical

versus environmental isolates.



