
Supplementary Information for
Message passing on networks with loops
George T. Cantwell and M. E. J. Newman

This PDF file includes:
Supplementary text
References for SI reference citations

George T. Cantwell and M. E. J. Newman 1 of 5

www.pnas.org/cgi/doi/10.1073/pnas.1914893116



Supporting Information Text

Derivation of the message passing equations
Below we provide some additional details of the derivation of the fundamental message passing equations, Eqs. (4)
and (19) in the paper.

Percolation. The derivation of Eq. (4) in the paper follows similar lines to that of Eq. (3). By analogy with Eq. (2)
we can write a generating function for πi←j(s|Γj\i) thus:

Hi←j(z|Γj\i) =
∑
s

πi←j(s|Γj\i) zs =
∑
s

zs

{ ∑
{sk:k∈Γj\i}

[ ∏
k∈Γj\i

πj←k(sk)
]
δ(s− 1,

∑
k∈Γj\i

sk)
}

= z
∏

k∈Γj\i

∑
sk

zskπj←k(sk) = z
∏

k∈Γj\i

Hj←k(z) = z
∏

j∈N(r)
j\i

[Hj←k(z)]wj\i,k , [A.1]

where in the last line we have introduced the random variable wj\i,k which takes the value 1 if k ∈ Γj\i and 0
otherwise. In other words, wj\i,k = 1 if there is a path of occupied edges from j to k in N

(r)
j\i . To compute the

generating function for πi←j(s) we simply average Eq. (A.1) over the possible realizations of Γj\i, which leads to the
message passing equations

Hi←j(z) =
∑
s

πi←j(s) zs =
〈∑

s

πi←j(s|Γj\i) zs
〉

Γj\i

= z
〈 ∏
k∈N(r)

j\i

Hj←k(z)wj\i,k

〉
Γj\i

= zGi←j
(
Hj←(z)

)
, [A.2]

as stated in the paper.

Spectrum. The derivation of the message passing equations for matrix spectra is more complex than for percolation
and is given only in abbreviated form in the paper. Here we give the full derivation including intermediate algebraic
steps.

As described in the paper, the spectral density of a symmetric matrix A is given by

ρ(z) = − 1
nπz

∞∑
s=0

n∑
i=1

Xs
i

zs
, [A.3]

where Xs
i is the sum of the weights of all closed walks of length s that start and end at node i. This sum can be

expressed in terms of the sum Y si of the weights of all excursions of length s by Eq. (10) in the paper, which we
repeat here for convenience:

Xs
i =

∞∑
m=0

[ ∞∑
s1=1
· · ·

∞∑
sm=1

δ
(
s,
∑m
u=1su

) m∏
u=1

Y su
i

]
. [A.4]

Substituting this expression into Eq. (A.3) we get

ρ(z) = − 1
nπz

n∑
i=1

∞∑
m=0

m∏
u=1

[ ∞∑
s=1

Y si
zs

]
, [A.5]

and, defining the function

Hi(z) =
∞∑
s=1

Y si
zs−1 , [A.6]

we find that

ρ(z) = − 1
nπz

n∑
i=1

∞∑
m=0

[
Hi(z)
z

]m
= − 1

nπ

n∑
i=1

1
z −Hi(z)

, [A.7]

as stated in the paper.

2 of 5 George T. Cantwell and M. E. J. Newman



The function Hi(z) we calculate from Eq. (15), which tells us that

Hi(z) =
∞∑
l=0

1
zl

∑
w∈W l

i

|w|
∏
j∈w

∞∑
m=0

m∏
k=1

∞∑
s=1

Y si←j
zs

=
∑
w∈Wi

|w|
∏
j∈w

1
z −Hi←j(z)

, [A.8]

where Wi is the set of excursions of all lengths in the neighborhood of i, |w| is the weight of excursion w (i.e., the
product of the matrix elements along the excursion), and

Hi←j(z) =
∞∑
s=1

Y si←j
zs−1 . [A.9]

By an equivalent line of argument we can also show that

Hi←j(z) =
∑

w∈Wj\i

|w|
∏
k∈w

1
z −Hj←k(z) . [A.10]

This last expression defines the message passing equations for the spectral density calculation. For any given value
of z they can be iterated to calculate the spectral density via Eqs. (A.7) and (A.8).

As discussed in the paper, the efficiency of this approach relies crucially on being able to perform the sum over
excursions w from node j efficiently, which we do as follows. If excursion w returns to j after just a single step (via a
self-loop) then it has weight |w| = Ajj . Otherwise, if it takes two or more steps for a total of l + 1 steps, visiting l
(not necessarily distinct) nodes k1, k2, . . . , kl along the way (other than the starting node), then the weight is

|w| = Aj,k1

(
l−1∏
m=1

Akm,km+1

)
Akl,j . [A.11]

Inserting these values into Eq. (A.10) we get

Hi←j(z) = Ajj +
∞∑
l=1

∑
w∈W l

j\i

Aj,k1

z −Hj←k1(z)

(
l−1∏
m=1

Akm,km+1

z −Hj←km+1

)
Akl,j [A.12]

where W l
j\i is the set of all excursions of length l + 1 in Nj\i. The sum over excursions is equivalent to a sum over all

possible sets of l nodes k1 . . . kl within the neighborhood, so we can write

Hi←j(z) = Ajj +
∞∑
l=1

∑
k1

· · ·
∑
kl

Aj,k1

z −Hj←k1(z)

(
l−1∏
m=1

Akm,km+1

z −Hj←km+1

)
Akl,j . [A.13]

Defining vi←j to be the vector with elements vi←j,k = Ajk if nodes j and k are directly connected in N (r)
j\i and 0

otherwise, Ai←j to be the matrix for the neighborhood of j with the neighborhood of i removed, such that

Ai←jkl =
{
Akl for k, l 6= j and edge (k, l) ∈ N (r)

j\i ,

0 otherwise,
[A.14]

and Di←j(z) to be the diagonal matrix with entries Di←j
kk = z −Hj←k(z), we then have

Hi←j(z) = Ajj +
∞∑
l=1

∑
k1

∑
kl

vi←j,k1

(
Di←j
k1,k1

)−1 [
Ai←j(Di←j)−1

]l−1

k1,kl

vi←j,kl

= Ajj +
[(

Di←j)−1 vi←j
]T [I−Ai←j(Di←j)−1]−1vi←j

= Ajj + vTi←j
(
Di←j −Ai←j)−1 vi←j , [A.15]

as stated in the paper.

George T. Cantwell and M. E. J. Newman 3 of 5



Monte Carlo algorithm for Gi(y)
In the message passing equations for bond percolation, Eqs. (3) and (4) in the paper, the quantity Gi(y) is a generating
function encoding the probability that we can reach nodes in the neighborhood N (r)

i of a given node i by following
occupied edges. It is defined by

Gi(y) =
〈 ∏
j∈N(r)

i

y
wij

j

〉
Γi

, [B.1]

where wij is a binary (zero/one) random variable indicating whether node j is reachable from node i and the average
is performed over all possible sets Γi of reachable nodes, each weighted by the sum of the probabilities of all edge
configurations that can give rise to that particular set. The number of such configurations can become large as the size
of the neighborhood grows, making exhaustive averages difficult to perform numerically. For larger neighborhoods,
therefore, we employ a Monte Carlo averaging scheme as follows.

Suppose that node i has degree ki and that there are ki +M edges in the neighborhood N (r)
i , with ki of them

directly connected to i and M additional edges that complete cycles between i’s neighbors. For locally tree-like
networks there are no cycles and M = 0, but in general M ≥ 0. Let Gi(y|m) be the value of Gi(y) when exactly
m of the M additional edges are occupied, which happens with probability

(
M
m

)
pm(1− p)M−m. Then we can write

Gi(y) itself in the form

Gi(y) =
M∑
m=0

Gi(y|m)
(
M

m

)
pm(1− p)M−m. [B.2]

Our algorithm works by making a Monte Carlo estimate of Gi(y|m) using a version of the algorithm of Newman
and Ziff (1) and then applying Eq. (B.2). The basic idea is to occupy edges one by one and keep track of the connected
percolation clusters using an efficient union-find data structure based on pointers (1). Using this data structure the
algorithm is able to determine whether two nodes belong to the same cluster, or to join two clusters together, in (very
nearly) constant time. To compute Gi(y|m) itself, the algorithm maintains a record of two quantities for each cluster,
a real value x and a probability q. In detail the algorithm works as follows.

The clusters we consider are the sets of nodes in the neighborhood, other than i, that are connected via occupied
edges in Ni(r) but not via node i itself, i.e., via the M additional edges mentioned above. Initially none of the M
edges is occupied and each node is a cluster in its own right. For each of these one-node clusters j we assign xj = yj
and we set qj = 1− p if node j is a direct neighbor of i or qj = 1 otherwise. We also compute the quantity

u0 =
∏
j

(qj + (1− qj)xj) . [B.3]

Now we occupy the M edges one by one in random order. Let j1 and j2 be the nodes at the ends of the mth edge
occupied. If j1 and j2 are already part of the same cluster before the edge is added (which, as we have said, we can
determine in time O(1)), then we set

um ← um−1. [B.4]
Otherwise, if j1 and j2 are in different clusters r and s, then the addition of the mth edge joins r and s together
(which again we can achieve in O(1) time) to make a larger cluster which, without loss of generality, we will label r.
At the same time we set

um ←
um−1

[qr + (1− qr)xr][qs + (1− qs)xs]
, [B.5]

xr ← xrxs, [B.6]
qr ← qrqs, [B.7]
um ← um

[
qr + (1− qr)xr

]
. [B.8]

After all M edges have been occupied, the M + 1 quantities um with m = 0 . . .M give us an estimate of Gi(y|m),
and Gi(y) can be calculated from Eq. (B.2) as

Gi(y) '
∞∑
m=0

um

(
M

m

)
pm(1− p)M−m. [B.9]

The calculation of Gi←j(y) is identical except for the replacement of the neighborhood by N (r)
j\i . Finally, we average

the results over repeated runs of the algorithm to get our estimate of the generating functions. We find surprisingly

4 of 5 George T. Cantwell and M. E. J. Newman



good results with averages over a relatively small number of runs—we used just eight runs for each neighborhood to
generate the results shown in Fig. (2).

Note that the sequence of edges added and cluster joins performed does not depend on the values of either y or p,
which means we can use the same sequence to calculate Gi(y) for many different y and p. We can also use the same
sequence on successive iterations of the message passing process, which has the benefit of removing any statistical
fluctuations between iterations and is useful when estimating convergence of the message passing process, which can
otherwise be difficult to do.

As is often the case for Monte Carlo calculations, it is not easy to say exactly how many runs will be required to
get good results. Note, however, that if we perform S runs for each neighborhood then, because neighborhoods are
sampled independently, we effectively generate Sn configurations of the whole network, and this number can become
very large for large n even when S is small. Thus we expect to get good answers even with quite modest values of S,
and indeed this is what we see in the calculations reported in the paper.

Other applications
An important application of message passing algorithms within physics is for the calculation of partition functions.
Consider for example a spin model such as the Ising model on a network. On a tree one can show that the probability
of any given spin state σ factorizes exactly according to

P (σ) =
∏

(i,j) P (σi, σj)∏
i P (σi)ki−1 , [C.1]

where P (σi) is the marginal distribution for the spin on node i and P (σi, σj) is the joint marginal distribution for
the spins on nodes i and j. The product in the numerator is over edges (i, j) in the network and ki is the degree of
node i. For the Ising model one can write

P (σi) = 1
Zi
e−βhiσi , P (σi, σj) = 1

Zij
e−β(σiσj+hjiσi+hijσj), [C.2]

where hi and hij are effective fields felt by the spins, which can be calculated using a message passing method (2),
and the normalizing constants Zi and Zij can be computed by enforcing

∑
σi
P (σi) = 1 and

∑
σi,σj

P (σi, σj) = 1 .
Once we know Zi and Zij we can calculate the complete partition function Z from Eq. (C.1), which gives

lnZ =
∑
i

(ki − 1) lnZi −
∑
(i,j)

lnZij . [C.3]

This equation is exact only if the network is a tree. When applied to non-trees it is known as the Bethe approximation.
An analogous computation can be performed for networks containing short loops using the concepts we have

developed. In that case the distribution over spin states would be factorized over neighborhoods,

P (σ) =
∏

(i,j) P ({σk|k ∈ Ni ∪Nj})∏
i P ({σk|k ∈ Ni})|Ni|−1 , [C.4]

where now the product in the numerator is over all pairs of nodes (i, j) that are in each other’s neighborhoods and
|Ni| is the number of nodes in Ni, not including i itself. The equivalent of the Bethe approximation, Eq. (C.3), is then

lnZ =
∑
i

(|Ni| − 1) lnZi − 1
2

∑
i

∑
j∈Ni

lnZij . [C.5]

We leave the thorough exploration of this approximation for future work.

References
1. M. E. J. Newman and R. M. Ziff, Efficient Monte Carlo algorithm and high-precision results for percolation. Phys.

Rev. Lett. 85, 4104–4107 (2000).
2. M. Mézard and G. Parisi, The Bethe lattice spin glass revisited. Eur. Phys. J. B 20, 217–233 (2001).

George T. Cantwell and M. E. J. Newman 5 of 5


	Derivation of the message passing equations
	Monte Carlo algorithm for Gi(y)
	Other applications

