
Supplementary Information

Evidence that cyanobacterial Sll1217 functions analogously to PGRL1 in enhancing PGR5-dependent cyclic electron flow

Dann & Leister Nature Communications, 2019

Supplementary Figure 1 PGR5 protein alignment and positions of mutation in atPGR5. The sequence of the mature atPGR5 protein¹ was aligned with synPGR5 (Ssr2016) using MUSCLE². Identical/similar amino acids are highlighted by black/grey shading. The positions of published non-synonymous mutations in atPGR5 are annotated relative to start codon in the precursor protein with cTP. The homology between the two proteins is 45%/56% identity/similarity at the amino acid level; it increases to 65%/80% when only the region from aa 69 to aa 133 of atPGR5 is considered.

Supplementary Figure 2 Determination of $t_{0.5}P700_{ox}$ for representative *Synechocystis* strains. Dark-incubated cultures (normalized to equal OD_{730 nm} values) were subjected to 3 s of dark/measuring light illumination to determine P700⁺ baseline absorbance, followed by 60 s of FR illumination to induce P700 oxidation and reach steady-state oxidation levels. Baseline absorbance was set to 0, while absorbance maxima were set to 1, respectively. For each measurement, the rate constant for maximum P700 oxidation was determined as the time point ($t_{0.5}P700_{ox}$) at which the baseline corrected/normalized oxidation curves exceeded 0.5 for the first time. Mean values of $t_{0.5}P700_{ox}$ and standard deviations thereof were determined for all genotypes and employed as a proxy for CEF activity (see text).

```
a
```

```
>sll0622 quinolinate synthetase
Length = 318
Score = 28.1 bits (61), Expect = 0.65, Method: Compositional matrix adjust.
Identities = 12/38 (31%), Positives = 20/38 (52%)
Query: 123 KEELMWEGSSVVMLSSDEQRFLEASMAYVSGNPILNDE 160
+E ++W+GS +V + E+R LE Y I + E
Sbjct: 173 REMVLWQGSCIVHETFSERRLLELKTQYPQAEIIAHPE 210
```

b

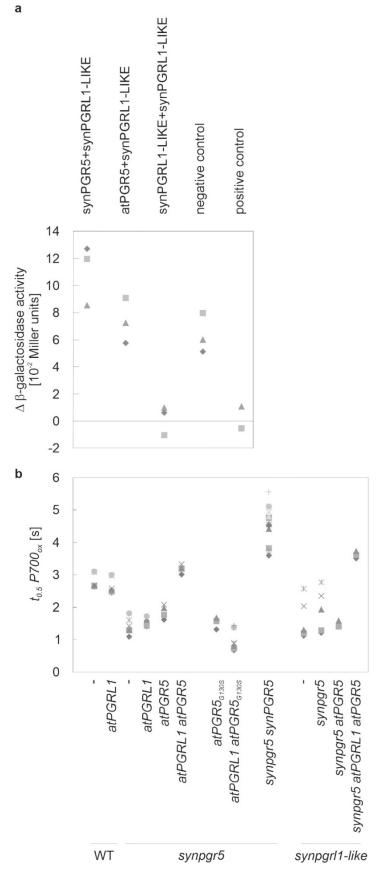
```
>sll1217 unknown protein
Length = 225
Score = 25.8 bits (55), Expect = 1.1, Method: Compositional matrix adjust.
Identities = 13/41 (31%), Positives = 23/41 (56%), Gaps = 1/41 (2%)
Query: 16 SNVLPYCSI-NKAEKKTIGEMEQEFLQALQSFYYDGKAIMS 55
+N +PY NKA + E + F++ L F++ GK I++
Sbjct: 103 TNTVPYKPPENKAYSVKVKERFRPFVEQLLVFHWQGKQIIT 143
```

С

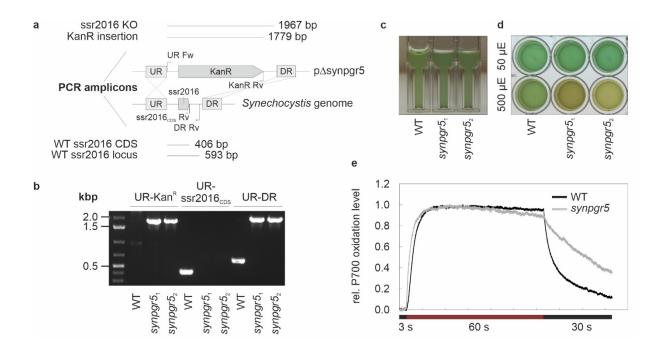
synNADA 1	MFTAVAPPQETLPRDLVGATQSLKKBLNAVILAHYYQEAAIQDIADY-
atPGRL1A 61	ATTEQSGPVGGDNVDSNVLPYCSINKAEKKTIGEMEQBFLQALQSFYYDGKAIMSNEEFD
atPGRL1B 50	ASTDQSGQVGGEEVDSKILPYCSINKNEKRTIGEMEQBFLQAMQSF <mark>YY</mark> EGK <mark>AI</mark> MSNEEFD
synNADA 48	-LGDSLGLSQQAASTDADVIVFAGVHFMAETAKILNPHKLVLLPDLEAGCSIADS
atPGRL1A 122	NLKEELMWEGSSVVMLSSDEQRFLEASMAYVSGNPILNDEEYDKLKLKLKIDGSDIVSEG
atPGRL1B 111	NLKEELMWEGSSVVMLSSDEQRFLEASMAYVSGNPILSDEEYDKLKMKLKMDGSEIVCEG
synNADA 102	CPPREFAEFKQRHPDHLVISYINCTAEIKALSDIICTSSNAVKIVQQLPPDQKII
atPGRL1A 182	PRCSLRSKKVYSDLAVDYFKMLLINVPATVVALGLFFFLDDITGFEITYIMELPEPYSFI
atPGRL1B 171	PRCSLRSKKVYSDLAIDYFKMFLINVPATVVALGLFFFLDDITGFEITYLLELPEPFSFI
synNADA 157	FAPDRNLGRYVMEQTGREMVLWQCSC <mark>IV</mark> HETFSERRLLELKTQYPQAEIIAHPECEKA
atPGRL1A 242	FTIKDFLILKGP-CPNC
atPGRL1B 231	FTLKDFLILKGP-CPNC
synNADA 215	ILRHADFIGSTTALLNYSGKSQGKEFIVGTEPGIIHQMEKLSPSKQFIPIPNNSNCD
atPGRL1A 277	GTENTSFFGTILSISSGGKTNTVK
atPGRL1B 266	GTENVSFFGTILSIPNDSNTNNVK
synNADA 272	CNECPYMRLNTLEKLYWAMQRRSPE <mark>ITLPE</mark> ATMAAALKPIQRMLAMS
atPGRL1A 301	CTNCGTAMVYDSGSRL <mark>ITLPE</mark> CSQA
atPGRL1B 290	CSGCGTEMVYDSGSRL <mark>ITLPE</mark> CGKA

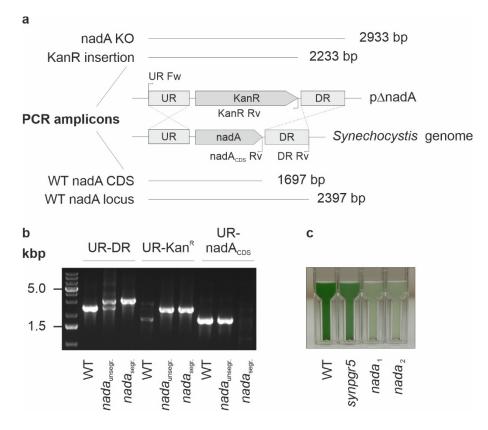
-

d

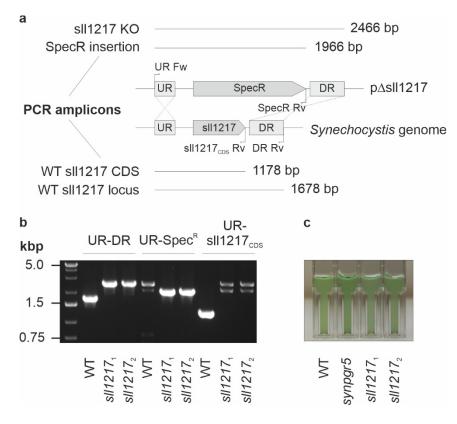

Sll1217	1	-MSELQTLIRTIRQEAEREPF-PLDSPIYEQACKDALDPILFGC
atPGRL1A	61	ATTEQSGPVGGDNVDSNVLPYCSINKAEKKTICEMEQEFLQALQSFYYDCKAIMSNEEFD
atPGRL1B	50	ASTDQSGQVGGEEVDSKILPYCSINKNEKRTICEMEQEFLQAMQSFYYECKAIMSNEEFD
Sll1217	43	NLGSQLCFFGRDLGADEVRQGQPLIGAAGRLVRKGFFEAWQGRVPRGQDDLQTV <mark>C</mark>
atPGRL1A	121	NLKEELMWEGSSVVMLSSDEQRFLEASMAYVSCNPILNDEEYDKLKLKLDGSDIVSEG
atPGRL1B	110	NLKEELMWEGSSVVMLSSDEQRFLEASMAYVSCNPILSDEEYDKLKMKLKMDGSEIVCEG
Sll1217	98	QRILLTNTVPYKPPENKAYSVKVKERFRPFVEQLLVFHWQGKQIITLGTEAFK
atPGRL1A	181	PRCSLRSKKVYSDLAVDYFKMLLLNVPATVVALGLFFFLDDITGFEITYIMELPEPYSFI
atPGRL1B	170	PRCSLRSKKVYSDLAIDYFKMFLLNVPATVVALGLFFFLDDITGFEITYLLELPEPFSFI
Sll1217	151	WFAPYAPKGQLDEFFQGGDRYE <mark>C</mark> SLDVLIKAKTAAGKCSQKIVRLMPLPH
atPGRL1A	241	FTWFAAVPVIVYLALSITKLIIKDFLILKGPCPNCGTENTSFFGTILSISS
atPGRL1B	230	FTWFAAVPAIVYLALSLTKLILKDFLILKGPCPNCGTENVSFFGTILSIPN
Sll1217	201	PSPLNKRYYGQFPTMLQRRLTETAF
atPGRL1A	292	GGKTNTVKCTNCGTAMVYDSGSRLITLPEGSQA
atPGRL1B	281	DSNTNNVKCSGCGTEMVYDSGSRLITLPEGGKA

Supplementary Figure 3 Short stretches of Sll0622/synNadA and Sll1217/synPGRL1-LIKE share limited sequence similarity with PGRL1.

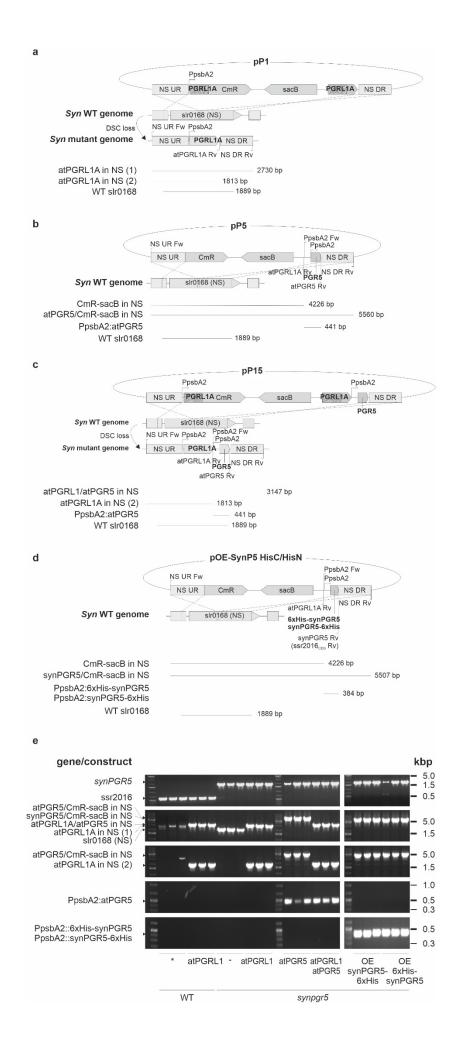

a, b Original CyanoBase³ pblast hits for synNadA and Sll1217/synPGRL1-LIKE were obtained using either the complete sequence of the mature atPGRL1A protein or its N-terminal region (between cTP and first TM region) only. **c, d** Alignments of full-length Sll0622 and Sll1217 and mature PGRL1 proteins from *Arabidopsis thaliana* (without cTPs) generated using MUSCLE². The Sll0622 protein shares 13.8%/ 26.8% and 15.0%/27.7% identity/similarity at the amino-acid level with atPGRL1A and atPGRL1B, respectively. The Sll1217 protein shares 13%/29% and 14%/28% identity/similarity at the amino-acid level with atPGRL1A and atPGRL1A protein residues in PGRL1 proteins⁴ are highlighted in green, the three cysteine residues present in Sll1217 are highlighted in cyan.


Supplementary Figure 4 The synNadA protein is not a functional PGRL1 analogue. a The synPGR5 and synNadA proteins do not physically interact. Bacterial two-hybrid analyses were performed as described in Fig. 3a. b Lack of synNadA does not affect CEF, as determined by P700 oxidation measurements. Data are provided as averages with standard deviations (left) and dot plots (right). Sample sizes n were 3 for B2H assays (a) and 5/3/5 for to.5P700ox of WT, synpgr5 and synnada (b).

Supplementary Figure 5 Dot plots for the data shown in Fig. 3a (a) and Fig. 3c (b).



Supplementary Figure 6 Generation of an ssr2016 knockout mutant (*synpgr5*). **a,b** Genomic replacement of the ssr2016 ORF by a KanR cassette and full segregation were confirmed by PCR. Genotyping primer binding sites and 5'-3' orientation are indicated by labeled arrows; expected amplicon origins and sizes are indicated. Under low (**c**; 30 μ E) to ambient light (**d**; 50 μ E) no obvious deviation from WT cells was observed. However, enhanced susceptibility to high light intensities (**d**; 500 μ E) and accelerated P700 oxidation/delayed P700 re-reduction upon on-/offset of FR light was observed (**e**), confirming the findings of former studies conferred with a gene interruption mutant of ssr2016 (SM2016)⁵. P700 oxidation curves (**e**) represent averages over all measurements of the respective genotypes represented in Fig. 1c.


Supplementary Figure 7 Generation and initial phenotypical assessment of a *nada* knockout mutant.

a The genomic ORF encoding NadA (sll0622) was replaced with a KanR cassette by homologous recombination. **b** Segregation of the *nada* mutation was confirmed by PCR. Genotyping primer binding sites and 5'-3' orientation are indicated by labeled arrows; expected amplicon origins and sizes are indicated. **c** Under low light (30 μ E) obvious deviation from WT and *synpgr5* cells was observed in terms of pronounced paleness of *nada* cultures.

Supplementary Figure 8 Generation and initial phenotypical assessment of an *sll1217*-knockout mutant.

a The genomic ORF sll1217 was replaced with a SpecR cassette by homologous recombination. **b** Segregation of the *sll1217* mutation was confirmed by PCR. Genotyping primer binding sites and 5'-3' orientation are indicated by labeled arrows; expected amplicon origins and sizes are indicated. **c** Under low light (30 μ E) no obvious deviation from WT and *synpgr5* cells was observed.

Supplementary Figure 9 Generation of atPGR gene expression strains in *Synechocystis*. **a-d** Expression constructs were introduced into a genomic neutral site, ORF slr0168, by homologous recombination using a non-replicative vector as shuttle. When appropriate, chloramphenicol resistance (CmR) – sacB double selection cassettes were removed by negative selection on 5 % (w/v) sucrose agar as described earlier⁶. Redundant PGRL1A gene sequences for intrachromosomal recombination are displayed in grained grey. Genotyping primer binding sites and 5'-3' orientation are indicated by labeled arrows; expected amplicon origins and sizes are indicated. **e** Genotyping PCR of three independent transformants each confirmed *synpgr5* genetic background, as well as transgene cassette presence and segregation status. Note that the WT control does not display an slr0168 amplicon of the expected size (2183 bp) because of complete deletion of the slr0168 CDS by replacement with a KanR selection cassette.

Supplementary Table 1 Primers used in this study.

Primer	genotyping short name	Supplementary Figure (Sup Fig.)	Sequence (5'-3')
backbone_fwd			ACCTGGGCCCACTGCATCC
backbone_rev			GCTTACCTGTTTAAACTATCAGTG
ssr2016_UR_fwd	UR Fw	Sup Fig. 6	gatagtttaaacaggtaagcCCGGGTAATCCGGGTGGC
ssr2016_UR_rev			gggcgaacatggcagtgactCCTAAATTCCTACG
KanR_Cass_fwd	KanR Rv		caacgctcggttgccgccgggcgtttttTTTGGTCTCACGTTGGAATTC
KanR_Cass_rev			aaacgaagagGTAAAACAGCCAGCGCTG
ssr2016_DR_fwd			gctgttttacCTCTTCGTTTTCAATAATTCTTGCCAAAC
ssr2016_DR_rev	DR Rv		tggatgcagtgggcccaggtTTTCCACCGAAGGGCTGG
B2H ssr2016 Rv	ssr2016_CDS Rv		tcagat tctaga TTAGGCCAATAAACCGAG
nadA_UR_fwd	UR Fw	Sup. Fig. 7	acactgatagtttaaacaggtaagcGTTTACTGTCCCTGCTCC
nadA_UR_rev			acgtgagaccaaaTATGTTTCGGCTCCTGGAATATTTATAG
KanR_fwd			gagccgaaacataTTTGGTCTCACGTTGGAATTC
KanR_rev	KanR Rv		gattatgccacccGTAAAACAGCCAGCGCTG
nadA_DR_fwd			ctggctgttttacGGGTGGCATAATCAGGCTC
nadA_DR_rev	DR Rv		tggggtggatgcagtgggcccaggtTATTGCCACTAGAATTAGCCG
B2H sll0622 Rv	nadA_CDS Rv		accaccgaattcCTAGGACATGGCCAGC
sll1217_UR_fwd	UR Fw	Sup. Fig. 8	gatagtttaaacaggtaagcAGGACGGGGGGAAATTTC
sll1217_UR_rev			tgttcttctagagGGAAGAAACTGAGATAACTGATTG
SpecR_fwd			agtttcttccCTCTAGAAGAACAGCAAGGCCG
SpecR_rev	SpecR Rv		aagtctggaaGCCGCTCAATTCGCTGCG
sll1217_DR_fwd		1	attgagcggcTTCCAGACTTAAAATATTTATCACCTTTACTTC
sll1217_DR_rev	DR Rv	1	tggatgcagtgggcccaggtCCGCACAATGGTGTAGGG
B2H sll1217 Rv	sll1217_CDS Rv	1	gtagtc ggtacc CTAGAAAGCAATTTCCGTTAAGCG

Uppercase letter indicate specifically annealing sites; lowercase letters indicate complementary overhangs; red indicates not complementary sites and linear assembly was blunt-ligated; italics indicates B2H primer used for genotyping. The vector backbone was pICH69822

Supplementary References

- Sugimoto, K., *et al.* A single amino acid alteration in PGR5 confers resistance to antimycin A in cyclic electron transport around PSI. *Plant Cell Physiol* 54, 1525-1534 (2013).
- Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res* 32, 1792-1797 (2004).
- 3. CyanoBase, http://genome.microbedb.jp/cyanobase.
- 4. Hertle, A. P., *et al.* PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. *Mol Cell* **49**, 511-523 (2013).
- Yeremenko, N., *et al.* Open reading frame *ssr2016* is required for antimycin A-sensitive photosystem I-driven cyclic electron flow in the cyanobacterium *Synechocystis* sp. PCC 6803. *Plant Cell Physiol* 46, 1433-1436 (2005).
- 6. Viola, S., Rühle T. & Leister D. A single vector-based strategy for marker-less gene replacement in *Synechocystis* sp. PCC 6803. *Microb Cell Fact* **13**, 4 (2014).