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1 Reproductive fitness

Reproductive fitness was evaluated by observing oviposition, egg eclosion and egg reab-
sorption. Oviposition was measured by simply observing the number of eggs laid, on a daily
basis, for two weeks for both groups. We then modeled oviposition using a zero-inflated Pois-
son generalized linear model (GLM) [1, 2]. First, for each female Fj. consider an indicator
function o(F;) that is 1 if the female oviposited and 0 otherwise. Next, assume the number
of eggs laid (n;) follows a Poisson distribution. Thus,

o(F;) ~ Degenerate(0;), (1)
n; ~ Pois(\;). (2)

We assumed that the observed zeroes come from two distinct data-generating processes: a
proportion #; comes from a zero inflation process and a proportion 1 — 6; comes from a
Poisson distribution with parameter A;. The number of eggs per female, E;, has probability
mass function:

1 — 9 ' E,‘ = U
PE;, =k)= ' ' 3
(Ei = k) { .o 3)
Finally, suppose some covariates z;; = z. ..k were measured. We then have'
log (\;) = 23", (4)
0;
IOg (]TQI) = ZT/BH. (5)

The GLM formulation allows us to model the dependency of E; on both time and infec-
tion status. Models were fitted using the pscl package [3] of the R statistical computing

'Notice that. alt hough here we make both A; and #; depend on the z covariate matrix, this does not need
to be so. One could as well model the two parameters on different sets of covariates.



environment[4]. Predictions for oviposition in both groups are presented in Fig. 4B in main
text.

Eclosion was determined by counting the number of eggs ecloded, which in turn allows
for estimating a proportion of eclosion, p°, for each group (infected and uninfected). To
estimate p°, we formulate our model as follows: for each infection status k, let Yj; be an
indicator variable for the i-th egg such that

Yii = (6)

1 if the egg ecloded,
0 if the egg did not eclode.

Next, define 2, = Y " V}; to be the counts of eggs ecloded over n; observed. Bayesian
inference about pj is done by assuming

Yii ~Bern(pf). (7)
x ~Bin(ny, p},). (8)
Thus, the likelihood function is
e Ty e\ Ty e\ — T
plalpy) = - (pe)™ (1 = p) (9)

To complete inference about pj, we need to specify a prior distribution for it:
Py ~ Beta(a,b). (10)
Here, we set @ = b = 1 to obtain an uniform prior. By Bayes theorem, we know that
ploi|en) o plak| pi)p(pk)- (11)
and then arrive at the posterior

ploflan) o (pf) ™+ (1 = p et (12)

which is a Beta distribution with parameters x; + a and b+ ng, — 2. Results of the eclosion
experiment are presented in S1 Table.

51 Table: Egg eclosion per infection status.

Infected Uninfected
Ecloded 91 95
Non-ecloded 29 14

From these results we could estimate eclosion proportions (and 95 % credible invervals)
for both groups, resulting in p; = 0.76 (0.67,0.83) and pf; = 0.87 (0.83,0.95).

Ovary atresy was observed by dissecting females and counting the number of vitelogenic
eggs (see S2 Table). Proportions of reabsorbed eggs (p") were computed in the same fashion
outlined above.

Using these data. we estimated p; = 0.06 (0.04,0.08) and p;; = 0.01 (0,0.01).



S2 Table: Ovary atresy (egg reabsorbtion) per infection status.

Infected Uninfected
Reabsorbed 38 3
Vitelogenic 618 588

2 Survival

To assess the impact of infection on insect survival, we observed 75 adult insects (45
infected, 30 uninfected), separated by sex (30 males, 45 females) until death. For each
group (infected males (MI); uninfected males (MU); infected females (FI); uninfected females
(FU)), we are interested in the time to death. Let the time to death be a continuous? random
variable, 7', with distribution function F(t) = P(T < t) and probability density function
% = f(t). We can therefore define a simple survival function S(t) = P(T > t) = 1— F(t).
One may be interested in knowing the probability of death at a particular time ¢ conditional
on survival to that time. This is called the harzard function, h(t) and can obtained by taking

the limit

Pt <T<t+At)

O 13
_f@)
=S5 (14)

In what follows, we assume 7' is Weibull distributed with parameters # and ~ (shape and
scale, respectively). This gives the hazard function

h(t) = v6t 1. (15)

Also, considering that for each individual in the study we also observe some covariates z,
which here are infection status and sex. Then we can model # as linear combination of z. in
a GLM fashion. Since we want 7" to have support only on [0, 00), we make logd = [y + 2713,
where 3 is a vector of regression coefficients. Thus

h(t]z) = v exp(Bo + 27 B)0 . (16)

For a desired level of confidence «, 100a% confidence bands for S(t|z) using the relation:

STl = e (— <€i0> ) | (17)

After obtaining 100a% confidence intervals for each 6; using standard methods, one can plug
in these values, along with the estimate for v, into equation 17. For details see [5] and [6].
We used the R package survival [7] to fit this model to data and prediction curves for each
group are presented in Fig. 1A (main text).

2This assumption is made solely for simplicity.



3 Morphometric analysis

In order to understand the impact of Leptomonas infection on the insects’ phenotype,
several morphometric attributes were analyzed. for infected and uninfected groups. Com-
parisons were also made by sex. In total, 11 attributes were measured for adult insects and 7
for nymphs, including wings (forewing and hindwing) area, total length, hemi-elytra length,
leg length, rostrum length and insect weight. Details can be found in the Methods section
of the main text.

We then applied Principal Components Analysis (PCA) to both data sets in order to

reduce dimensionality and avoid multicolinearity. Consider observing p — possibly correlated
— continuous attributes of N individuals. PCA allows us to transform the data N x p matrix
D, into a set @ of p new orthogonal vectors, the so-called the principal components (PCs).
This is done by obtaining linear combinations of the columns of Dy so as to maximize
variance of these new vectors. The main advantage of this approach is that the new vectors
are uncorrelated, and we usually need to retain far less than p PCs to achieve a satisfactory
description of the variation in the data.
For both data sets — adults and nymphs — PCA resulted in a first principal component (PC)
that explains about 70% of the total variance and is positively correlated with all the original
variables. We took this PC to describe insect size in general. To assess the association of
the obtained principal component with infection status, we again took a generalized linear
model (GLM) approach. The model was of the form:

Y; ~ Bernoulli(p,), (18)

oz (2) =x8 + . (19)
1—p;

where 3 is the vector of regression coefficients and x is the matrix of covariates, in this

case insect sex and the size-related PC. The errors € ~ A'(0,0?) with o known. For these

analyses we used the package arm in R to fit a model with interaction between insect sex

and size having infection status as a response variable.

4 Mathematical modeling

Here, some models were developed to help us understand the growth dynamics of infected
and uninfected populations of Oncopeltus fasciatus. We built differential equations-based
models to obtain projections for insect populations in the presence and absence of infection.
We capitalize on the data collected and analyzed in the previous sections to parameterize
our models.

In this section we present the system of ordinary differential equations proposed to
model Oncopeltus fasciatus population growth in more detail. Although the infection dynam-
ics is also of interest, in the laboratory environment the infection spreads so fast we cannot
accurately measure transmission rates. Thus, instead of coupling infection and demography,
we chose to develop a purely demographic model and used different parameter values (hased
on the available data) for the infected and uninfected groups to create different scenarios.
In the compartmental model developed here each developmental stage of the insect (eggs,



nymphs, adults) was modeled as a state variable. Let £ be the state variable for the eggs laid
and N;,i = 1,2,....5 represent the nymph stages and A represent the adult stages. Denote

dX l . o : .
& = X'. The governing equations are:

A
E'=o0 (E) — peeE (20)
;;\/YJ’_ = ])G_,EJE — dia Ny — mqy Ny (21)
Nj=dj_1;Nj1 — djjs1Nj —m;N; Vj=2,..5 (22)
A" =d5 4N; — maA (23)

A schematic representation of this system is given in S9A Fig. One possible alternative
structure for this demographic model is to allow for differential sexual maturation and mor-
tality, in turn modeling males and females as separate compartments. We can then study the
possible effects of differential sexual response to infection. Thus the alternative equations
for the system are:

E'=0oF —p.cE (24)
N{ = p.eE — dy o Ny — mi Ny (25)
A; =dj_1;Nj_1—d;j . aN; —m;N;,Vj=2,..5 (26)
M'" = (1= pp)ds aN5 — my M (27)
F' = ppds ANs — mpF (28)

where pp is the probability of a nymph turning into a female®, and we furthermore allow
differential sexual mortality rates, my; and mp. S9B Fig. shows the diagram for this model
with sexual differentiation (SD). Please see S3 Table for a complete description of model
parameters. Clearly, when pp = 0.50 and my; = mp = ma, the model in equations (24-28)
becomes the system presented in (20-23).

Several questions regarding population biology can be studied using the models presented
here. We can, for instance, compare the population growth under the reference (no infection)
and an infection scenario.

#*Which should correspond approximately to the proportion of females in the population.



S3 Table: Parameters of the differential equations models presented at equations (20-23)
and (24-28). Parameter values were obtained from the data collected and analyzed in the
above sections, otherwise stated. * — parameter value obtained from the literature.

Parameter Description Uninfected Infected
0 oviposition rate (day~') 21 12
Pe eclosion probability 0.87 0.76
e eclosion rate (day™") 0.17 0.14

dy 2 development rate from Ny to Ny (day™!) 0.62 0.38
o 3 development rate from Ny to Ny (day™!) 0.2 0.36
d3 4 development rate from N3 to Ny (day™") 0.45 0.21
dys development rate from Ny to N5 (day™!) 0.2 0.38
ds. A development rate from Nj to adults (A) (day™!) 0.22 0.1
m mortality rate of Ny (day~!) 0.33 0.33
Mo mortality rate of Ny (day™!) 0.33 0.33
ms mortality rate of N3 (day™!) 0.33 0.33
my mortality rate of Ny (day™!) 0.33 0.33
my mortality rate of Ny (day™! 0.5 0.5
ma mortality rate of adults (day™") 0.01 0.03
mar mortality rate of males (day=!) 0.01 0.02
mp mortality rate of females (day™") 0.02 0.05
PE probability of becoming a female adult* 0.55 0.55




We can compare a disease-free (uninfected) and an infected scenario by solving the system
of differential equations with different sets of parameter values (see S3 Table) and then
plotting the ratio infected /uninfected for each compartment (stage of development). We
show the results for the models without and with sexual differentiation in S8 Fig. and Fig.
6 (main text), respectively.
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