1	Identification of four novel associations for B-cell acute lymphoblastic leukaemia risk
2	Vijayakrishnan <i>et al.</i>
3	
4	Supplementary Information
5	
6	

8 Supplementary Figure 1: Overall study scheme.

16 Supplementary Figrue 2 : QQ plot post imputation and genomic corrections for (A) UK GWAS I, (B) German GWAS,

17 (C) UK GWAS II, (D)COG-SJ-MESA and (E) Meta-analysis showing *k* values.

Supplementary Figrue 3: Pre and post conditional analysis association plots with epigenetic annoation. Top pane shows the chr21q22 locus prior to GWAS conditioning, and the middle pane shows SNP P-values after adjusting for the lead SNP (rs9976326). SNP shading denotes linkage disequilibrium with the lead SNP ($r^2 = 0$, white, $r^2 = 1.0$, dark red). SNPs (circles) plotted by GWAS P-values (-log₁₀, left y-axis) and location (x-axis, GRCh37/hg19). Recombination rate (cM/Mb) on right y-axis, shown by light blue line. Lower section; ATAC-seq peaks showing chromatin accessability, shade denotes score. Multicolour bar shows chromatin states in 2 primary (E031 and E032) and one B-cell line (GM12878) generated using ChomHMM, see Supplementary Fig 7 for key.

Supplementary Figrue 4: Regional association plot of 100kb window around the novel post conditioning SNP rs9975478 at chr21q22. Blue lines denote transcription factor ChIP-seq peaks in

35 blood cells.

36 37

Supplementary Figrue 5: Pre and post conditional analysis association plots with epigenetic annoation. Top pane shows the chr7p12 locus prior to GWAS conditioning, and the middle pane shows SNP *P*-values after adjusting for the lead SNP (rs17133805). SNP shading denotes linkage

disequilibrium with the lead SNP ($r^2 = 0$, white, $r^2 = 1.0$, dark red). SNPs (circles) plotted by GWAS P-41 42 values (-log₁₀, left y-axis) and location (x-axis, GRCh37/hg19). Recombination rate (cM/Mb) on right 43 y-axis, shown by light blue line. EQTLs (black line) and looping promoter capture chromatin 44 interactions (PCHiC, red arches) are shown for lead SNPs only in both pre and post conditional plots. Lead SNPs in each locus are defined as any SNP with a P-value $< P(min) \times 50$ and $R^2 > 0.8$ from the 45 lead SNP. Lower section; ATAC-seq peaks showing chromatin accessability, shade denotes score. 46 47 Multicolour bar shows chromatin states in 2 primary (E031 and E032) and one B-cell line (GM12878) generated using ChomHMM, see Supplementary Fig 7 for key. Lower section; ATAC-seq peaks 48 showing chromatin accessability, shade denotes score. Multicolour bar shows chromatin states in 2 49 50 primary (E031 and E032) and one B-cell line (GM12878) generated using ChomHMM, see Supp Fig 7 51 ATAC ChromHMM for scale and state definition.

53 54

55 Supplementary Figrue 6: Regional association plot of 100kb window around the novel post 56 conditioning SNP rs6421315 at chr21q22. Blue lines denote transcription factor ChIP-Seq peaks in 57 blood cells.

- 60 Supplementary Figure 7: Key for ATAC-seq and ChromHMM data ploted in Supplementary Figures
- **3,4,5 and 6.**

65 Supplementary Figure 8: Chromatin interaction plot of novel risk loci in human ALL cell line Nalm6 66 and naive B-cells. (a) for hyperdiploid ALL 6p21.31 (rs210143 in BAK1), (b) for B-ALL at 9q21.31 (rs76925697), (c) for hyperdiploid ALL at 5q31.1 (rs886285), (d) for ETV6-RUNX1 ALL at 17q21.32 67 (rs10853104 in IGF2BP1) and (e) for ERG ALL at 21q22.2 (rs9976326). Histone acetylation mark 68 69 and chromatin looping signals of Nalm6 were directly downloaded from the NCBI GEO GSE115494 dataset as described previously¹. Loop interactions were call using HiCCUPS² from Juicer 70 tools v1.12.01 under default parameters at resolution of 5000 and 10000 bp. Enriched interaction 71 72 were reported with a false discovery rate < 0.1. For chromatin looping in Naïve B cells, promoter 73 looping interactions were downloaded and filtered for a $-\log(\text{weighted } P) \ge 5$, as detrmined by the 74 chromatin conformation capture assay (CHiC)³. Interactions were called using CHiCAGO⁴. 75 Interactions overlapping lead SNPs in each locus are reported. ChIC singals from niave B-cells and 76 HiC signals from ALL cell line Nalm6 are shown as green and red arches, respectively.

NUS patients (N=231)

78

Supplementary Figure 9: Expression of the BAK1 gene in different subgroups of ALL. There are seven different ALL subgroups identified by unsupervised hierarchical clustering of gene expression profile from 231 children with newly diagnosed ALL⁵. Each sample is represented by a dot and is colour-coded according to the subgroups it belongs to.

NUS patients (N=231)

Supplementary Figure 10: Expression of the *IGF2BP1* gene in different subgroups of ALL. There are seven different ALL subgroups identified by unsupervised hierarchical clustering of gene expression profile from 231 children with newly diagnosed ALL⁵. Each sample is represented by a dot and is colour-coded according to the subgroups it belongs to. *ETV6-RUNX1* positive ALL cells showed significant overexpression of *IGF2BP1* compared to other ALL subtypes ($P = 3.68 \times 10^{-23}$, by two-sided Wilcoxon rank sum test).

103 Supplementary Figure 11: Expression of all RefSeq genes within 1MB of the 17q12 locus in subgroups of ALL. 104 There are seven different ALL subgroups identified by unsupervised hierarchical clustering of gene expression profile from 231 children with newly diagnosed ALL⁵. Each sample is represented by a dot and is colour-coded according to 105 106 the subgroups it belongs to. No gene but IGF2BP1 in this region was over-expressed specifically in the ETV6-RUNX1 107 positive ALL subgroup.

Supplementary Figrue 12: Reults from a multivariate anlaysis across 48 tissue eQTLs using summary data from B-ALL, high-hyperdiploid ALL and *ETV6-RUNX1* ALL using
 MulTiXcan. Red line indicates *P*-value threshold of 1.9 × 10⁻⁶. On the X axis the chromosomes are shown while the Y-axis shows -log₁₀(*P*).

113 Supplementary Figure 13: QQ plots generated for the sMultixcan analysis for A: B-ALL, B: High-hyperdiploid ALL and C: ETV6-RUNX1 positive ALL

Supplementary Figrue 14: Enrichement of transcription factor binding at ALL risk loci. The frequnecy of transcription factor binding to risk SNPs (r^2 with lead SNP > 0.8) was tallied and compared to the frequency of binding to 10,000 random SNP premutations. The graph shows the fold enrichement (x-axis) and Benjamini–Hochberg corrected P-value (y-axis) performed for over 200 transcription factor binding profiles derived from ChIP experiements performed in blood related cell lines, extracted from ChIP-Atlas. Transcription factors with no enrichemnt are ommited.

Polygenic risk for BCP-ALL

Proportion of population

Supplementary Figrue 15: Distribution of ALL relative risk scores ordered by genetic risk.
(risk is relative to population median risk). The blue line plots the distribution of relative risk
(RR) across the population; the red lines correspond to 1st, 10th, 50th, 90th and 99th
centiles. The RR figures presented in black are the average in the highest (i) 10th and (ii) 1
centile of genetic risk.

CHR	SNP (Subtype)	Locus (gene)	Position (BP)	Risk Allele	RAF	OR(95% CI)	P-value
Top SNPs at previously pub	olished loci						
2	rs17481869 (<i>ETV6-RUNX1</i> postive)	2q22.3	146124454	А	0.08	1.74 (1.45-2.09)	2.37x10 ⁻⁰⁹
7	rs17133805	7p12.2 (<i>IKZF1</i>)	50477514	G	0.32	1.65 (1.56-1.74)	5.28x10 ⁻⁷¹
8	rs75777619	8q24.21	130185176	G	0.12	1.26 (1.17-1.36)	2.30x10 ⁻⁰⁹
9	rs113650570	9p21.3 (<i>CDKN2A</i>)	21976402	А	0.02	2.32 (2.03-2.65)	8.06x10 ⁻³⁵
10	rs10821936	10q21.2 (<i>ARID5B</i>)	63723577	С	0.33	1.80 (1.71-1.89)	1.19x10 ⁻¹⁰⁶
10	rs3824662	10p14 (<i>GATA3</i>)	8104208	А	0.19	1.29 (1.21-1.38)	3.57x10 ⁻¹⁴
10	rs2296624	10p12.2 (<i>PIP4K2A</i>)	22856946	С	0.67	1.25 (1.18-1.32)	2.79x10 ⁻¹⁵
10	rs12779301	10q26.13 (<i>LHPP</i>)	126292655	С	0.66	1.22 (1.15-1.29)	5.72x10 ⁻¹³
12	rs4762284	12q23.1 (<i>ELK3</i>)	96612762	т	0.32	1.15 (1.12-1.19)	3.75x10 ⁻⁰⁷
14	rs2239630	14q11.2 (<i>CEBPE</i>)	23589349	А	0.45	1.28 (1.22-1.35)	1.72x10 ⁻²¹
21	rs9976326	21q22.2 (<i>ERG</i>)	39776485	Т	0.25	1.19 (1.12-1.26)	1.11x10 ⁻⁰⁸
Top SNPs at novel genome	-wide loci						
5	*rs11750693 (High-hyperdiploidy)	5q31.2 (near <i>KLHL3</i>)	137014631	С	0.02	2.62(1.90-3.61)	4.09x10 ⁻⁰⁹
5	rs886285 (High-hyperdiploidy)	5q31.1 (<i>C5orf56</i>)	131765206	Т	0.34	1.29 (1.18-1.41)	1.56x10 ⁻⁰⁸
6	rs210143 (High-hyperdiploidy)	6p21.31 (<i>BAK1</i>)	33546930	С	0.73	1.30 (1.19-1.43)	2.21x10 ⁻⁰⁸
7	*rs74452384 (<i>ETV6-RUNX1</i> postive)	7q36.3 (near <i>UBE3C</i>)	156892518	G	0.01	3.97(2.43-6.46)	3.16x10 ⁻⁰⁸
9	rs76925697	9q21.31	83747371	А	0.96	1.52 (1.31-1.76)	2.11x10 ⁻⁰⁸
17	rs10853104 (<i>ETV6-RUNX1</i> postive)	17q21.32 (<i>IGF2BP1</i>)	47092076	т	0.47	1.33 (1.21-1.47)	1.82x10 ⁻⁰⁸
Novel subtype association							
21	rs9976326 (High-hyperdiploidy)	21q22.2 (<i>ERG</i>)	39776485	Т	0.25	1.33 (1.21-1.46)	4.79x10 ⁻⁰⁹
*Not validated in r	eplication cohort.						

Supplementary Table 1: Summary of results for all risk SNPs. CHR: chromosome; BP: base pair; RAF: risk allele frequency; OR: odds ratio; CI: confidence intervals. OR and CI are derived from current meta-analysis.

Supplementary Table 2: Results of validation of new genome-wide significant ALL risk loci in a replication cohort (COG-SJ-MESA-nonEA). BP: Base pair; RAF,
 risk allele frequency; OR:odds ratio; CI: confidence intervals; ALL: acute lymphoblastic leukaemia.

			(B-ALL (n = 2,237 vs 3,461)			High-hyperdipoidy (n = 422 vs 3,461)			<i>ETV6-RUNX1</i> positive (n = 365 vs 3,461)		
SNP	Locus	Position (BP)	Risk Allele	RAF	OR (95% CI)	P-value	RAF	OR (95% CI)	P-value	RAF	OR (95% CI)	P-value
Validated												
rs76925697 (B-ALL)	9q21.31	83747371	А	0.98 vs 0.97	1.69 (1.28-2.25)	2.55x10 ⁻⁴	0.99 vs 0.97	2.02 (1.15-3.52)	1.38x10 ⁻²	0.98 vs 0.97	2.09 (1.15-3.79)	1.49x10 ⁻²
rs886285 (High- hyperdiploidy)	5q31.1 (C5orf56)	131765206	т	0.43 vs 0.42	1.10 (1.00-1.21)	4.68x10 ⁻²	0.45 vs 0.42	1.30 (1.10-1.52)	1.87x10 ⁻³	0.43 vs 0.42	1.08 (0.91-1.28)	0.4
rs210143 (High- hyperdiploidy)	6p21.31 (<i>BAK1</i>)	33546930	С	0.76 vs 0.74	1.13 (1.02-1.25)	1.94x10 ⁻²	0.77 vs 0.74	1.23 (1.03-1.49)	2.66x10 ⁻²	0.73 vs 0.74	0.98 (0.78-1.10)	0.79
rs10853104 (ETV6- RUNX1 positive)	17q21.32 (<i>IGF2BP1</i>)	47092076	т	0.48 vs 0.46	1.05 (0.96-1.15)	0.27	0.47 vs 0.46	1.06 (0.91-1.25)	0.43	0.55 vs 0.46	1.36 (1.15-1.61)	2.96x10 ⁻⁴
Not validated												
rs11750693 (High- hyperdiploidy)	5q31.2 (near <i>KLHL3</i>)	137014631	С	0.01 vs 0.01	0.99 (0.55-1.77)	0.98	0.01 vs 0.01	1.39 (0.57-3.39)	0.46	0.01 vs 0.01	1.15 (0.43-3.1)	0.77
rs74452384 (ETV6- RUNX1 positive)	7q36.3 (near <i>UBE3C</i>)	156892518	А	0.05 vs 0.06	0.78 (0.65-0.93)	6.00x10 ⁻³	0.03 vs 0.06	0.63 (0.42-0.93)	2.18x10 ⁻²	0.05 vs 0.06	0.77 (0.54-1.11)	0.16

Supplementary Table 3: Ancestry diversity in the replication series. Within the COG_SJ cohort, genetic ancestry (European [CEU], African [YRI], East Asian [JPT/CHB], and Native American) was determined by using ADMIXTURE (version 1.3.0)⁶, with the sum of these 4 ancestries being 100% for any given subject. European American (EA), African American (AA), and Asian were defined as having >95% European genetic ancestry, >70% African ancestry, and >90% Asian ancestry, respectively. Hispanics were individuals for whom Native American ancestry was >10% and greater than African ancestry, as previously described⁷

Genetically- defined race	B-ALL	High-hyperdiploidy	ETV6-RUNX1 positive	Control (MESA)
Hispanics	1081 (48%)	190 (45%)	160 (44%)	682 (20%)
Africans	351 (16%)	57 (14%)	60 (16%)	1380 (40%)
Other	805 (36%)	175 (41%)	145 (40%)	1399 (40%)
In total	2237 (100%)	422 (100%)	365 (100%)	3461 (100%)

156 Supplementary Table 4: Genetic association with B-ALL, High-hyperdiploid and *ETV6-RUNX1* childhood

157 ALL subtypes at novel ALL risk locus. P_{het} : P heterogeneity, l^2 : Index to quantify dispersion of odds ratio, CI:

158 Confidence Intervals.

rs76925697 (Δ/T 9a21 31)	Α	llele-T	Sa	mple			
	frec	quency	nu	mbers			
All B-ALL	Cases	Controls	Cases	Controls	OR	CI	P -value
UK GWAS I	0.02	0.03	824	5,200	0.56	(0.41-0.75)	1.4x10 ⁻⁴
German GWAS	0.02	0.04	834	2,024	0.61	(0.43-0.86)	5.3x10 ⁻³
UK GWAS II	0.03	0.04	784	7,385	0.73	(0.55-0.98)	3.7x10 ⁻²
COG_SJ_MESA	0.02	0.04	2,879	2,057	0.71	(0.55-0.91)	5.3x10 ⁻³
Total			5,321	16,666			
Meta OR and P -value					0.66	(0.57-0.76)	2.11x10 ⁻⁸
						<i>P_{het}</i> =0.53	<i>I</i> ² =0%
High-hyperdiploid							
UK GWAS I	0.01	0.03	289	5,200	0.46	(0.29-0.74)	1.5x10 ⁻³
German GWAS	0.02	0.04	176	2,024	0.54	(0.29-1.01)	5.6x10 ⁻²
UK GWAS II	0.03	0.04	251	7,385	0.77	(0.46-0.73)	0.33
COG_SJ_MESA	0.02	0.04	653	2,057	0.60	(0.42-0.86)	5.8x10 ⁻³
Total			1,369	16,666			
Meta OR and P -value					0.58	(0.46-0.73)	6.45x10 ⁻⁶
						P _{het} =0.58	<i>I</i> ² =0%
ETV6-RUNX1 positive							
UK GWAS I	0.02	0.03	126	5,200	0.60	(0.30-1.22)	0.16
German GWAS	0.02	0.04	63	2,024	0.59	(0.20-1.71)	0.33
UK GWAS II	0.03	0.04	220	7,385	0.80	(0.56-0.97)	0.42
COG_SJ_MESA	0.03	0.04	527	2,057	0.77	(0.52-1.14)	0.19
Total			936	16,666			
Meta OR and P -value					0.73	(0.56-0.97)	3.02x10 ⁻²
						P _{het} =0.89	<i>I</i> ² =0%

rs9976326 (A/T,21q22.2,	Α	llele-T	Sample				
ERG)	frec	quency	nu	mbers			
All B-ALL	Cases	Controls	Cases Controls		OR	CI	P -value
UK GWAS I	0.28	0.25	824	5,200	1.20	(1.06-1.26)	4.1x10 ⁻³
German GWAS	0.30	0.26	834	2,024	1.22	(1.06-1.41)	6.1x10 ⁻³
UK GWAS II	0.28	0.25	784	7,385	1.18	(1.04-1.33)	9.3x10 ⁻³
COG_SJ_MESA	0.29	0.25	2,879	2,057	1.17	(1.06-1.29)	1.3x10 ⁻³
Total			5,321	16,666			
Meta OR and P -value					1.19	(1.12-1.26)	1.11x10 ⁻⁸
						P _{het} =0.97	<i>I</i> ² =0%

High-hyperdiploid

Meta OR and P -value					0.98	(0.88-1.10) <i>P_{het}=</i> 0.55	0.43 / ² =0%
Meta OR and P -value					0.98	(0.88-1.10)	0.43
TULAI				,			
	0.52	5.52	936	16,666	1.0	(0.00 1.17)	0.00
COG SJ MFSA	0.32	0.32	527	2.057	1.0	(0.85-1 17)	0.91
UK GWAS II	0.20	0.31	220	7.385	0.90	(0.73-1 10)	0.20
German GWAS	0.52	0.34	63	2 074	1 24	(1.84-1 84)	0.07 0.28
UK GWAS I	0.32	0.31	126	5.200	0.98	(0.75-1.28)	0.87
ETV6-RUNX1 nositive							
					0.70	P_{het} =0.05	<i>I</i> ² =62%
Meta OR and P-value			1,309	10,000	0.78	(0.71-0.85)	1.56x10 ⁻⁸
	0.50	0.52	1 260	16 666	0.05	(0.75-0.90)	5.1710
	0.41	0.37	201 652	7,305 2 057	0.04 0.92	(0.55 - 0.77)	4.0X1U 0.1v10 ⁻³
	0.43	0.54	1/0 251	2,024 7 205	0.08	(0.54-0.80) (0.52 0.77)	1.4X1U
ON UWAS I	0.34	0.31	289 176	5,200 2,024	0.00	(0.73 - 1.05)	9.2X10
High-hyperdiploid	0.24	0.21	200	E 200	0 00	(0.72.1.05)	0 2.10-2
						• het -0.14	//0
ivieta OK and P -value					0.90	(0.85-0.95) P=0 14	1.6x10 ⁻ / ² =45%
Total			5,321	16,666			
COG_SJ_MESA	0.33	0.32	2,879	2,057	0.96	(0.87-1.05)	0.37
UK GWAS II	0.35	0.31	784	7,385	0.83	(0.74-0.93)	9.0x10 ⁻²
German GWAS	0.38	0.34	834	2,024	0.84	(0.74-0.96)	9.7x10 ⁻³
UK GWAS I	0.33	0.31	824	5,200	0.94	(0.84-1.05)	0.27
All B-ALL	Cases	Controls	Cases	Controls	OR	CI	P -value
C5orf56)	frec	uency	nu	mbers			
rs886285 (C/T. 5a31.1.	A	lele-T	Sa	mple			
						<i>P_{het}</i> =0.85	<i>I</i> ² =0%
Meta OR and P -value					0.95	(0.85-1.07)	0.42
Total	_	_	936	16,666			
COG_SJ_MESA	0.24	0.25	527	2,057	0.94	(0.80-1.10)	0.42
UK GWAS II	0.24	0.25	220	7,385	0.92	(0.73-1.15)	0.45
German GWAS	0.26	0.26	63	2,024	0.99	(0.64-1.54)	0.98
UK GWAS I	0.26	0.25	126	5,200	1.07	(0.80-1.44)	0.66
ETV6-RUNX1 positive							
						P _{het} =0.17	<i>I</i> ²=41%
Meta OR and P -value					1.33	(1.21-1.46)	4.79x10 ⁻⁹
 Total			1,369	16,666		, ,	
COG SJ MESA	0.29	0.25	653	2,057	1.23	(1.07-1.42)	4.1x10 ⁻³
UK GWAS II	0.30	0.25	251	7.385	1.32	(1.07-1.64)	1x10 ⁻²
German GWAS	0.30	0.26	176	2 024	1 22	(0 93-1 59)	0.15
	0.55	0.25	205	3,200	1.01	(1.52 1.50)	2.22710

BAK1)	free	quency	nu	mbers			
All B-ALL	Cases	Controls	Cases	Controls	OR	CI	P -value
UK GWAS I	0.25	0.31	824	5,200	1.32	(1.10-1.58)	7.3x10 ⁻²
German GWAS	0.22	0.28	834	2,024	1.30	(1.01-1.68)	7.0x10 ⁻³
UK GWAS II	0.22	0.30	784	7,385	1.46	(1.18-1.81)	5.1x10 ⁻³
COG_SJ_MESA	0.24	0.28	2,879	2,057	1.13	(1.02-1.24)	1.63x10 ⁻²
Total			5,321	16,666			
Meta OR and P -value					1.15	(1.08-1.22)	1.74x10 ⁻ ⁶
						<i>P_{het}</i> =0.74	<i>I</i> ² =0%
High-hyperdiploid							
UK GWAS I	0.25	0.31	289	5,200	1.32	(1.10-1.58)	2.97x10 ⁻³
German GWAS	0.22	0.28	176	2,024	1.30	(1.01-1.68)	4.03x10 ⁻²
UK GWAS II	0.22	0.30	251	7,385	1.46	(1.18-1.81)	3.22x10 ⁻⁴
COG_SJ_MESA	0.24	0.28	653	2,057	1.23	(1.06-1.42)	1.63x10 ⁻²
Total			1,369	16,666			
Meta OR and P -value					1.30	(1.19-1.43)	2.21x10 ⁻⁸
						P _{het} =0.62	<i>I</i> ² =0%
ETV6-RUNX1 positive							
UK GWAS I	0.34	0.31	126	5,200	0.86	(0.66-1.13)	0.27
German GWAS	0.21	0.28	63	2,024	1.43	(0.95-2.16)	8.94x10 ⁻²
UK GWAS II	0.29	0.30	220	7,385	1.01	(0.82-1.24)	0.93
COG_SJ_MESA	0.27	0.28	527	2,057	1.06	(0.90-1.24)	0.48
Total			936	16,666			
Meta OR and P -value					1.03	(0.92-1.15)	0.59
						P _{het} =	<i>I</i> ² =0%
rs10853104	А	llele-C	Sample				
(T/C, 17q21.32, <i>IGF2BP1</i>)	free	quency	nu	mbers			
All B-ALL	Cases	Controls	Cases	Controls	OR	CI	P –value
UK GWAS I	0.49	0.50	824	5,200	1.03	(0.92-1.14)	0.64
German GWAS	0.49	0.49	834	2,024	0.99	(0.87-1.11)	0.82
UK GWAS II	0.47	0.48	784	7,385	1.07	(0.96-1.19)	0.20
COG_SJ_MESA	0.48	0.49	2,879	2,057	1.06	(0.98-1.16)	0.16
Total			5,321	16,666			
Meta OR and P -value					1.04	(0.99-1.10)	0.11
						<i>P_{het}=</i> 0.71	<i>I</i> ² =0%
High-hyperdiploid							
UK GWAS I	0.52	0.50	289	5,200	0.91	(0.77-1.08)	0.28
German GWAS	0.53	0.51	176	2,024	0.92	(0.74-1.16)	0.50
UK GWAS II	0.49	0.48	251	7,385	0.98	(0.81-1.17)	0.78
COG_SJ_MESA	0.50	0.49	653	2,057	0.98	(0.87-1.12)	0.82
Total			1,369	16,666			
Meta OR and P -value					0.96	(0.88-1.04)	0.29

Meta OR and P -value					1.33	(1.21-1.47) P _{het} =0.33	1.82x10 ⁻⁸ / ² =13%
Total			936	16,666			
COG_SJ_MESA	0.40	0.49	527	2,057	1.42	(1.23-1.64)	1.28x10 ⁻⁶
UK GWAS II	0.45	0.48	220	7,385	1.15	(0.95-1.40)	0.14
German GWAS	0.41	0.51	63	2,024	1.52	(1.05-2.21)	2.60x10 ⁻²
UK GWAS I	0.43	0.50	126	5,200	1.32	(1.02-1.69)	3.18x10 ⁻²
ETV6-RUNX1 positive							

160 Supplementary Table 5: Genotype counts of risk alleles for the individual cohorts post

161 imputation.

SNP(Type)	Genotype count							
rs76925697 (9g21.31, B-ALL)	AA	AT	TT	AA	AT	TT		
UK GWAS I	797	26	1	4843	354	4		
German GWAS	798	35	1	1879	141	4		
UKGWAS II	742	42	0	6854	522	10		
COG-SJ_MESA	2743	135	1	1916	138	3		
rs9976326 (<i>ERG</i> , B-ALL)	AA	AT	TT	AA	AT	TT		
UK GWAS I	429	332	63	2969	1912	318		
German GWAS	401	366	67	1082	828	114		
UKGWAS II	410	304	71	4093	2818	474		
COG-SJ_MESA	1500	1143	235	1179	734	144		
rs9976326 (ERG, High-								
hyperdiploidy)	AA	AT	TT	AA	AT	TT		
UK GWAS I	128	131	30	2969	1912	318		
German GWAS	85	77	14	1082	828	114		
UKGWAS II	121	108	22	4093	2818	474		
COG-SJ_MESA	325	271	57	1179	734	144		
rs886285 (<i>C5orf56,</i> High-								
hyperdiploidy)	CC	СТ	TT	CC	СТ	TT		
UK GWAS I	39	118	131	497	2257	2446		
German GWAS	34	82	60	238	911	875		
UKGWAS II	43	120	88	745	3144	3495		
COG-SJ_MESA	92	287	274	204	914	939		
rs210143 (BAK1, High-								
hyperdiploidy)	CC	СТ	TT	CC	СТ	TT		
UK GWAS I	16	111	162	500	2186	2514		
German GWAS	12	55	109	154	836	1034		
UKGWAS II	13	86	152	648	3063	3673		
COG-SJ_MESA	40	231	382	157	821	1079		
rs10853104 (<i>IGF2BP1, ETV6</i> -								
RUNX1)	TT	СТ	CC	TT	СТ	CC		
UK GWAS I	25	58	43	1285	2604	1311		
German GWAS	10	31	22	525	1004	494		
UKGWAS II	49	100	71	1694	3751	1940		
COG-SJ_MESA	86	252	189	505	1022	530		

163 Supplementary Table 6: Conditional analysis on the most significant SNP at all previously identified and novel risk loci within a one MB window. 164 CHR: chromosome; BP: base pair; RAF: risk allele frequency; OR: odds ratio; CI: confidence intervals. OR and CI are derived from current meta-165 analysis.

	Top SNP at locus				Risk	Post-conditional	P-value	P-value
CHR	(conditioned on)	P-value	Locus (gene)	Position (BP)	Allele	top SNP	(Post-conditional)	(Pre-conditional)
B-ALL								
7	rs17133805	5.28x10 ⁻⁷¹	7p12.2 (<i>IKZF1</i>)	50477514	G	rs6421315	1.43x10 ⁻⁰⁸	5.28x10 ⁻¹¹
8	rs75777619	2.30x10 ⁻⁰⁹	8q24.21	130185176	G	rs4733633	3.93x10 ⁻⁰⁴	6.70x10 ⁻⁰⁴
9	rs113650570	8.06x10 ⁻³⁵	9p21.3 (<i>CDKN2A</i>)	21976402	А	rs944800	4.05x10 ⁻⁰⁸	4.12x10 ⁻⁰⁷
9	*rs76925697	2.11x10 ⁻⁰⁸	9q21.31	83747371	А	rs2796471	3.12x10 ⁻⁰⁵	8.04x10 ⁻⁰⁵
10	rs10821936	1.19x10 ⁻¹⁰⁶	10q21.2 (<i>ARID5B</i>)	63723577	С	rs2893901	3.20x10 ⁻⁰³	1.09×10^{-02}
10	rs3824662	3.57x10 ⁻¹⁴	10p14 (<i>GATA3</i>)	8104208	А	rs11255520	5.36x10 ⁻⁰⁴	2.68×10^{-02}
10	rs2296624	2.79x10 ⁻¹⁵	10p12.2 (<i>PIP4K2A</i>)	22856946	С	rs74229974	1.33x10 ⁻⁰⁸	1.33x10 ⁻⁰⁸
10	rs12779301	5.72x10 ⁻¹³	10q26.13 (<i>LHPP</i>)	126292655	С	rs11245326	4.90x10 ⁻⁰⁴	1.78x10 ⁻⁰⁷
14	rs2239630	1.72x10 ⁻²¹	14q11.2 (<i>CEBPE</i>)	23589349	А	rs56031127	2.08x10 ⁻⁰⁴	1.35x10 ⁻¹⁴
21	rs9976326	1.11x10 ⁻⁰⁸	21q22.2 (<i>ERG</i>)	39776485	Т	rs9979478	1.69x10 ⁻⁰⁸	1.89x10 ⁻⁰⁸
ETV6-RUNX1								
2	rs17481869	2.37x10 ⁻⁰⁹	2q22.3	146124454	А	rs13384504	2.06x10 ⁻⁰²	8.30x10 ⁻⁰⁴
17	*rs10853104	1.82x10 ⁻⁰⁸	17q21.32 (<i>IGF2BP1</i>)	47092076	Т	rs12451571	9.69x10 ⁻⁰⁴	5.88x10 ⁻⁰⁴
High-hyperdiploidy								
5	*rs886285	1.56x10 ⁻⁰⁸	5q31.1 (<i>C5orf56</i>)	131765206	Т	rs28435738	8.26x10 ⁻⁰⁵	1.86×10^{-02}
6	*rs210143	2.21x10 ⁻⁰⁸	6p21.31 (<i>BAK1</i>)	33546930	С	rs9461938	6.95x10 ⁻⁰⁴	1.59x10 ⁻⁰³
21	rs9976326	4.79x10 ⁻⁰⁹	21q22.2 (<i>ERG</i>)	39776485	Т	rs9979478	9.37x10 ⁻⁰⁷	1.05x10 ⁻⁰⁶
10	rs10821936	1.71x10 ⁻⁹⁶	10q21.2 (<i>ARID5B</i>)	63723577	С	rs76420690	5.43x10 ⁻⁰⁴	3.87×10^{-06}

*New loci discovered in current meta-analyses.

167 Supplementary Table 7: Conditional analysis on the 21q22.2 locus (B-ALL)

SNP (gene)	Meta-analysis <i>P</i> -value	Conditioned on rs9976326	Conditioned on rs9979478
rs9976326 (<i>ERG</i>)	1.11 × 10 ⁻⁰⁸	-	1.03 × 10 ⁻⁰⁸
rs9979478 (<i>ERG</i>)	1.89×10^{-08}	1.69 × 10 ⁻⁰⁸	-

Locus	CNID	Distance	2	CUD	DOC (11-10)	Duralua	Disease
	SNP	lead SNP	r	Снк	PO2 (Hg19)	P-value	Subset
	rs210143	0	1	6	33546930	2.21E-08	HD
6p21	rs210142	-93	1	6	33546837	2.34E-08	HD
(DAKI)	rs210134	-6721	0.8956	6	33540209	3.17E-07	HD
	rs886285	0	1	5	131765206	1.56E-08	HD
	rs2522055	35393	0.9264	5	131800599	2.83E-08	HD
	rs2706387	24351	0.9264	5	131789557	3.96E-08	HD
	rs6865438	25210	0.9264	5	131790416	4.02E-08	HD
	rs7703230	21402	0.9349	5	131786608	4.06E-08	HD
	rs4475253	11300	0.9736	5	131776506	4.12E-08	HD
E-21	rs726923	21212	0.9391	5	131786418	4.30E-08	HD
5q31 (IDE1)	rs12659708	24657	0.9264	5	131789863	5.02E-08	HD
(INFI)	rs2522043	26465	0.9264	5	131791671	5.05E-08	HD
	rs12655512	24539	0.9264	5	131789745	5.28E-08	HD
	rs2522044	26640	0.9264	5	131791846	5.43E-08	HD
	rs4504381	20564	0.9391	5	131785770	5.56E-08	HD
	rs10059611	22072	0.9307	5	131787278	6.13E-08	HD
	rs7713818	23545	0.9219	5	131788751	9.24E-08	HD
	rs6866467	21847	0.8709	5	131787053	1.90E-07	HD
21q22	rs9976326	0	1	21	39776485	4.79E-09	HD
(ERG)	rs55681902	8267	0.9681	21	39784752	2.43E-08	HD
17q12 (IGF2BP1)	rs10853104	0	1	17	47092076	1.82E-08	ETV6- RUNX1
	rs76925697	0	1	9	83747371	2.11E-08	Generic
	rs62579834	453	1	9	83747824	2.12E-08	Generic
9a21	rs62579836	5567	0.9746	9	83752938	9.03E-08	Generic
JYZI	rs62579838	7695	0.9746	9	83755066	1.21E-07	Generic
	rs62579841	10202	0.9746	9	83757573	1.18E-07	Generic
	rs868524	14994	0.9493	9	83762365	1.13E-07	Generic

Supplementary Table 8: Lead SNPs used for filtering CHiC and ChIP data. CHR: chromosome; POS:

171 position in basepair. *P*-value shown from the current meta-analysis.

172 Top SNP in each locus shown in bold. HD = High-hyperdiploid ALL

176 **Supplementary Table 9: CHiC contacts at risk loci.** Lead SNPs at each locus used for filtering 177 CHiC and ChIP data defined by a *P*-value $< P(min) \times 50$ and $R^2 > 0.8$ from the top SNP. Contact scores:

178 CHiCAGO scores with significance (\geq 5) as per⁴.

179

180 Locus: rs10853104 chr17 (IGF2BP1)

SNP	SNP bin start	SNP bin end	Promoter bin start	Promoter bin end	Contact score	Gene TSS
rs10853104	47089144	47092652	46701021	46706541	7.6	HOXB9,HOXB- AS4
rs10853104	47089144	47092652	46795626	46803741	10.3	MIR3185,PRAC1, PRAC2
rs10853104	47089144	47092652	46803742	46807447	11.0	HOXB13
rs10853104	47089144	47092652	46807448	46814524	8.3	CTD-2377D24.4
rs10853104	47089144	47092652	46892929	46896186	12.0	TTLL6

181

182 Locus: rs886285 chr5 (C5orf56)

SNP	SNP bin start	SNP bin end	Promoter bin start	Promoter bin end	Contact score	Gene TSS
rs2522043, rs2522044	131744512	131749741	131791495	131792921	5.4	C5orf56
rs886285	131758776	131769186	131784623	131785167	5.5	
rs886285, rs2522043, rs2522044	131758776	131769186	131791495	131792921	6.5	C5orf56
rs886285	131758776	131769186	131814628	131819987	5.6	
rs886285	131758776	131769186	131819988	131821287	6.3	
rs886285	131758776	131769186	131821288	131825016	7.8	IRF1
rs886285	131758776	131769186	132153133	132153370	5.1	
rs886285	131758776	131769186	132208318	132210410	5.3	LEAP2
rs886285	131758776	131769186	132219272	132219773	5.0	
rs886285	131802698	131812303	131758776	131769186	5.3	AC116366.6, C5orf56,Y_RNA
rs886285	131825017	131826955	131758776	131769186	7.4	IRF1

183

184

185 Locus: rs210143 chr6 (BAK1)

SNP	SNP bin start	SNP bin end	Promoter bin start	Promoter bin end	Contact score	Gene TSS
rs210142, rs210143	33542615	33551201	33381238	33386615	5.6	CUTA,PHF1
rs210142, rs210143	33542615	33551201	33386616	33392274	5.2	SYNGAP1

rs210142, rs210143	33542615	33551201	33255433	33256040	5.5	WDR46
rs210142, rs210143	33542615	33551201	33358373	33363613	6.2	KIFC1
rs210142, rs210143	33542615	33551201	33363614	33364413	6.0	
rs210142, rs210143	33542615	33551201	33392275	33392971	9.3	
rs210142, rs210143	33542615	33551201	33392972	33396741	7.9	
rs210142, rs210143	33542615	33551201	33396742	33402944	7.3	SYNGAP1
rs210142, rs210143	33542615	33551201	33402945	33403900	6.3	
rs210142, rs210143	33542615	33551201	33404397	33408750	7.5	MIR5004, SYNGAP1
rs210142, rs210143	33542615	33551201	33408751	33418097	5.5	SYNGAP1
rs210142, rs210143	33542615	33551201	33423659	33424754	5.8	
rs210142, rs210143	33542615	33551201	33655559	33666990	5.6	MIR3934,SBP1, UQCC2
rs210142, rs210143	33542615	33551201	33666991	33679108	5.5	

Locus	rsID	Blood genes	Blood P-values	MuTHER genes	MuTHER P-values	CAGE genes	CAGE P-values
	rs210143	BAK1 ITPR3 MNF1 PHF1,CUTA	3.3E-310 3.1E-21 10.0E-6 1.48569E-5	па	na	HLA-DOA BAK1 ITPR3	2E-13 1.3E-36 7.9E-08
6p21.31 (BAK1)	rs210142	BAK1 ITPR3 MNF1 PHF1,CUTA	3.3E-310 3.1E-21 1.1E-5 1.3E-5	HLA-DOA FLJ43752 HLA-DPB1 HLA-DOB HLA-DPB2 TAP1	2.3E-4 1.1E-2 5.7E-5 5.9E-3 1.7E-2 2.2E-2	HLA-DOA BAK1 ITPR3	1.2E-13 7.2E-38 1E-08
	rs210134	BAK1 ITPR3 DAXX PHF1,CUTA	3.7E-289 2.2E-16 4.4E-11 6.7E-5	HLA-DOA FLJ43752 HLA-DPB1 HLA-DOB HLA-DPB2	3.8E-04 5.0E-2 4.1E-05 1.2E-2 1.2E-2	HLA-DOA BAK1	7.2E-14 1.4E-33
5q31.1 (C5orf56)	rs886285	SLC22A5 C5orf56 Y_RNA SLC22A4 C5orf56	1.0E-47 4.5E-13 1.7E-12 4.7E-10 8.9E-5	HSPA4 CSF2 RAPGEF6 SLC22A5 RAD50	3.8E-2 3.1 -2 1.6E-2 9.1E-06 1.3E-05	na	na
	rs2522055	SLC22A5 C5orf56 Y_RNA SLC22A4 C5orf56	2.7E-46 5.3E-14 7.5E-14 5.6E-10 8.6E-5	na	na	na	na
	rs2706387	SLC22A5 C5orf56 SLC22A4	5.1E-50 3.9E-12 4.7E-12	HSPA4 FSTL4 RAPGEF6	2.3E-2 2.3E-2 1.6E-2	na	na

210 Supplementary Table 10: eQTL analysis of lead risk SNPs.

		Y_RNA	2.5E-11	SLC22A5 SHROOM1	6.8E-06 3.5E-2		
	rs6865438	SLC22A5 SLC22A4 C5orf56 Y_RNA	2.2E-50 4.1E-12 4.8E-12 2.72712E-11	na	5.5E-06 na	na	na
5q31.1 (C5orf56)	rs7703230	SLC22A5 C5orf56 SLC22A4 Y_RNA	2.1E-51 3.7E-12 4.1E-12 3.3E-11	HSPA4 FSTL4 RAPGEF6 SLC22A5 SHROOM1 RAD50	2.2E-2 4.0E-2 1.8E-2 3.1E-06 3.7E-2 5.5-06	na	na
	rs4475253	SLC22A5 C5orf56 Y_RNA SLC22A4	8.0E-45 2.1E-14 3.0E-13 3.5E-10	HSPA4 CSF2 FSTL4 RAPGEF6 SLC22A5 RAD50	3.6E-2 3.4E-2 4.5E-2 1.6E-2 1.0E-05 1.3E-05	na	na
	rs726923	SLC22A5 SLC22A4 C5orf56 Y_RNA	1.9E-51 3.4E-12 3.9E-12 2.9E-11	RAPGEF6 SLC22A5 LEAP2 SHROOM1 RAD50	5.8E-3 1.5E-05 4.4E-2 3.1E-2 6.6E-07	na	na
	rs12659708	SLC22A5 C5orf56 SLC22A4 Y_RNA	6.4E-50 3.9E-12 5.0E-12 2.5E-11	na	na	na	na
	rs2522043	SLC22A5 SLC22A4 C5orf56 Y_RNA	9.5E-51 3.8E-12 7.3E-12 3.2E-11	na	na	na	na
	rs12655512	SLC22A5	6.4E-50	HSPA4	2.3E-2	na	na

		C5orf56	3.9E-12	FSTL4	2.3E-2		
		SLC22A4	5.0E-12	RAPGEF6	1.6E-2		
		Y RNA	2.47907F-11	SLC22A5	6.7F-06		
				SHROOM1	3.5E-2		
				RAD50	5.5E-06		
				HSPA4	2.3E-2		
		SLC22A5	8.8E-51	FSTL4	2.3E-2		
		SLC22A4	3.4E-12	RAPGEF6	1.6E-2		
	rs2522044	C5orf56	7.3E-12	SLC22A5	6.6E-06	na	na
		Y RNA	3.2E-11	SHROOM1	3.5E-2		
		-		RAD50	5.5E-06		
				HSPA4	3.1E-2		
		SLC22A5	2.2E-50	FSTL4	2.9E-2		
	ma 4504281	C5orf56	2.0E-12	RAPGEF6	1.4E-2	20	20
	184504381	SLC22A4	3.4E-12	SLC22A5	4.8E-06	na	na
		Y_RNA	2.1216E-11	SHROOM1	3.2E-2		
				RAD50	4.6E-06		
				HSPA4	2.5E-2		
5q31.1		SLC22A5	4.9E-51	FSTL4	2.5.E-2		
(C5orf56)	rc100E0611	SLC22A4	3.0E-12	RAPGEF6	1.5E-2	22	22
	1210029011	C5orf56	1.1E-11	SLC22A5	5.790E-06	lla	lla
		Y_RNA	3.3E-11	SHROOM1	0.0339		na na na na
				RAD50	5.134E-06		
				HSPA4	2.3E-2		
		SLC22A5	5.1E-50	FSTL4	2.3E-2		
	rs7712818	C5orf56	3.9E-12	RAPGEF6	1.6E-2	na	na na na na
	137713010	SLC22A4	4.6E-12	SLC22A5	6.6E-06	na	na
		Y_RNA	2.5E-11	SHROOM1	3.5E-2		
				RAD50	5.5E-06		
		SLC22A5	1.7E-52	RAPGEF6	1.6E-2		
	rs6866467	SLC22A4	3.0E-12	SLC22A5	3.0E-05	na	na
	130000407	C5orf56	1.2E-11	SHROOM1	5.0E-2	na	na na na na
		Y_RNA	2.1E-10	RAD50	2.1E-06		

				P4HA2	1.0E-2		
21q22.3	rs9976326	na	na	BRWD1	2.8E-2	na	na
(<i>ERG</i>)	rs55681902	na	na	na	na	na	na
17q21.32 (IGF2BP1)	rs10853104	UBE2Z ATP5G1	1.9E-53 8.0E-15	DLX4 UBE2Z ATP5G1	8.2E-3 3.5E-05 1.8E-07	ATP5G1	7.5E-08
	rs76925697	na	na	na	na	na	na
	rs62579834	na	na	na	na	na	na
9q21.3	rs62579836	na	na	na	na	na	na
(TLE1)	rs62579838	na	na	na	na	na	na
	rs62579841	na	na	na	na	na	na
	rs868524	na	na	na	na	na	na

212 Date sources : CAGE⁸, MuTHER⁹, Blood¹⁰. Lead SNPs shown in bold.

217 Supplementary Table 11: Predicted transcription factor disruption

218

219 Chromosome 6p21.3 nearest gene BAK1

SNP rsID	ChIP-seq	Predicted motif	PhastCons	GERP
Ref Alt	Blood Cells	Disruption		
rs210134			0	2.6
A G		ETS1,HAND1,SMC3	0	3.6
rs210142 T C	BRD4, MYC, TCF3, CTCF	CEBP, EHF, ELF1, ELF5, ETS, ETV4, FOS, GATA2, GTF2I, UA3, RAR, SPI1, SPIB, SPZ1, STAT[1,3,4,5A,6], TCF12, TEAD2, WT1	0	1.43
<u>rs210143</u> T C	CEBPB, CTCF	CEBPA, NFIC, SMAD3, TFCP2, TLX1	0	1.43

220

221

222 Chromosome 5q31.1 nearest genes *IRF1, C5orf56*

SNP rsID	ChIP-seq	Predicted motif	PhastCons	GERP
Ref Alt	Haematopoietic cells	Disruption		
rs10059611		DPD E2E1 ELE1	0	1 55
G∣T		DDP, E2F1, ELF1	0	-1.55
rs12655512		EOVI1 HITE CNAID 7ER1	0	1 2
C ⊤		FOALI, HEIF, SINAIZ, ZEDI	0	1.5
rc12650708		ATF3, CACD, CCNT2, CHD2, E2F1,		
1312033700		GABPA, IRF1, KLF[4,5,7], MAX,	0	-1.48
A G		MA2, SP1, RAR, SP[13], SREBF2, TBP, TEAD2, TP53, TP73, ZBTB33		
****	BRD4, EP300, JMJD1C,			
182522043	MED1, PBX1, PML,	HNF4A, RAD21, RAR, RHOXF1,	0	0.54
TΙΑ	RUNX3, STAT4, TCF3,	SMC3, SNAI2, ZEB1		
	EBF1, IKZF1, KUNX1			
		ATOH1, FOXH1, FOXO3,		
rs2522044	FBF1, IKZF1, RUNX1	GATA[13,6], HMGA1, LMO2,	0	-0.34
C ⊤		MYOG 75P1 NEUPOD1 PTE1A	5	0.01
		SOX10. SOX13. SOX3. SOX4.		
		SOX10, SOX13, SOX3, SOX4,		

	SOX6, SRY, TAL1, TCF12, TCF3,		
	TCF4, TFAP4		
	AP3, ASCL2, BRCA1, FIGLA,		
	FOXA1, MAFB, MYB, MYBL2,		
rc7706387	MYF5, MYOD1, MYOG, ZEB1,		
132700387	NHLH1, NR3C1, PTF1A, RFX1,	0.006	2.38
C ⊤	SIN3A, SMC3, TAF1, TCF12,		
	TCF3, TFAP4, TFCP2, TFCP2L1		
	ARID5B, ATF3, BARX1, BSX, CRX,		
	EN1, EVX1, EVX2, GATA[16],		
rs4475253	GSC2, GCS, GSX2, HMGA1,		
	HMGN3, HOXB2, HOXB3, ISL1,	0.019	2.02
A G	LMO2, GATA1,NFE2L1,		
	NFE2L1::MAFG, NKX6-2, PDX1,		
	PITX1, POU2F1, SIX[1,2,3,4,6]		
rs4504381	DBP, EN1, FUBP1, HDAC2, HES1,		
-10	HOXD10, NKX2-1, NKX3-2,	0	1.82
I G	TFAP2A		
rs6865438	ELF1, FOS, IKZF2, MECP2, UA9,		
	NANOG, USF2, ZIC1, ZNF143,	0	-0.98
TIC	ZNF350		
rs6866467			
A G	IKZF2, TAL1, NKX2-5, ZNF263	0	0.04
	CERDA CERDR CERD FLES ETS1		
rs726923	$\mathbf{FTS} \mathbf{FU1} \mathbf{FOX} 1 \mathbf{TFAD1} \mathbf{NFF2} 1$		
	POU5F1, STAT3, STAT ,	0	-0.59
CIA	TEAD[14]		
	ALX1, ALX3, ARID3A, BARHL1,		
	BARHL2, BARX1, BARX2, BSX,		
	CEBPD, DLX[16], EMX1, EMX2,		
	EN1, EN2, ESX1, EVX1, EVX2		
	FOXC1, GBX1, GBX2, GSX1, GSX2,		
	HESX1, HMGA1, HMX[13],		
rc7703230	HOXA[1,2,5,10,11],		
137703230	HOXB[2,3,5,8], HOXC10,	0.288	2.82
G T	HOXC11, HOXD[3,4,8,9], ISL1,		
	ISL2, ISX, LBX2, LHX[3,4,8,9],		
	LMX1A, LMX1B, MEOX2, MIXL1,		
	MNX1, MSX1, MSX2, NANOG,		
	NKX1-2, NKX2-1, NKX2-5, NKX6-		
	1, NKX6-2, NOBOX, PAX4, PAX7,		
	PDX1, PRRX1, PRRX2, RAX2, RAX,		
	SHOX2, SHOX, SIX1, TEAD1,		

		TP53, UNCX, VAX1, VENTXI, VSX1		
rs7713818		ETS1. HLTF. ZNF263. RXRA.		
CIT	CTCF	STAT4. STAT6. WT1. ZNF263	0	-0.0
CII		······		
rs886285		ISL1, LMX1B, MEOX1, MNX1,		
		NKX6-2, NKX6-3, POU4F3,	0.079	2.
T C		POU6F1, POU6F2, VENTX		
rs2522055				
	TCE2		0	0.5
A C	iers.			
Chromosome	21q22.2 nearest gene E	RG		
SNP rsID	ChIP-seg	Predicted motif	PhastCons	GEF
Ref Alt	Haematopoietic cells	Disruption		
		ALX1, ALX3, BSX, CEBP, CRX,		
		CTCF, DLX1, DLX2, DLX3, DLX4,		
		DLX5, DLX6, E2F1, EMX2, EN1,		
		EN2, ESX1, GATA[16], GBX1,		
		GBX2, GFI1, HESX1, HMGA1,		
rs55681902		HOXA5, HOXD4, ISX, LBX2, LHX2,		
TIC		LMX1B, MSX1, MSX2, NKX6-2,	0	0.6
ηc		NOBOX, NOTO, OTX1, OTX2,		
		OTX. PAX2. PAX4. PITX1. PRRX1.		
		PRRX2. RAD21. RAX2. RAX.		
		SHOX2, SHOX, UNCX, VSX1,		
		VSX2		
		RARY1 RARY2 RSY CDY2		
		CERDR CERD CDV DIV2 EN2		
rs9976326	EBF1, EP300, IKZF1,	HIVIGAL, HNELA, HOXALL,	0	2
ΔΙΤ	LEUI, WEDI, NK3CI,		U	-2.
	рват, <u>конат</u> , icf3			
		ISL2, LHX9, WIYE, NANUG, NKX2-		
		5, NKX6-1, NKX6-2, NOIO, PAX2,		
		PDX1, POU2F1, <u>RUNX1</u> , STAT1,		
		TLX2, VENTX		

229 Chromosome 17q21.3 nearest gene *IGF2BP1*

SNP rsID	ChIP-seq	Predicted motif	PhastCons	GERP
Ref Alt	Haematopoietic cells	Disruption		
rs10853104 C T	BCL6, BRD4, <u>CTCF</u> , CTCFL, ERG, FLI1, GATA1, KLF1, KMT2A, <u>NFE2</u> , RAD21, SMAD1, STAG1, TCF3, TRIM28	<u>CTCF, E2F1, ELF1, ESRRA, HIC1,</u> MYF, NF1, SMAD3, TCF12, TEAD2, TFCP2, ZBTB7A, (<u>NEF2</u>)	0	-2.56

230

231 Chromosome 9q21.3 nearest gene *TLE1*

SNP rsID	ChIP-seq	Predicted motif	PhastCons	GERP
Ref Alt	Haematopoietic cells	Disruption		
rs62579834		AR, EBOX, ENO1, HNF4A, ITGB2,		
CLA		LMO2, MITF, MYC::MAX, MYF6,	0	0.25
CIA		NR3C1, OLIG2, PGR ,TFE3, TFEC,	0	-0.25
		TFE, USF2, USF, YY1		
rs62579836		IRF4, KLF6, MAZ, MEIS3,	0.400	0.540
G C		POLR3A, SMAD	0.409	-0.513
		ALX[1,3], ARID3A, BARHL1,		
		BARX[1,2], BSX, CEBP, CRX,		
		DLX[16], EMX[1,2], EMX2,		
		EN[1,2] ,ESX1, EVX[1,2],		
		FOXA[1,2], FOXB1, FOXC1,		
		FOXD[1,3], FOXF2, FOXG1, FOXI1,		
		FOXP3, GBX[1,2], GSX[1,2],		
rs62579838		HDAC2, HESX1, HLTF, HMGA1,		
TIG		HOXA[1,2], HOXB[2,3,5],	0	-3.39
.10		HOXC10, HOXD[3,4,8,9], ISX,	C C	0.00
		LBX2, LEF1, LHX[2,4,9]		
		,LMX1[A,B], MIXL1, MNX1,		
		MSX[1,2], NKX2-5, NKX6-[1,2],		
		NOBOX, NOTO, PAX[4,7], PAX7,		
		PBX1, PDX1, POU3F2, PRRX[1,2],		
		RAX2, RAX, SHOX,		
		SOX[2,4,10,11,15], ICF/, ILX2,		
		UNCX, VSX[1,2]		
rs62579841		FOXN1, GMEB2, HMGA1, MYB,	0	2 27
T C		PAX7, POU1F1, TEAD1, ZEB1	U	2.27
rs76925697	BRD4, CREBBP, EP300,	BARHL1, BARHL2, CDX2, CPEB1,	0.278	0.00

A ⊤	ERG, FLI1, GATA2,	FOXC1, HAND1, HOXA11,		
	GATA3, IKZF1, KDM6A,	HOXD13 ,IRF[13,7,9],		
	MED1 ,MYB, NFE2,	STAT[,1,4,5A,6], UBP1, ZNF384		
	NOTCH1, PBX1, RUNX1			
	,SKI, SMAD1, SPI1,			
	TAL1, TCF12, TCF3,			
	TCF7L2, TLX1, TRIM28			
		ATF4, CEBPA, CEBPB ,CEBPD,		
rs868524		CEBP, EP300, MEIS3, CEBPB,	0	1.0
GIA		SMAD, SOX13, SOX17, SOX30,	0	-1.9
		SOX6, SOX9, SRY, TFAP2A		

233 Description: transcription factor binding sites downloaded from ChIP-Atlas (http://chip-atlas.org/) 234 filtering for cell lines with a haematopoietic lineage and a MACS peak Q value of greater than 100. 235 Overlapping binding sites from the same ChIP target were merged. Predicted motif disruption was performed using MotifbreakR¹¹, filtering for targets with a predicted strong effect and targets with a 236 237 best matching allele score of >0.9 (max=1). Targets with ChIP peaks and predicted disrupted binding 238 at a SNP are highlighted in brackets. NEF2 binding is predicted disrupted by rs10853104 with low 239 effect but was included, in brackets, due to matched ChIP binding site. Proteins with a predicted 240 greater affinity for the reference allele of a SNP are shown in bold. When multiple proteins from the 241 same family are predicted to have their binding disrupted these have been abbreviated, for example 242 STAT[,1..3,5A,6] represents STAT, STAT1, STAT2, STAT5A and STAT6. PhastCons and GERP 243 UCSC evolutionary conservation scores were extracted from datasets 244 'phastConsElements46way.txt.gz' 'allHg19RS_BW.txt.gz' respectively, all data based on Hg19 245 build.

246

Supplementary Table 12: Results from the SMR eQTL and mQTL analysis of the combined summary GWAS datasets. P_{SMR} shows the significant summary P value from the analysis after filtering each dataset specific thresholds. P_{HEIDI} shows the heterogeneity associated with each probe-SNP analysis (value <0.05 indicates significant heterogeneity). Loci that pass the P_{SMR} threshold for each gene expression dataset combined with a $P_{HEIDI} > 0.05$ are considered as regions in which risk alleles contribute to ALL risk by influencing gene expression in-cis. Columns show Tissue: The dataset used in the analysis; CHR: chromosome; Probe ID; Gene: gene symbol; Probe bp: probe position; SNP: rsID; SNP bp: SNP position; A1: effect allele; A2: alternate allele; Freq: allele frequency of A1; b_{GWAS} : Beta from GWAS; SE from GWAS; P-value from GWAS; b_{eQTL} : effect size from eQTL; SE from eQTL; P_{eQTL} : P-value from eQTL dataset; b_{XY} : effect size from SMR analysis; P-value from SMR analysis; P_{HEIDI} : P-value from HEIDI (Heterogeneity in Dependent Instruments); number of SNPs used in HEIDI test

Tissue	CHR	Probe ID	Gene	Probe bp	SNP	SNP bp	A1	A2	Freq (A1)	
Blood eQTL; Westra et al	10	ILMN_2152465	PIP4K2A	22826096	rs10764339	22867210	Т	C	0.38	
Blood eQTL; GTEx	6	ENSG0000030110.8	BAK1	33544174	rs210143	33546930	С	Т	0.71	
Lymphoctye eQTL; GTEx	6	ENSG00000030110.8	BAK1	33544174	rs210134	33540209	G	А	0.69	
mQTL (Aberdeen); Hannon <i>et al</i>	10	cg13344587	ARID5B	63723919	rs7896246	63724390	Α	G	0.34	
mQTL (Aberdeen); Hannon <i>et al</i>	7	cg01139861	IKZF1	50343298	rs11761922	50344132	С	G	0.31	
mQTL (Aberdeen); Hannon <i>et al</i>	7	cg14216940	IKZF1	50343131	rs11761922	50344132	С	G	0.31	
mQTL (Aberdeen); Hannon <i>et al</i>	21	cg27471246	ERG	39776434	rs9976326	39776485	Т	А	0.24	
mQTL (UCL); Hannon et al	7	cg14216940	IKZF1	50343131	rs6583437	50350267	Α	G	0.38	
mQTL (UCL); Hannon et al	10	cg20641026	PIP4K2A	22906638	rs1750775	22938848	С	Т	0.32	
mQTL (UCL); Hannon <i>et al</i>	12	cg18954900	ELK3	96604497	rs12828252	96612094	G	А	0.30	
mQTL (UCL); Hannon <i>et al</i>	21	cg27471246	ERG	39776434	rs2836364	39767874	т	C	0.25	
b _{GWAS}	SE _{GWAS}	P _{GWAS}	b eotl	SEPOTI	Penti	b _{xy}	SE	PSMR		nSNP _{HET}
					CQIL	<i>7</i> .7		214114		
-0.170	0.027	2.89X10 ⁻¹⁰	-0.564	0.019	4.69X10 ⁻²⁰²	0.302	0.049	6.71X10 ⁻¹⁰	5.56X10 ⁻⁰²	19
-0.170 0.138	0.027 0.029	2.89X10 ⁻¹⁰ 1.74X10 ⁻⁰⁶	-0.564 -0.624	0.019 0.038	4.69X10 ⁻²⁰² 2.01X10 ⁻⁵⁹	0.302	0.049 0.048	6.71X10 ⁻¹⁰ 4.48X10 ⁻⁰⁶	5.56X10 ⁻⁰² 6.32X10 ⁻⁰¹	19 19
-0.170 0.138 0.131	0.027 0.029 0.028	2.89X10 ⁻¹⁰ 1.74X10 ⁻⁰⁶ 4.17X10 ⁻⁰⁶	-0.564 -0.624 -0.765	0.019 0.038 0.077	4.69X10 ⁻²⁰² 2.01X10 ⁻⁵⁹ 3.67X10 ⁻²³	0.302 -0.221 -0.171	0.049 0.048 0.041	6.71X10 ⁻¹⁰ 4.48X10 ⁻⁰⁶ 2.99X10 ⁻⁰⁵	5.56X10 ⁻⁰² 6.32X10 ⁻⁰¹ 2.61X10 ⁻⁰¹	19 19 19
-0.170 0.138 0.131 0.584	0.027 0.029 0.028 0.027	2.89X10 ⁻¹⁰ 1.74X10 ⁻⁰⁶ 4.17X10 ⁻⁰⁶ 9.13X10 ⁻¹⁰⁶	-0.564 -0.624 -0.765 -0.040	0.019 0.038 0.077 0.002	4.69X10 ⁻²⁰² 2.01X10 ⁻⁵⁹ 3.67X10 ⁻²³ 2.01X10 ⁻¹¹⁸	0.302 -0.221 -0.171 -14.500	0.049 0.048 0.041 0.913	6.71X10 ⁻¹⁰ 4.48X10 ⁻⁰⁶ 2.99X10 ⁻⁰⁵ 8.36X10 ⁻⁵⁷	5.56X10 ⁻⁰² 6.32X10 ⁻⁰¹ 2.61X10 ⁻⁰¹ 8.98X10 ⁻⁰¹	19 19 19 13
-0.170 0.138 0.131 0.584 0.208	0.027 0.029 0.028 0.027 0.028	2.89X10 ⁻¹⁰ 1.74X10 ⁻⁰⁶ 4.17X10 ⁻⁰⁶ 9.13X10 ⁻¹⁰⁶ 2.14X10 ⁻¹³	-0.564 -0.624 -0.765 -0.040 0.060	0.019 0.038 0.077 0.002 0.002	4.69X10 ⁻²⁰² 2.01X10 ⁻⁵⁹ 3.67X10 ⁻²³ 2.01X10 ⁻¹¹⁸ 8.27X10 ⁻¹⁶⁰	0.302 -0.221 -0.171 -14.500 3.489	0.049 0.048 0.041 0.913 0.493	6.71X10 ⁻¹⁰ 4.48X10 ⁻⁰⁶ 2.99X10 ⁻⁰⁵ 8.36X10 ⁻⁵⁷ 1.43X10 ⁻¹²	5.56×10^{-02} 6.32×10^{-01} 2.61×10^{-01} 8.98×10^{-01} 5.36×10^{-02}	19 19 19 13 19
-0.170 0.138 0.131 0.584 0.208 0.208	0.027 0.029 0.028 0.027 0.028 0.028	2.89X10 ⁻¹⁰ 1.74X10 ⁻⁰⁶ 4.17X10 ⁻⁰⁶ 9.13X10 ⁻¹⁰⁶ 2.14X10 ⁻¹³ 2.14X10 ⁻¹³	-0.564 -0.624 -0.765 -0.040 0.060 0.049	0.019 0.038 0.077 0.002 0.002 0.002	4.69X10 ⁻²⁰² 2.01X10 ⁻⁵⁹ 3.67X10 ⁻²³ 2.01X10 ⁻¹¹⁸ 8.27X10 ⁻¹⁶⁰ 1.01X10 ⁻¹³⁵	0.302 -0.221 -0.171 -14.500 3.489 4.281	0.049 0.048 0.041 0.913 0.493 0.608	6.71X10 ⁻¹⁰ 4.48X10 ⁻⁰⁶ 2.99X10 ⁻⁰⁵ 8.36X10 ⁻⁵⁷ 1.43X10 ⁻¹² 1.95X10 ⁻¹²	5.56×10^{-02} 6.32×10^{-01} 2.61×10^{-01} 8.98×10^{-01} 5.36×10^{-02} 7.40×10^{-02}	19 19 19 13 19 18
-0.170 0.138 0.131 0.584 0.208 0.208 0.171	0.027 0.029 0.028 0.027 0.028 0.028 0.028 0.030	2.89X10 ⁻¹⁰ 1.74X10 ⁻⁰⁶ 4.17X10 ⁻⁰⁶ 9.13X10 ⁻¹⁰⁶ 2.14X10 ⁻¹³ 2.14X10 ⁻¹³ 1.11X10 ⁻⁰⁸	-0.564 -0.624 -0.765 -0.040 0.060 0.049 -0.019	0.019 0.038 0.077 0.002 0.002 0.002 0.002	4.69X10 ⁻²⁰² 2.01X10 ⁻⁵⁹ 3.67X10 ⁻²³ 2.01X10 ⁻¹¹⁸ 8.27X10 ⁻¹⁶⁰ 1.01X10 ⁻¹³⁵ 2.21X10 ⁻²⁶	0.302 -0.221 -0.171 -14.500 3.489 4.281 -8.889	0.049 0.048 0.041 0.913 0.493 0.608 1.767	6.71X10 ⁻¹⁰ 4.48X10 ⁻⁰⁶ 2.99X10 ⁻⁰⁵ 8.36X10 ⁻⁵⁷ 1.43X10 ⁻¹² 1.95X10 ⁻¹² 4.86X10 ⁻⁰⁷	5.56×10^{-02} 6.32×10^{-01} 2.61×10^{-01} 8.98×10^{-01} 5.36×10^{-02} 7.40×10^{-02} 5.31×10^{-02}	19 19 19 13 19 18 10
-0.170 0.138 0.131 0.584 0.208 0.208 0.171 0.178	0.027 0.029 0.028 0.027 0.028 0.028 0.028 0.030 0.027	2.89X10 ⁻¹⁰ 1.74X10 ⁻⁰⁶ 4.17X10 ⁻⁰⁶ 9.13X10 ⁻¹⁰⁶ 2.14X10 ⁻¹³ 2.14X10 ⁻¹³ 1.11X10 ⁻⁰⁸ 3.08X10 ⁻¹¹	-0.564 -0.624 -0.765 -0.040 0.060 0.049 -0.019 0.037	0.019 0.038 0.077 0.002 0.002 0.002 0.002 0.002 0.002 0.003	4.69X10 ⁻²⁰² 2.01X10 ⁻⁵⁹ 3.67X10 ⁻²³ 2.01X10 ⁻¹¹⁸ 8.27X10 ⁻¹⁶⁰ 1.01X10 ⁻¹³⁵ 2.21X10 ⁻²⁶ 1.36X10 ⁻⁴⁶	0.302 -0.221 -0.171 -14.500 3.489 4.281 -8.889 4.760	0.049 0.048 0.041 0.913 0.493 0.608 1.767 0.790	6.71X10 ⁻¹⁰ 4.48X10 ⁻⁰⁶ 2.99X10 ⁻⁰⁵ 8.36X10 ⁻⁵⁷ 1.43X10 ⁻¹² 1.95X10 ⁻¹² 4.86X10 ⁻⁰⁷ 1.67X10 ⁻⁰⁹	5.56×10^{-02} 6.32×10^{-01} 2.61×10^{-01} 8.98×10^{-01} 5.36×10^{-02} 7.40×10^{-02} 5.31×10^{-02} 2.76×10^{-01}	19 19 19 13 19 18 10 2
-0.170 0.138 0.131 0.584 0.208 0.208 0.171 0.178 -0.168	0.027 0.029 0.028 0.027 0.028 0.028 0.030 0.027 0.028	2.89X10 ⁻¹⁰ 1.74X10 ⁻⁰⁶ 4.17X10 ⁻⁰⁶ 9.13X10 ⁻¹⁰⁶ 2.14X10 ⁻¹³ 2.14X10 ⁻¹³ 1.11X10 ⁻⁰⁸ 3.08X10 ⁻¹¹ 2.02X10 ⁻⁰⁹	-0.564 -0.624 -0.765 -0.040 0.060 0.049 -0.019 0.037 0.026	0.019 0.038 0.077 0.002 0.002 0.002 0.002 0.002 0.003 0.003	$\begin{array}{c} 4.69 \times 10^{-202} \\ 2.01 \times 10^{-59} \\ 3.67 \times 10^{-23} \\ 2.01 \times 10^{-118} \\ 8.27 \times 10^{-160} \\ 1.01 \times 10^{-135} \\ 2.21 \times 10^{-26} \\ 1.36 \times 10^{-46} \\ 3.72 \times 10^{-15} \end{array}$	0.302 -0.221 -0.171 -14.500 3.489 4.281 -8.889 4.760 -6.428	0.049 0.048 0.041 0.913 0.493 0.608 1.767 0.790 1.348	6.71X10 ⁻¹⁰ 4.48X10 ⁻⁰⁶ 2.99X10 ⁻⁰⁵ 8.36X10 ⁻⁵⁷ 1.43X10 ⁻¹² 1.95X10 ⁻¹² 4.86X10 ⁻⁰⁷ 1.67X10 ⁻⁰⁹ 1.86X10 ⁻⁰⁶	5.56×10^{-02} 6.32×10^{-01} 2.61×10^{-01} 8.98×10^{-01} 5.36×10^{-02} 7.40×10^{-02} 5.31×10^{-02} 2.76×10^{-01} 7.66×10^{-02}	19 19 19 13 19 18 10 2 7
-0.170 0.138 0.131 0.584 0.208 0.208 0.171 0.178 -0.168 0.143	0.027 0.029 0.028 0.027 0.028 0.028 0.030 0.027 0.028 0.028	2.89X10 ⁻¹⁰ 1.74X10 ⁻⁰⁶ 4.17X10 ⁻⁰⁶ 9.13X10 ⁻¹⁰⁶ 2.14X10 ⁻¹³ 2.14X10 ⁻¹³ 1.11X10 ⁻⁰⁸ 3.08X10 ⁻¹¹ 2.02X10 ⁻⁰⁹ 3.53X10 ⁻⁰⁷	-0.564 -0.624 -0.765 -0.040 0.060 0.049 -0.019 0.037 0.026 0.027	0.019 0.038 0.077 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003	4.69X10 ⁻²⁰² 2.01X10 ⁻⁵⁹ 3.67X10 ⁻²³ 2.01X10 ⁻¹¹⁸ 8.27X10 ⁻¹⁶⁰ 1.01X10 ⁻¹³⁵ 2.21X10 ⁻²⁶ 1.36X10 ⁻⁴⁶ 3.72X10 ⁻¹⁵ 1.93X10 ⁻²⁰	0.302 -0.221 -0.171 -14.500 3.489 4.281 -8.889 4.760 -6.428 5.374	0.049 0.048 0.041 0.913 0.493 0.608 1.767 0.790 1.348 1.204	6.71X10 ⁻¹⁰ 4.48X10 ⁻⁰⁶ 2.99X10 ⁻⁰⁵ 8.36X10 ⁻⁵⁷ 1.43X10 ⁻¹² 1.95X10 ⁻¹² 4.86X10 ⁻⁰⁷ 1.67X10 ⁻⁰⁹ 1.86X10 ⁻⁰⁶ 8.08X10 ⁻⁰⁶	5.56×10^{-02} 6.32×10^{-01} 2.61×10^{-01} 8.98×10^{-01} 5.36×10^{-02} 7.40×10^{-02} 5.31×10^{-02} 2.76×10^{-01} 7.66×10^{-02} 3.26×10^{-01}	19 19 19 13 19 18 10 2 7 5

255 Supplementary Table 13: Details of the datasets used for the SMR analysis detailing *P*_{smr} and *P*_{HEIDI} thresholds.

Study	Number of SMR tests	P _{SMR} threshold	Genes passing P _{SMR} threshold	Genes passing P _{HEIDI} (>0.05) threshold
Blood eQTL; Westra et al	5850	< 8.5 x 10 ⁻⁶	5	1
Blood eQTL; GTEx	4133	< 1.2 x 10 ⁻⁵	3	1
EBV transformed Lymphoctye	1388	< 3.6 x 10 ⁻⁵	2	1
eQTL; GTEx				
mQTL (Aberdeen) 41098		< 1.2 x 10 ⁻⁶	10	0
mQTL (UCL)	29926	< 1.6 x 10 ⁻⁶	6	1

- 260 Supplementary Table 14: Heritability of childhood acute lymphoblastic leukaemia explained
- 261 by genome-wide SNPs estimated using Linkage Disequilibrium Adjusted Kinship (LDAK)
- **method.**

Total SNPs used	Heritability	Standard deviation			
1,553,634	21%	0.065			

Supplementary Table 15: Individual variance in risk associated with the most significant SNPs from each risk loci associated with childhood ALL.
 CHR: Chromosome; RAF: risk allele frequency. *New loci discovered in current meta-analyses. OR: Odds ratio; CI: confidence intervals. OR and CI are derived from current meta-analysis. CHR: chromosome; BP: base pair; % of total variance in risk to childhood ALL was tested under the following

268 Standardised incidence ratios (SIR) of 3.2 (95% CI: 1.5-5.9) as per Kharazmi *et al.*

269

								% of total variance
CHR	SNP (Subtype)	Locus (gene)	Position (BP)	Risk Allele	RAF	OR (95% CI)	P-value	in risk explained
2	rs17481869(<i>ETV6-RUNX1</i>)	2q22.3	146124454	А	0.08	1.74 (1.45-2.09)	2.37x10 ⁻⁰⁹	2.54
5	*rs886285 (High-hyperdiploidy)	5q31.1 (<i>C5orf56</i>)	131765206	т	0.34	1.29 (1.18-1.41)	1.56x10 ⁻⁰⁸	1.61
6	*rs210143 (High-hyperdiploidy)	6p21.31 (<i>BAK1</i>)	33546930	С	0.73	1.30 (1.19-1.43)	2.21x10 ⁻⁰⁸	1.55
7	rs17133805	7p12.2 (<i>IKZF1</i>)	50477514	G	0.32	1.65 (1.56-1.74)	5.28x10 ⁻⁷¹	6.10
8	rs75777619	8q24.21	130185176	G	0.12	1.26 (1.17-1.36)	2.30x10 ⁻⁰⁹	0.62
9	rs113650570	9p21.3 (<i>CDKN2A</i>)	21976402	А	0.02	2.32 (2.03-2.65)	8.06x10 ⁻³⁵	1.82
9	*rs76925697	9q21.31	83747371	А	0.96	1.52 (1.31-1.76)	2.11x10 ⁻⁰⁸	0.75
10	rs10821936	10q21.2 (<i>ARID5B</i>)	63723577	С	0.33	1.80 (1.71-1.89)	1.19x10 ⁻¹⁰⁶	8.50
10	rs3824662	10p14 (<i>GATA3</i>)	8104208	А	0.19	1.29 (1.21-1.38)	3.57x10 ⁻¹⁴	1.11
10	rs2296624	10p12.2 (<i>PIP4K2A</i>)	22856946	С	0.67	1.25 (1.18-1.32)	2.79x10 ⁻¹⁵	1.19
10	rs12779301	10q26.13 (<i>LHPP</i>)	126292655	С	0.66	1.22 (1.15-1.29)	5.72x10 ⁻¹³	0.98
14	rs2239630	14q11.2 (<i>CEBPE</i>)	23589349	А	0.45	1.28 (1.22-1.35)	1.72x10 ⁻²¹	1.72
17	*rs10853104 (<i>ETV6-RUNX1</i>)	17q21.32 (<i>IGF2BP1</i>)	47092076	т	0.47	1.33 (1.21-1.47)	1.82x10 ⁻⁰⁸	2.31
21	rs9976326	21q22.2 (<i>ERG</i>)	39776485	Т	0.25	1.19 (1.12-1.26)	1.11x10 ⁻⁰⁸	0.63

Overall % 31.43%

Supplementary Table 16: Conditional and joint analysis using summary statistics under a stepwise model (GCTA cojo analysis). CHR:

chromosome; bp: base pair; refA: allele tested; freq: frequency; b: Beta; se: standard error; bj: joint analysis beta; bj_se: joint analysis standard

													-
CHR	SNP	bp	refA	freq	b	se	Meta P-value	n	freq_geno	bJ	bJ_se	COJO P-value	LD
7	rs17133805	50477514	G	0.34	0.50	0.03	5.28E-71	20844.3	0.28	0.50	0.03	5.71E-70	0
8	rs75777619	130185176	G	0.14	0.23	0.04	2.30E-09	20776.8	0.12	0.23	0.04	2.37E-09	0
9	rs113650570	21976402	А	0.05	0.84	0.07	8.06E-35	18497.2	0.03	0.63	0.07	8.27E-18	-0.15
9	rs10811644	22025067	Т	0.44	-0.19	0.03	8.66E-13	21993.4	0.46	-2.23	0.07	4.20E-200	0.94
9	rs10757266	22049555	Т	0.46	0.11	0.03	2.73E-05	22181.1	0.48	2.79	0.08	2.44E-273	0.66
9	rs944800	22050898	G	0.66	-0.14	0.03	4.12E-07	21949	0.68	-0.71	0.04	2.30E-63	0.19
9	rs17694555	22051295	G	0.11	0.40	0.04	9.52E-20	20385.9	0.08	0.78	0.06	3.31E-45	0
9	rs76925697	83747371	Т	0.03	-0.42	0.07	2.11E-08	24233.5	0.04	-0.42	0.07	2.16E-08	0
10	rs10821936	63723577	Т	0.59	-0.59	0.03	1.19E-106	21186.2	0.66	-0.59	0.03	2.48E-104	0
10	rs3824662	8104208	А	0.21	0.25	0.03	3.57E-14	20222.8	0.17	0.25	0.03	3.87E-14	0
10	rs4335448	22359075	G	0.76	0.20	0.03	6.05E-11	23252.5	0.75	0.18	0.03	1.42E-09	0
10	rs74229974	22476221	Т	0.20	-0.22	0.03	6.37E-12	23482.8	0.23	-0.18	0.03	9.17E-09	0.16
10	rs2296624	22856946	Т	0.31	-0.22	0.03	2.79E-15	22650.7	0.34	-0.18	0.03	1.34E-10	0
10	rs12779301	126292655	С	0.66	0.20	0.03	5.72E-13	22203.7	0.63	0.20	0.03	6.08E-13	0
21	rs9976326	39776485	Т	0.27	0.17	0.03	1.11E-08	21262.2	0.24	0.17	0.03	6.55E-09	-0.02
21	rs9979478	39807498	Т	0.93	0.27	0.05	1.90E-08	23146.2	0.91	0.28	0.05	1.11E-08	0

error; LD correlation between SNP i and SNP i + 1 from SNPs on the list.

275 References

- Tian, L. *et al.* Long-read sequencing unveils IGH-DUX4 translocation into the silenced IGH
 allele in B-cell acute lymphoblastic leukemia. *Nat Commun* **10**, 2789 (2019).
- Rao, S.S. *et al.* A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. *Cell* **159**, 1665-80 (2014).
- Javierre, B.M. *et al.* Lineage-specific genome architecture links enhancers and non-coding
 disease variants to target gene promoters. *Cell* 167, 1369-1384. e19 (2016).
- Cairns, J. *et al.* CHiCAGO: robust detection of DNA looping interactions in Capture Hi-C data.
 Genome Biol 17, 127 (2016).
- Qian, M. *et al.* Whole-transcriptome sequencing identifies a distinct subtype of acute
 lymphoblastic leukemia with predominant genomic abnormalities of EP300 and CREBBP.
 Genome Res 27, 185-195 (2017).
- Alexander, D.H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in
 unrelated individuals. *Genome Res* 19, 1655-64 (2009).

289 7. Perez-Andreu, V. *et al.* Inherited GATA3 variants are associated with Ph-like childhood acute
290 lymphoblastic leukemia and risk of relapse. *Nat Genet* 45, 1494-8 (2013).

- Lloyd-Jones, L.R. *et al.* The Genetic Architecture of Gene Expression in Peripheral Blood. *Am J Hum Genet* 100, 371 (2017).
- Grundberg, E. *et al.* Mapping cis- and trans-regulatory effects across multiple tissues in twins. *Nat Genet* 44, 1084-9 (2012).
- Westra, H.J. *et al.* Systematic identification of trans eQTLs as putative drivers of known
 disease associations. *Nat Genet* 45, 1238-1243 (2013).
- 297 11. Coetzee, S.G., Coetzee, G.A. & Hazelett, D.J. motifbreakR: an R/Bioconductor package for
 298 predicting variant effects at transcription factor binding sites. *Bioinformatics* **31**, 3847-9
 299 (2015).