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Supplementary Information

Supplementary Note 1. Details of Twisted Double Bilayer Graphene Continuum Model

Before getting into the detailed calculation, here we clarify some subtleties in the Moiré continuum approach and tight-binding
parameters. As we will see, this is crucial because it can affect the physical band structures of a twisted double bilayer graphene.
First, let us fix the lattice convention. Let a = 1.42 Å be the distance between carbon atoms. The original hexagonal lattice is
defined by
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Here, K±-point is given by 4π
3
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(±1, 0). Once we twist two layers, Moiré structure is formed with a spatial modulation given

by linear combinations of {Rθ/2G1,Rθ/2G2,R−θ/2G1,R−θ/2G2}, where Rθ rotates a vector by angle θ counterclockwise.
Periodicity of the given system is then governed by the smallest reciprocal lattice vector that can be obtained by linear combina-
tion. These are (Rθ/2 −R−θ/2)G1 and (Rθ/2 −R−θ/2)G2, which correspond to Moiré reciprocal lattice vectors. Therefore,
we obtain GM
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Before getting into detail, let us fix the Fourier transform convention by c†k =
∑
R e

ik·Rc†R. Here, c†R creates a Wannier orbital
W (r −R) centered atR. This is consistent with the other convention used throughout the paper, where |ψk〉 =

∑
R e

ik·R |R〉.
Under this choice, whenever there is a hopping from R to R′ in real space, one obtains the term proportional to e−ik·(R

′−R)

in the Bloch Hamiltonian. Here, the tight-binding model for bilayer graphene can be fully characterized by the parameters
(γ0, γ1, γ3, γ4,∆), where the hopping term for nearest neighbor γ0 is intentionally taken to have an additional minus sign from
the hopping integral so that all γi’s are positive. The sign difference between vertical (Vppπ) and horizontal hopping (Vppσ)
overlap integral is originated from the phase structure of 2pz orbital. (See how Slater-Koster parameters [1] are calculated) In
Ref. [2], the sign of the trigonal warping γ3 is taken to be negative, which is an inaccurate choice of the parameter because
different sign convention would flip the shape of trigonal warping. Following the DFT result in Ref. [3], positive sign in front of
γ3 should be a proper choice for realistic materials.

Under this convention, where the phase structure for 2pz orbitals at every carbon site is taken to be equivalent, one can derive
the Moiré hopping term as the following. Once we have a Moiré structure, between momentum points of top and bottom layers,
there exists Moiré-hopping term whose momentum transfer is given by linear combinations ofGM

1 andGM
2 . As we are interested

in a Moire band structure near charge neutral point, we only consider electron momenta near Dirac points for top and bottom
layers,R±θ/2K±-points. For example, with respect toR±θ/2K+, the momentum transfer condition can be written as

ktop − kbot ≡ 0 mod GM
1,2 ⇒ (ktop −Rθ/2K+)− (kbot −R−θ/2K+) ≡ q1 mod GM

1,2, (3)

where q1 = (R−θ/2 −Rθ/2)K+ = KM (0,−1) with KM =
8π sin θ

2

3
√

3a
. Let us denote Kt

+ =
(
Rθ/2K+

)
and Kb

+ =
(
R−θ/2K+

)
.

The Moiré state with a momentum p is given by a superposition of Bloch states of top and bottom layers with (absolute) momenta
{p + n1G

M
1 + n2G

M
2 |n1, n2 ∈ Z}. Since we want to solve the equation in terms of Dirac Hamiltonians with respects to Kb,t

+ -
points, we do the following precedure. Define p̃ = p − Kt

+. Then, the Moiré state with momenta p is composed of the Bloch
states with the following momenta defined with respect to Kt

+ and Kb
+:

Top Layer : {p̃, p̃−GM
1 , p̃−GM

2 , p̃−GM
1 +GM

2 , . . . } with respect to Kt
+

Bottom Layer : {p̃− q1, p̃− q2, p̃− q3, p̃− q2 +GM
2 , . . . } with respect to Kb

+ (4)

where q2 = (GM
1 + q1) = KM (

√
3/2, 1/2) and q3 = (GM

2 + q1) = KM (−
√

3/2, 1/2). Therefore, the state with a momentum
p = p̃ + Kt

+ can be solved by considering coupling among bloch states from H(R−θ/2[p̃ − K t
lat]) and H(Rθ/2[p̃ − Kb

lat]).
Here, K t,b

lat is a vector denoting the location of each lattice point in {n1G
M
1 + n2G

M
2 : n1,2 ∈ Z} for the top layer and

{q1 + n1G
M
1 + n2G

M
2 : n1,2 ∈ Z} for the bottom layer in the k-space.
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Supplementary Figure 1. Real space lattice and Brillouin zone for a single graphene layer, and Brillouin zone origniated fromK+ valley for
a twisted (double) bilayer graphene. The figure illustrates all vectors labeled for the discussion in the manuscript.

Let top and bottom layer have relative shift δ. For convenience, take a frame where the bottom layer is fixed and the top layer
is rotated by θ. Then, Each original Bloch state is represented as∣∣ψt

p,β

〉
=

1√
N

∑
R

eip·(R
′+τ ′β)

∣∣R′ + τ ′β
〉
,
∣∣ψb
k,α

〉
=

1√
N

∑
R′

eik·(R+τα) |R+ τα〉 (5)

where α, β are sublattice indices and τα is associated displacement. Here, primed coordinate R′ = Rθ(R + δ) and τ ′ = Rθτ
are for the top layer, meaning that it is rotated by θ along counter-clockwise direction. Here, R = n1a1 + n2a2. The initial
displacement δ between layers is not important in the end, as we will see. Let τ0 = a(0, 1). In the mono-mono case δ = 0 for
A − A stacking and δ = τ0 for A − B stacking. A − B stacking means that A-site of the top layer is placed at the location of
B-site of the bottom layer.

By definition, A-site is original site spanning the lattice, and B-site is displaced by τ0 with respect to the A-site. In the
bilayer(AB)-bilayer(AB) case, δ = −τ0 because between layers it is BA stacking. For the following calculation, we take
δ = −τ0 and d = 0. Now, hopping matrix element from top second layer to bottom first layer Hb,t can be evaluated by

Tαβkp′ =
〈
ψb
kα

∣∣HT

∣∣ψt
p′β

〉
=

1

N

∑
R,R′

e−ik(R+τα)+ip(R′+τ ′β) 〈R+ τα|HT

∣∣R′ + τ ′β
〉

=
〈
ψb
kα

∣∣HT

∣∣ψt
p′β

〉
=

1

N

∑
R,R′

e−ik(R+τα)+ip(R′+τ ′β) · t(R+ τα −R′ − τβ)

=
1

N

∑
R,R′

e−ik(R+τα)+ip(R′+τ ′β) 1

Ω

∫
d2q tqe

iq·(R+τα−R′−τ ′β)

=
1

NΩ

∫
d2q

∑
R,R′

tqe
−i(k−q)·(R+τα)+i(p−q)(R′+τ ′β)

=
∑
q∈BZ

tq e
−iG1·τα+iG′2(τ ′β+δ′) non-zero only when k − q = G1 ∈ G and p− q = G′2 ∈ G′

=
∑
g1,g2

tk−g1 e
−ig1·τα+ig2·(τβ+δ) · δp+g1,k+g′2

=
∑
g1,g2

tk+g1 e
ig1·τα−ig2·(τβ+δ) · δp−g1,k−g′2 (6)

where we used t(R) = 1
N

∑
q e

iq·Rtq ≈ 1
Ω

∫
d2q eiq·Rtq , and G and G′ are sets of reciprocal lattice vectors for original bottom

and top lattices, respectively. In principle, for a different gauge choice t(R) depends on α, β indices as well, but since we took
the gauge choice where all phase structures for 2pz orbitals are the same, the dependence will be trivial. In the last line, we just
did change of variables. Now we can see that it is nonvanishing only when

p− k = g1 −Rθg2 for some reciprocal lattice vectors g1, g2 ∈ G (7)
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Considering that tq is decreasing fast with q, we can only retain most relevant terms where k + g1 is minimized. In terms of a
momentum relative to the Kt,b

+ points, we have

(p−Kt
+)− (k −Kb

+) = (g1 −Rθg2) + q1. (8)

Naively, when we consider k + g1, since k does not deviate much from Kb
+-point, the most relevant tk+g1 would be given

when g1 = g2 = 0, G3,−G1 so that
∣∣Kb

+ + g1

∣∣ =
∣∣Kb

+

∣∣. For cases with g1 6= g2, (i) the energy difference between top and
bottom electrons are very large, and (ii) tk+g1 would be small, and therefore we ignore such cases. In fact, each of these cases
corresponds to when p̃− k̃ = q1, q2, q3:

g1 = 0 −→ p̃− k̃ = q1

g1 = G3 −→ p̃− k̃ = q1 +G3 −RθG3 = q1 +GM
1 = q2

g1 = −G1 −→ p̃− k̃ = q1 −G1 +RθG1 = q1 +GM
2 = q3. (9)

With this understanding, one can write down three hopping matrices as the following:

T (q1) =

(
1 1
1 1

)
T (q2) =

(
z 1
z∗ z

)
= e−iG3·δ

(
1 z∗

z 1

)
T (q3) =

(
z∗ 1
z z∗

)
= eiG1·δ

(
1 z
z∗ 1

)
(10)

where z = e2πi/3 and since G3 · τ0 = G1 · τ0 = 2π/3. Due to the fact that δ = −τ0 instead of τ0, the form is slightly different
from the TBG case [4, 5]. By proper phase redefinition of Bloch states represented by momentum lattices (gauge degrees of
freedom for Bloch states), we can absorb z and z∗ factors in front of matrices. Thus, the form of the hopping matrices can be
simplified. Moreover, an initial displacement between two layers is not important. In this derivation, it is not difficult to notice
that diagonal and off-diagonal entries for Moiré hopping matrices can be different. If there is an additional spatial modulation
with a Moiré scale, given differently between AA(BB) and AB(BA) sites in t(R + τα −R′ − τβ), one would obtain a different
values for tk, as explained in Ref. [6, 7]. Finally, to obtain an energy spectrum at Moiré momentum k, one needs to diagonalize
the following Hamiltonian with a certain cutoff:

H =

Ht(k) T †(qi) ...
T (qi) Hb(k + qi) ...
... ... ...

 (11)

Now, we want to point out some subtlety for the generic Moiré hopping matrix:

Tn = w0 + w1e
2πnσ3/3σ1e

−2πnσ3/3 (12)

where the Pauli operator σi acts on the sublattice basis. This is the form of the hopping term written in Ref. [4], where the K
and K′ Dirac Hamiltonian was written as1

H(K + k) = ~vF

(
0 kx − iky

kx + iky 0

)
H(K′ + k) = −~vF

(
0 kx + iky

kx − iky 0

)
. (13)

Now, imagine we choose a different basis choice, for example multiplying (−) sign for the B-sublattices. This is equivalent to
apply σ3 transformation to the operators, and as a result, both H(K + k) and H(K′+ k′) would change its sign. This is the basis
chosen in Ref. [5]. Accordingly, interlayer hopping term T0 would change as well, from w0 +w1σ1 to w0−w1σ1 and similarly
for others.

1 H(K + k) in the MacDonald’s paper is a Hamiltonian with respect to the K′-point in our convention.
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Supplementary Note 2. Supplementary Note 2. Interaction Projection and Intervalley Hund’s Coupling

Here, we provide the details for the procedure of projecting the Coulomb interaction on the isolated flat band and how to
derive the intervalley Hund’s coupling. The interaction Hamiltonian can be written as

Hint =
1

2

∫
dr1dr2ρ(r)V (r − r′)ρ(r′). (14)

Here, r integration is over the whole space not just the unit cell. For the screed Coulomb interaction, V (r) is given by

V (r) =
e2

4πεε0

e−κ|r|

|r|
. (15)

where κ denotes the inverse screening length. The density operator is given by

ρ̂(r) =
∑

n,n′,σ,σ′,τ,τ ′

c†n,σ,τ (r)cn′,σ′,τ ′(r), (16)

where σ, σ′ sum over spin states ↑, ↓ and τ , τ ′ sum over vallyes ±, and n sums over the relevant set of bands. In the following,
we will restrict ourselves to the isolated Moiré band and drop the band index n. Expansion in the Bloch basis is done by writing

cσ,τ (r) =
1√
N

∑
k∈BZ

ψσ,τ,k(r)cσ,τ (k), (17)

where N is the number of momentum point in the first Brillouin zone which equals to the total number of Moiré unit cells in
system, and ψk(r) are the Bloch states satisfying ψk(r+R) = eik·Rψk(r) for a given Moiré lattice translationR. We now split
the density into intra- and intervalley components

ρ̂(r) =
∑
σ,τ

[ρ̂+
σ,τ (r) + ρ̂−σ,τ (r)], (18)

ρ̂±σ,τ (r) =
1

N

∑
k,k′∈BZ

ψ†τ,k(r)ψ±τ,k′(r)c†σ,τ (k)cσ,±τ (k′). (19)

Here, we used the fact that different spin states are orthogonal. If valley symmetry is exact, states belonging to different valleys
would also be orthogonal leading to a vanishing intervalley density ρ−σ,τ . However, valley symmetry is broken on the scale of
|K−K ′|−1 leading to a very small intervalley Hund’s coupling term. This term can be usually neglected since it is much smaller
than the interaction between intravalley densities. Nevertheless, contributions from this term can lift the degeneracy between
different broken symmetry states which are otherwise exactly degenerate, which makes it important to include it in our analysis.
We note that the Bloch states are generally vectors with some internal index denoting layer, sublattice, etc which means that the
combination ψ†ψ above denotes an inner product in these internal indices.

The Bloch states can be written in terms of the periodic function uk(r) which can be expanded in a Fourier series in reciprocal
lattice vectorsG leading to

ψk(r) = eik·ruk(r) =
1√
|Ω|

∑
G

ei(G+k)·ruk(G), (20)

where G is the Moiré reciprocal lattice vector, and Ω is the area of the Moiré unit cell. Here, uk(G) are normalized such that∑
G u
†
k(G)uk(G) = 1. In addition, we can choose the gauge such that the Bloch states satisfy

uk+G0(G) = uk(G+G0). (21)

If the band has a non-vanishing Chern number, it is impossible to choose a smooth and periodic gauge and there would be an
additional phase factor in front of the RHS [8]. In this case, the condition (Eq. 21) implies a discontinuity of the phase of uk at
the Brillouin zone boundaries.

The interacting Hamiltonian in momentum space is given by

Hint =
1

2 Vol

∑
q

ρ̂(q)V (q)ρ̂(−q) (22)
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where V (q) =
∫
drV (r)e−iqr and Vol = NΩ. We note that the Fourier transform of ρ±(r) is not restricted to momenta

inside the Moiré BZ and it should be expressed in terms of a general momentum q. The density ρ̂(q) is generally non-periodic
in q under reciprocal Moiré lattice translations since the Bloch states have a non-trivial spatial structure inside the Moiré unit
cell. Instead, it decays over some momentum scale comparable to the Moiré Brillouin zone size. On the other hand, the Bloch
states has no structure inside the unit cell of the original bilayer graphene where a tight-binding description of the orbitals was
employed. Hence, the density ρ̂(q) is periodic under any reciprocal lattice translation for the original system. As a result,
ρ̂(q) consists of several identical narrow peaks centered at reciprocal lattice vectors of the original bilayer graphene G̃ for the
intravalley density ρ+ or at K−K ′+ G̃ for the intervalley density ρ−. This poses a problem since it implies that the summation
over q in Eq. 22 diverges.

To resolve this issue, we notice that the periodicity of ρ̂(q) in reciprocal space for the original lattice is an artifact of the
tight-binding approximation, where an atomic orbital is taken to be point-like. If we instead use the actual shape of the Wannier
orbital, the density operator ρ̂(q) will decay for momenta larger than a certain cutoff Λ which is given by the inverse size of
the Wannier orbitals. Rather than attempting to precisely determine the value of Λ from the graphene Wannier orbitals, we will
consider Λ as a phenomenological parameter of the same order as the size of the original Brillouin zone. This will have the
effect of restricting the sum over momenta in Eq. 22 to the vicinity of q = 0 for the intravalley density ρ̂+(q) and the vicinity of
K −K ′ and R±2π/3(K −K ′) for the intervalley density ρ̂−(q).

Therefore, we restrict ourselves to the vicinity of 0 for ρ+(q) and K −K ′ (and its rotation related points) for ρ−(q). In the
following, we perform Fourier transform in terms of small deviations around these momenta by defining ρασ,τ (q) as(note that
ck+G = ck):

ρασ,τ (q) ≡
∫
NΩ

dre−i[q−
1−α
2 (Kτ−Kατ )]·rρα(r) =

∑
k

λατ,q(k)c†σ,τ (k)cσ,ατ (k + q), α = ± (23)

Here, we introducedK+ = K andK− = K ′ and we used that ψτ,k(r) =
∑
G e

i(k+Kτ+G)·ruτ,k(G). In addition, we introduced
the intra- and intervalley form factors defined by

λ±τ,q(k) =
∑

k,k′∈MBZ

∑
G,G′

δKτ+k+G+q,K±τ+k′+G′ · u†τ,k(G)u±τ,k′(G
′)

=
∑
G

u†τ,k(G)u±τ,p(k+q)(G+G(k + q)) ≡ 〈uτ,k|u±τ,k+q〉 (24)

The function p(q) and G(q) are defined to give the projection onto the first BZ and the reciprocal lattice vector corresponding
to q, respectively, such that q = G(q) + p(q). The last equality is important for the numerical implementation because the
summation over q can go outside the first BZ whereas the numerical calculation is only carried out in the first BZ.

Time-reversal symmetry dictates that

uτ,k(G) = u∗−τ,−k(−G+G0), (25)

for some reciprocal lattice vectorG0. This relation can be exploited for the evaluation of form factors. In fact, a direct numerical
evaluation givesG0 in our setting.

The form factors satisfy the identities

[λ±τ,q(k)]∗ = λ±±τ,−q(k + q), λ±τ,q(k) = [λ±−τ,−q(−k)]∗,

λ±τ,q(k +G) = λ±τ,q(k). (26)

The first identity follows from the definition of the form factor, the second from time-reversal symmetry (Eq. 25) and the third
from our periodic gauge choice (Eq. 21).

Finally, the resulting interaction can be expanded as a sum of four terms: ρ+ρ+ containing intravalley densities, ρ−ρ−

containing intervalley densities and two cross terms ρ+ρ−. The latter ones have to vanish since they necessarily involve densities
at large momenta q±(K+−K−) (due to the factor λq which is assumed to decay with q). The ρ−ρ− terms is only non-vanishing
when τ = −τ ′. In addition, since q is much smaller than |K+ −K−|, we can ignore the q dependence in the interaction term
and replace it by the constant V (|K+ −K−|). Thus, the resulting Hamiltonian consists of two parts

Hint = H0 +HJ , (27)

H0 contains the coupling between intravalley densities ρ+ρ+ whereas HJ contains the coupling between intervalley densities
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ρ−ρ−. They are given explicitly by

H0 =
V0

2N

∑
σ,σ′,τ,τ ′,q

∑
k,k′∈BZ

vqλ
+
τ,q(k)[λ+

τ ′,q(k′)]∗c†σ,τ (k)cσ,τ (k + q)c†σ′,τ ′(k′ + q)cσ′,τ ′(k′), (28)

HJ =
3J

2N

∑
σ,σ′,τ,q

∑
k,k′∈BZ

λ−τ,q(k)[λ−−τ,−q(k′ + q)]∗c†σ,τ (k)cσ,−τ (k + q)c†σ′,−τ (k′ + q)cσ′,τ (k′), (29)

where the intravalley and intervalley form factors λ±τ,q(k) are defined as

λ±τ,q(k) = 〈uτ,k|u±τ,k+q〉. (30)

All momenta in Eq. 28 and Eq. 29 are measured in units of qM = 4πθ
3
√

3a
with vq = |qM |/

√
q2 + κ2 denoting the dimensionless

screened Coulomb interaction with a screening length 1/κ. The main source of screening is from the gate, which has the distance
about 30-50 nm from the sample. The distance is comparable to the Moiré length scale, implying that the screening length can
be important. In the following calculation, we would use κ = 5 × 107 m−1. Rough estimations for V0 and J provide the scale
of the two interaction terms and are given by

V0 =
e2

2εε0|Ω|qM
=

e2θ

4πεε0a
≈ 176

θo

ε
meV,

J =
e2

2εε0|Ω||K −K ′|
=

e2θ2

4πεε0a
≈ 3.1

(θo)2

ε
meV. (31)

Here, we used |Ω| = 3
√

3a2

2θ2 and used θo to denote the value of θ in degrees. Using a value of ε of about 5 at twist angles
around 1o yields V0 ≈ 35 meV and J = 0.6 meV. We see that the J term is significantly smaller than the V0 term. It can be
important, however, since it identifies the two separate spin-rotation symmetry for K± valleys SU(2)+ × SU(2)− down to the
single spin-rotation SU(2) symmetry, while preserving valley U(1) symmetry. Thus, it can lift the degeneracy between some
symmetry breaking states which are degenerate on the level of the V0 interaction. The J term generally has the effect of favoring
spin alignment and can be written in the form of inter-valley Hund’s coupling as in [9].

We notice that the interaction term is invariant under the gauge transformation

cσ,τ (k)→ eiθτ (k)cσ,τ (k), (32)

λτ,q(k)→ ei(θτ (k)−θτ (k+q))λτ,q(k). (33)

Time-reversal symmetry imposes an additional constraint on the gauge transformation, θτ (k) = −θτ (−k).
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Supplementary Note 3. Supplementary Note 3. Hartree-Fock calculation

Here, we provide the details for the Hartree-Fock calculation. Throughout this section, we neglect the Hund’s coupling term
which is discussed in the previous section and drop the superscript ± from the form factor λ such that λτ,q(k) = λ+

τ,q(k) since
we only consider the intravalley form factor here.

We now move on to the general setup for the Hartree-Fock mean field theory. Define the expectation value

Mστ,σ′τ ′(k,k′) = 〈c†σ,τ (k)cσ′,τ ′(k′)〉, (34)

which we will assume to be diagonal in k and k′,M(k,k′) = δk,k′M(k). In the following, we will introduce the combined index
α = (σ, τ) such that M(k) is a matrix with components Mα,α′(k). Next, we expand the interaction (Eq. 27) in the difference
c†αcα′ −Mα,α′ and neglect terms beyond linear order.

The resulting mean field Hamiltonian has the form

HMF = HK +HV ,

HK =
∑

k

c†k[ξ(k) + h0(k) + h1(k)]ck,

HV = −1

2

∑
k

tr[h0(k) + h1(k)]MT (k). (35)

Here, ck is a column vector in the index α, ξ(k) is a diagonal matrix containing the single particle energies ξ↑/↓,±(k) and h0,1(k)
are 4 × 4 matrices in α given by

h0 =
V0

N

∑
G,k′

{
vGΛ+

G(k) trM(k′)[Λ+
G(k′)]∗ − vG+k′Λ

+
k′+G(k)MT (k + k′)[Λ+

k′+G(k)]∗
}
, (36)

and

h1 =
3J

N

∑
G,k′,τ

{
PτΛ−G(k)τx trP−τΛ−−G(k′)τxMT (k′)]− PτΛ−k′+G(k)τxM

T (k + k′)P−τ [Λ−−k′−G(−k)]T τx
}
. (37)

The matrix Λ±q (k) simply contains the form factors defined in Eq. 30

[Λ±q (k)]α,α′ = δσ,σ′δτ,τ ′λ
±
τ,q(k), (38)

and P± = 1
2 (1± τz) is the projector on the ± valley with τx,y,z denoting the Pauli matrices in the valley space.

In both Eq. 36 and Eq. 37, the first term is a Hartree term whereas the second is a Fock term. Hartree terms were neglected in
some of the previous mean-field studies [5, 9] since they are expected to couple only to the density which is determined by the
filling in the gapped phase and is independent of the symmetry-breaking order. This is, however, not true in the presence of the
form factors which are not the same for the two valleys λ±+,q(k) 6= λ±−,q(k). As a result, the Hartree-term also couples to the
valley density and it cannot be neglected.

It is important here to point out one major difference between our approach and the one employed recently in a self-consistent
Hartree-Fock mean field study in twisted bilayer graphen [10]. In that work, the Hartree-Fock corrections to the flat bands
coming from all other (∼ 150) bands were taken into account. Here, we will instead make the assumption that the effect of
the Hartree-Fock contributions from the other bands is already included at some level in the model parameters which should be
either fit to experiments or obtained from ab initio studies at charge neutrality [11, 12]. Thus, we only include the effects arising
from filling the isolated band.

To write the self-consistency condition, we diagonalize h0(k) + h1(k) by introducing the variables dk = Ukck for some
unitary Uk. We then impose the constraint Mα,α′(k) = 〈c†α(k)cα′(k)〉. In the following, we will only consider possible gapped
phases at integer fillings ν. In this case, the self-consistency condition has the form

M(k) = UTk χU
∗
k , (39)

where χ is a k-independent matrix containing ν ones along the diagonal and zeroes everywhere else. This means that M(k) is a
projection operator satisfying

M(k)2 = M(k) = M(k)†, trM(k) = ν (40)
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ν = 2 Example of M(k) Sym. Gen.

SP (1 + σzτ0)/2 σz , τz , τxK
VP (1 + σ0τz)/2 σz , σx, τxK

SVL (1 + σzτz)/2 σz , τz , σxτxK
IVC (1 + σ0τx)/2 σz , σx, τxK

SIVCL (1 + σxτx)/2 σx, σzτz , τxK

ν = 1, 3 Example of M(k) Sym. Gen.

SVP (1 + σzτ0)(1 + σ0τz)/4 σz , τz
SPIVC (1 + σzτ0)(1 + σ0τx)/4 σz , τxK

SVLIVC (1 + σzτz)(1 + σxτx)/4 σzτz , σxτxK

Supplementary Table I. Examples of order parameter M(k) and corresponding independent generators of preserved symmetries for all
possible translation-symmetric gapped states at half ν = 2 and quarter ν = 1 fillings. Note that the M(k) can take a more general form. For
example, in IVC or SIVCL, τx can be replaced by cxτx + cyτy with c2x + c2y = 1. Also, for any spin-polarized state, σz can be replaced by
any σ = sin θ cosφσx + sin θ sinφσy + cos θσz . Here, τxK is a spinless time-reversal, where K is an anti-unitary symmetry. Caveat: For
SVLIVC (which is like SVL+SIVCL) state at ν = 1, 3, only a certain product structure (in this case spin Sz-locked SVL and spin Sx-locked
SIVCL) would be allowed.

Our assumption that the phase is gapped has to be checked self-consistently by computing the mean field band structure

εk = ξk + U†khkUk, (41)

and ensuring that correlation induced gap for filling ν defined as

∆ = min
k
εν+1,k −max

k
εν,k (42)

is positive. Here, we assumed that the mean field bands εα,k are sorted in order of increasing energy. (α = 1, 2, 3, 4)
We notice that M(k) is, in general, not gauge invariant. Instead it transforms as

Mσ,τ ;σ′,τ ′(k)→ e−i(θσ(k)−θσ′ (k))Mσ,τ ;σ′,τ ′(k), (43)

under the gauge transformation (Eq. 33). In the following mean field analysis, we will choose the gauge such that θ−(k) = θ+(k)
which guarantees the gauge independence of M(k).

A. Half-filling ν = 2

To understand the symmetry breaking at ν = 2, we notice that the order parameter can be written as

M(k) =
1

2
(1 +Q(k)), Q(k)2 = 1, trQ(k) = 0 (44)

Q(k) can then be expanded in terms of the generators σiτj as described in the main text. In the absence of inter-valley Hund’s
coupling, the problem possesses an SU(2)×SU(2) symmetry corresponding to independent spin rotations in each valley which
are generated by σx,y,zτ0,z in addition to UV (1) valley charge conservation generated by τz and time-reversal symmetry given
by T = τxK. Inter-valley Hund’s coupling further breaks the SU(2)×SU(2) to SU(2) corresponding to overall rotations. The
generators can be grouped into 5 categories according to the symmetries they break as summarized in Table I. We notice that
all these terms commute or anticommute with the generators of spin rotation σx,z , of UV (1) valley-charge conservation τz and
with time-reversal symmetry. In fact, when considering possible symmetry broken states in the limit of flat bands and decoupled
valleys, we can always restrict ourselves to matrices Q(k) which satisfy this requirement (for some choice of the generators of
the symmetries). The reason is that such order are always energetically more favorable. To see this, consider a ’mixed’ order
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given by

Q(k) = cos θQ1(k) + sin θQ2(k), Q2
1,2 = 1, {Q1, Q2} = 0 (45)

The Fock contribution to the mean-field energy is given by

EHF[Q] = E0 +
V0

N

∑
G,k′

{
vG tr Λ+

G(k)M(k) trM(k′)[Λ+
G(k′)]† − vG+k′ tr Λ+

k′+G(k)Q(k + k′)[Λ+
k′+G(k)]†Q(k)

}
(46)

Substituting the mixed order (45), we find that the mixed term containing both Q1 and Q2 has to vanish since there is some
symmetry generator which commutes with Q1 and anticommutes with Q2 (note that the form factors are invariant under all
symmetries). This implies that

EHF[cos θQ1(k) + sin θQ2(k)] = E0 + cos2 θEHF[Q1] + sin2 θEHF[Q2] (47)

Since the Hartree-Fock solutions has to be extrema of the Hartree-Fock energy functional, we conclude that only pure orders
which either commute or anticommute with each symmetry generator are possible self-consistent solution. This justifies restrict-
ing ourselves to the list of orders provided in Table I in the main text: SP, VP, SVL, IVC, and SIVCL (such order parameters are
in general k-dependent and may have more complicated forms than the ones written in the second column of the figure, but they
have to respect the same symmetries).

If we first neglect the intervalley Hund’s coupling, we notice that the mean-field energies of the SP and SVL are equal as well
as the IVC and SIVCL since they are related by rotating the spin in one of the valleys. Thus, in the following discussion, we can
restrict ourselves to VP, SP, and IVC orders.

1. Valley polarized (VP) state

A valley polarized states breaks time-reversal but preserves spin rotation and valley charge. Together with the requirement
that the order parameter has the form (44), this yields

MVP(k) =
1

2
σ0(1 + τz). (48)

The eigenvalues of hk are given by

εσ,+,k = ξ+,k −
V0

N

∑
G,k′

{
vG+k′ |λ+,k′+G(k)|2 − 2vGλ+,G(k)λ∗+,G(k′)

}
, (49)

εσ,−,k = ξ−,k +
2V0

N

∑
G,k′

vGλ−,G(k)λ∗+,G(k′). (50)

We now need to check the correlated gap defined as

∆VP ≡ min
k,σ

εσ,−,k −max
k′,σ′

εσ′,+,k′ > 0, (51)

is positive, so that the fully valley polarized state is a proper gapped state.

The total energy of the valley polarized state is obtained by adding the kinetic energy of the filled bands and the potential
energy leading to

EVP = 2
∑

k

ξ+(k) +
2V0

N

∑
G

vG

∣∣∣∑
k

λ+,G(k)
∣∣∣2 − V0

N

∑
q,k

vq|λ+,q(k)|2. (52)
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2. Spin polarized (SP) state

Next we assume a spin polarized state along the z-direction in both valleys. Such state breaks spin-rotation but preserves
time-reversal and valley charge conservation with the order parameter given by

MSP(k) =
1

2
τ0(σ0 + σz). (53)

The energy eigenvalues are

ε↑,τ,k = ξτ,k −
V0

N

∑
G,k′

{
vG+k′ |λτ,k′+G(k)|2 − vGλτ,G(k)

∑
τ ′

λ∗τ ′,G(k′)

}
, (54)

ε↓,τ,k = ξτ,k +
V0

N

∑
G

vGλτ,G(k)
∑
τ ′,k′

λ∗τ ′,G(k′). (55)

We also require the gap ∆SP = mink,τ ε↑,τ,k −maxk′,τ ′ ε↑,τ ′,k′ to be positive so that the spin polarized state is a proper gapped
state.

The total energy of the spin polarized state is given by

ESP =
∑
τ,k

ξτ (k) +
V0

2N

∑
G

vG

∣∣∣∑
τ,k

λτ,G(k)
∣∣∣2 − V0

2N

∑
q,τ,k

vq|λτ,q(k)|2. (56)

Comparing to the VP state, we find that the two phases have exactly the same ground state energy. This follows from time-
reversal symmetry which implies that ξ−(k) = ξ+(−k) and λ−,G(k) = λ+,G(−k) as well as |λ−,q(k)| = |λ+,−q(−k)|. Using
the relation

∑
k λ+,G(k) =

∑
k λ−,G(k), one can show that the total energies as well as the gaps are the same for VP and SP

states.

3. Intervalley coherent (IVC) order

The intervalley coherent order parameter is given by

MIVC(k) = σ0

(
cos2 θk

2
1
2 sin θke

−iφk

1
2 sin θke

iφk sin2 θk
2

)
. (57)

We note that it is not possible in general to take the fully polarized limit in the x − y plane and at the same time fulfill the
self-consistency conditions. Hence, we include a small z valley polarization parametrized by the angle θk. We notice that the
state (Eq. 57) will not break time-reversal symmetry provided that θ−k = π− θk and φ−k = −φk which implies that the average
valley polarization

∑
k cos θk vanishes.

The mean field Hamiltonian has the form

hk =

(
fk +Ak Bk

B∗k fk −Ak

)
, (58)

with fk, Ak, Bk given by

fk =
∑
τ

{
1

2
ξτ (k)− V0

4N

∑
q

vq|λτ,q(k)|2(1 + cos θk+q) +
V0

2N

∑
G,k′,τ ′

vGλτ,G(k)λτ ′,G(k′)(1 + τ ′ cos θk′)

 , (59)

Ak =
∑
τ

τ

1

2
ξτ (k)− V0

4N

∑
q

vq|λτ,q(k)|2(1 + τ cos θk+q) +
V0

2N

∑
G,k′,τ ′

vGλτ,G(k)λτ ′,G(k′)(1 + τ ′ cos θk′)

 , (60)

Bk = − V0

2N

∑
q

vqλ+,q(k)λ∗−,q(k) sin θk+k′e
−iφk+k′ . (61)
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The self-consistency condition reads

tanφk = − ImBk

ReBk
, tan θk = −|Bk|

Ak
, (62)

where energy eigenvalues are given by

ε±(k) = fk ±
√
A2

k + |Bk|2, (63)

with the gap given by ∆IVC = mink ε+,k −maxk′ ε−,k′ which should be positive for a proper gapped phase. The results of the
energy competition between the VP/SP phase and the IVC state obtained by numerically solving the self-consistency equation
are given in the main text.

4. Effect of intervalley Hund’s coupling

As we have seen above, the three distinct states with spin polarization, valley polarization or spin-valley locking are degenerate
in the absence of intervalley Hund’s and their energy is always lower than the energy of the valley off-diagonal orders (IVC and
SIVCL). In the following, we want to investigate the effect of intervalley Hund’s coupling on these three states. Since this term
J is much smaller than the main part of the interaction V0, it suffices to compute it for the three valley-diagonal orders since the
valley off-diagonal orders are already energetically unfavorable on the level of V0. Substituting in (37) we find that

EJ =


− 3J
N

∑
τ,k,q |λ−τ,q(k)|2 : SP

0 : VP
3J
N

∑
τ,k,q |λ−τ,q(k)|2 : SVL

(64)

B. Quarter-filling ν = 1

At quarter filling, ν = 1 (similarly for ν = 3, with some caveats), we can always write the order parameter as

M(k) =
1

4
(1 +Q1(k))(1 +Q2(k)), Q1,2(k)2 = 1, trQ1,2(k) = 0, [Q1(k), Q2(k)] = 0 (65)

This leads to three distinct possibilities: (i)Q1 = σx,y,zτ0 andQ2 = σ0τz which corresponds to a spin and valley polarized state,
(ii) Q1 = σx,y,zτ0 and Q2 = σ0τx,y which corresponds to a spin-polarized IVC, and (iii) Q1 = σzτz and Q2 = σxτx, σyτy
which correspond to a spin-valley locked IVC.

The SPIVC and SVLIVC are related by a spin rotation in one of the valleys, thus we can focus only on the competition
between SVP and SPIVC. Compared to the VP vs IVC states at half-filling these differ by a factor of 2 in the Fock energy and a
factor of 4 in the Hartree energy. Since the former is the main deciding factor in the competition between the phases, the results
for the gaps and energy difference between SVP and SPIVC at quarter filling are very similar to those between VP and IVC at
half-filling.
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Supplementary Note 4. PERTURBATIVE SOLUTION AND COMPETITION BETWEEN VP/SP AND IVC

In this section, we would like to discuss the competition between inter-valley coherent order and valley/spin polarized order
in a more general setting that is not too sensitive to the details of the model parameters. To this end, it is useful to derive an
approximate solution to the self-consistency equations and compute an analytic expression for the energy difference between the
IVC phase and the VP/SP phase.

In order to make progress analytically, we can write the IVC order parameter as

θk =
π

2
+ γk, φk = βk. (66)

where γk ∼ βk ∼ δ � 1. This approximation can be justified as follows: the starting symmetry of the isolated band is SU(4)
which is broken to SU(2) × SU(2) due to the asymmetry between the two valley in energies and form factors (ξ+(k) 6= ξ−(k),
λ+,q(k) 6= λ−,q(k)). In the following, we will assume that breaking SU(4) to SU(2) × SU(2) is not very strong so that
the deviation from the situation where the valleys are identical is weak. This condition can be written more explicitly as the
requirement that |ξ+(k)−ξ−(k)|

V0
∼ |λ+,q(k)−λ−,q(k)| ∼ δ � 1. The first part is guaranteed by the small bandwidth whereas the

second one can be checked numerically and shown to hold at least for most values of k and q. This is equivalent to expanding
in time-reversal symmetry breaking terms within each valley.

The variables γk and βk can be obtained by solving a linearized version of the self-consistency equation as follows. We start
by expanding θk and φk in terms of small deviations δ from a perfect IVC state in the τx as shown in Eq. 66. Substituting in
Eq. 62 and expanding to leading order in δ yields the following set of linear equations given by

γkbk −
∑

k′
Fk,k′γk′ = ak, βkbk −

∑
k′
Fk,k′βk′ = − Im bk, (67)

where ak is given by

ak =
∑
τ

τ

ξτ (k)

U
− 1

2N

∑
q

vq|λτ,q(k)|2 +
1

N

∑
G,k′,τ ′

vGλτ,G(k)λτ ′,G(k′)

 , (68)

and Fk,k′ and bk are given by

Fk,k′ =
1

N

∑
G

vG+k′−k|λ+,G+k′−k(k)|2, bk =
1

N

∑
q

vqλ+,q(k)λ∗−,q(k). (69)

We notice that ak and Im bk are of order δ. Substituting in the expression for the energy, the energy difference between the IVC
state and the SP/VP state can be written (up to second order in δ) as

EIVC − ESP

V0
=

1

4N

∑
k,q

vq

∣∣∣λ+,q(k)− λ−,q(k)
∣∣∣2 +

1

2

∑
k,k′

βkFk,k′βk′ −
1

2

∑
k

bk(γ2
k + β2

k), (70)

where Fk,k′ and bk are defined in (69). The first term in Eq. 70 reproduces the non self-consistent Hartree-Fock energies obtained
in Ref. [9] in which case VP/SP is always favored to IVC.

The second and third terms are corrections coming from solving the self-consistency condition. It is instructive to reproduce
the results of Ref. [5] which considers the simplified setting where all form factors are taken equal to 1. In addition, vq was taken
equal to a constant which is cutoff at large momenta q ∼ Λ yielding the interaction strength g = V0

2N

∑
|q|<Λ = V0

2

∑
|G|<Λ. In

this case, γk = ξ+(k)−ξ−(k)
2g and βk = 0 leading to

EIVC − ESP = − 1

4g

∑
k

[ξ+(k)− ξ−(k)]2, (71)

which implies that the IVC phase is energetically favored to the VP/SP phase in agreement with the conclusion of Ref. [5] 2.
Our result (Eq. 70) interpolates between these two limits with the first two terms favoring spin or valley polarization and

the last term favoring intervalley coherence. The competition between SP/VP and IVC is then settled by the details of the band

2 The result differs by a factor of 2 due to the incorrect way the large g limit was implemented [5].



14

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Supplementary Figure 2. Illustration of the phase diagram obtained from the perturbative solution to the self-consistency equation with the
simplified form factor (Eq. 72) as a function of Chern number and η = (t/V0) sinφ which corresponds to the product of the bandwidth
(relative to the Coulomb scale) and time-reversal symmetry breaking within each valley. We can see that any non-zero Chern number favors
valley or spin polarization over intervalley coherent order as long as the bandwidth is not very large.

structure, form factors and interaction. We notice that this expression underestimates the energy of the IVC states when the bands
have non-zero Chern number. In this case, it was shown in Ref. [13] that vortices in the IVC order parameter are unavoidable.
The existence of vortices is neglected in the expansion (Eq. 66) which assumes that φk is small everywhere. This implies that
the expression (Eq. 70) underestimates the IVC ground state energy for non-zero Chern number.

In order to gain some insights about what parameters control this competition, let us consider a very simplified setting where
the Berry curvature is uniform in momentum space with the form factor assuming the simple form [9]

λ±,q(k) = e−
α
4 q

2±iB2 k∧q, B =
2πC

|ABZ|
, (72)

Here, C is the Chern number for the + valley and the parameter α determines how quickly the form factor decays with q which
we take equal to 2π/ABZ to reproduce the Landau level form factors for C = 1. These form factors would be obtained in a
Landau level if it is folded into a Brillouin zone of the lattice with the flux density one [14]. In addition, we will consider a
very simple form of the dispersion corresponding to nearest neighbour tight-binding model on a triangular lattice with hopping
amplitude te±iφ for the ± valleys. For C = 0, we know that it is possible to write such a tight-binding model. For non-zero
C, it is generally impossible to write such tight binding model. However, we can still use the same resulting dispersion and
assume that the non-zero Chern number only affects the form factors. This will enable us to disentangle the effects of the band
dispersion from those related to band topology.

For the form factors given in Eq. 72, the self-consistency equations can be solved by performing Fourier transform to real
space. Following a series of straightforward steps, we get

EIVC − ESP

V0N
∝

 1

N

∑
k

[
1− e−B

2k2
2α I0

(
B2k2

2α

)]
− 3αA2

BZη
2

2π3
(

1− e− 8π2

9α I0
(

8π2

9α

))2

 (73)

where Ib(x) is the modified Bessel function of the first kind and η = (t/V0) sinφ. The proportionality here indicates that we
have dropped a constant positive factor given by π

|ABZ|
√

π
α which does not influence the competition between the two phases.

The expression (Eq. 73) depends only on two dimensionless parameters: (i) the Chern number C and (ii) η which measures
the bandwidth relative to the interaction strength multiplied by the strength of time-reversal symmetry breaking within each
valley. The first term in Eq. 73 is always positive and favors SP/VP state. It vanishes for zero Chern number and increases
as the Chern number increases. This suggests that increasing the Chern number favors valley/spin polarization over intervalley
coherent order. The second term, on the other hand, favors IVC and increases with increasing the bandwidth or the time-reversal
symmetry breaking within each valley.

The phase diagram for different values of C and η is given in Fig. 2. For C = 0, IVC order always wins. This is an artifact
of our simple choice for the form factors which corresponds to uniform Berry curvature. In a more realistic model where the
Berry curvature vanishes on average but does not vanish everywhere, we expect some region of VP/SP. This is expected to be
particularly manifest in the vicinity of topological phase transitions where the valley Chern number changes leading to a large
concentration of the Berry curvature at some momenta. For C 6= 0, we find that VP/SP is always favored for relatively small
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values of the bandwidth whereas IVC is favored for relatively large values. Since our approach underestimates the IVC energy
for non-zero Chern number (since it ignores vortices [13]), we expect the transition from VP/SP to IVC to happen at even larger
values of η implying that VP/SP is the most energetically favorable insulator at half-filling whenever the bandwidth is relatively
narrow.
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Supplementary Note 5. SPIN-TRIPLET SUPERCONDUCTIVITY

In the following, we provide some details on the discussion related to spin-triplet superconductivity in the main text. The
interaction term

H =
∑
k,τ,σ

c†σ,τ,kξσ,τ,kcσ,τ,k − g
∑
q

Sq · S−q (74)

can be rewritten as

gα,β;γ,δ

∑
k,k′,τ,τ ′

c†α,τ,k+qc
†
γ,τ ′,k′−qcβ,τ,kcδ,τ ′,k′ (75)

with gα,β;γ,δ =
∑
a σ

a
αβσ

a
γδ. When performing the BCS decoupling, we restrict ourselves to pairing between time-reversed pair-

ing which corresponds to k′ = −k and τ ′ = −τ . In this case, we can define the gap function ∆α,β,τ,τ ′k = δτ,−τ ′〈c†α,τ,kc
†
β,τ ′,−k〉,

which satisfies the linearized BCS equation∑
k′∈FS

vF(k′)−1gα,β;γ,δ∆β,δ,τ,τ ′,k′ = λ∆α,γ,τ,τ ′,k (76)

where vF(k) is the Fermi velocity at point k on the Fermi s surface vF(k) = |∇kεk|. Choosing ∆k to be k-independent, we can
simplify (Eq. 76)

σ · (∆σT ) = λ̃∆ (77)

where λ̃ is related to λ by some constant rescaling (coming from the Fermi surface integral), σ is the Pauli matrix vector in spin
space and ∆ is a matrix in spin and valley spaces. As discussed in the main text, intervalley pairing is proportional to τx or τy
which corresponds to valley triplet or singlet respectively, which, due to the overall antisymmetry of the gap function, implies
the former scenario corresponds to a spin-singlet iσy whereas the latter corresponds to a spin-triplet iσyd · σ. Here, d is the
vector which captures the direction of the spin state.

The symmetry of the superconducting order parameter is obtained by finding the pairing channel for which λ̃ is positive and
maximum. Substituting the spin-singlet and triplet gap functions in (Eq. 77) yields

σ · (iσyτxσT ) = −3iσyτx → λ̃s = −3 (78)

σ · (iσyd · στyσT ) = iσyd · στy → λ̃t = +1 (79)

which implies a valley-singlet spin-triplet superconductor.



17

Supplementary Note 6. DEPENDENCE OF Tc ON MAGNETIC FIELD

In the following, we will write a simple mean field theory to relate the parameters in the Ginzburg-Landau free energy in Eq. 6
of the main text to the microscopic parameters. We start by writing the following imaginary time mean-field action

S =

∫ β

0

dτ
∑

k

[
ψ†k(∂τ + ξk + µBB · [−χσ + gk])ψk +

1

2
ψT−k∆kψk +

1

2
ψ†k∆†kψ

∗
−k

]
+

β

2g

∑
k

tr ∆k∆†k. (80)

Here, ψ is a (grassman-valued) spinor in valley and spin spaces, σ and τ are Pauli matrices for the spin and valley degrees of
freedom, respectively. χ is dimensionless magnetic susceptibility and ∆ is a matrix in the valley and spin spaces. Following the
discussion of the main text, we take ∆k to be k-independent, spin-triplet and valley singlet

∆k = iσyd · στy. (81)

The magnetic field enters (Eq. 80) through Zeeman and orbital couplings with the k-dependent g-factor arising form the orbital
effect (see the main text). (In (Eq. 80), gk is a diagonal matrix in spin and valley spaces given by σ0diag(g+,k, g−,k)τ ). If the
parent state is either a weak ferromagnet or close to a ferromagnetic quantum critical point which we anticipate to be the case,
then dimensional suscepbtility χ can be relatively large and cannot be put to 1.

We can go now to matsubara frequency by writing

ψ(τ) =
1√
β

∑
ωn

eiωnτψn, ωn = (2n+ 1)π/β, (82)

leading to

S =
2β

g

∑
k

dk · d∗k +
1

2

∑
p=(ωn,k)

(ψ†p ψT−p)

(
G−1
p − µBχσ · B + µBgk · B ∆†k

∆k −G−1
−p + µBχσ

T · B− µBg−k · B

)(
ψp

ψ∗−p

)
.

(83)
Here, we introduced the Green’s function Gp as

Gp =
1

iωn + ξk
. (84)

where ξk depends on the valley index such that ξ+,−k = ξ−,k. The fermions can be integrated out leading to a Pfafian which
can be written in the exponential as the logarithm of the trace of some operator. The resulting free energy can be expanded in
powers of B and ∆.

The term proportional to ∆∆† provides the standard BCS instability which is given by

F∆∆† = − 1

2β

∑
p=(ωn,k)

tr ∆kGp∆
†
kG−p = −2d · d∗

β

∫
dξN(ξ)

∑
ωn

1

ω2
n + ξ2

= −2d · d∗

β

∫
dξN(ξ)f(ξ), (85)

where f(ξ) is defined as

f(ξ) =
∑
ωn

1

ω2
n + ξ2

. (86)

The integral over ξ is cut off by the bandwidth Λ. However, we can choose to perform the ξ integral before the frequency sum
in which case, the integral is automatically cut off by ωn so that it can be extended to infinity with the cutoff Λ moved to the ωn
sum instead. This leads to ∫

dξN(ξ)f(ξ) =
∑
|ωn|<Λ

πN(0)

|ωn|
≈ βN(0)

∫ Λ

1/β

dω
1

ω
= βN(0) log βΛ. (87)

The final result is given by

F∆∆† = −2N(0) log βΛd · d∗. (88)
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The term proportional to ∆∆†B · σ is given by

F∆∆†B·σ = −µBχ
2β

∑
p=(ωn,k)

tr
(
∆Gp∆

†G−pB · σTG−p + ∆GpB · σGp∆†G−p
)

=
4iµBχ

β
B · (d∗ × d)

∫
dξN(ξ)f ′(ξ) = −4iµBχN

′(0) log βΛ B · (d∗ × d). (89)

The linear term corresponding to the orbital effect ∆∆†B · g vanishes due to time-reversal symmetry which can be seen as
follows

F∆∆†B·g = −µB
2β

∑
p=(ωn,k)

tr
(
∆Gp∆

†G−pτzB · g−kG−p + ∆GpτzB · gkGp∆
†G−p

)
= 4

µBd · d∗

β

∑
τ1,2=±

∫
FS

dk(B · gτ1,τ2k)

∫
dξN(ξ)f ′(ξ) = 0. (90)

The last equality follows from the fact that gτ,k is odd under time-reversal symmetry g+,−k = −g−,k.
The term proportional to ∆∆†(B · σ)2 is given by

F∆∆†(B·σ)2 = −µ
2
Bχ

2

2β

∑
p=(ωn,k)

tr
(
∆Gp∆

†G−pB · σTG−pB · σTG−p + ∆GpB · σGp∆†G−pB · σTG−p

+∆GpB · σGpB · σGp∆†G−p
)

= −2
µ2
Bχ

2

β
B2d · d∗

∑
p=(ωn,k)

(GpG
3
−p +G2

pG
2
−p +G3

pG−p) + 4
µ2
Bχ

2

β
(d · B)(d∗ · B)

∑
p=(ωn,k)

G2
pG

2
−p. (91)

The first term can be simplified by noting that∑
p=(ωn,k)

(GpG
3
−p +G2

pG
2
−p +G3

pG−p) =
1

2

∫
dξN(ξ)f ′′(ξ) =

1

2
N ′′(0)β log Λβ, (92)

whereas the second term can be evaluated as∑
|ωn|<Λ

∫
dξ

N(ξ)

(ω2
n + ξ2)2

=
β

2
N(0)

∫ Λ

1/β

dω
1

ω3
≈ β3

4
N(0), (93)

leading to

F∆∆†(B·σ)2 = −µ2
Bχ

2B2N ′′(0) log Λβ(d · d∗) + µ2
Bχ

2β2N(0)(d · B)(d∗ · B). (94)

The term proportional to ∆∆†(B · g)2 is given by

F∆∆†(B·g)2 = −µ
2
B

2β

∑
p=(ωn,k)

tr
(
∆Gp∆

†G−pB · g−kG−pB · g−kG−p + ∆GpB · gkGp∆
†G−pB · g−kG−p

+∆GpB · gkGpB · gkGp∆
†G−p

)
= −2

µ2
B(d · d∗)

β

∑
p=(ωn,k)

∑
τ=±

[
(B · gτ,−k)2GpG

3
−p + (B · gτ,k)(B · g−τ,−k)G2

pG
2
−p + (B · gτ,k)2G3

pG−p
]

= −2
µ2
B(d · d∗)

β

∑
p=(ωn,k)

∑
τ=±

(B · gτ,k)2
[
GpG

3
−p −G2

pG
2
−p +G3

pG−p
]

= −µ2
B(d · d∗)(N ′′(0) log Λβ − β2N(0))

∫
FS

dk
∑
τ=±

(B · gτ,k)2. (95)

Here, we used gσ,k = −g−σ,−k to go from the second to the third line and (Eq. 92) and (Eq. 93) to go from the third to the
fourth line.
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Finally, we evaluate the quartic term (∆†∆)2 as

F(∆∆†)2 =
1

4β

∑
p=(ωn,k)

tr(∆Gp∆
†G−p)

2 =
1

2β
tr(d · σ d∗ · σ)2

∑
p=(ωn,k)

G2
pG

2
−p (96)

The summation over p is given by (93), whereas the trace can be evaluated as

tr(d · σ d∗ · σ)2 = tr(d · d∗ + i(d× d∗) · σ)2 = 4(d · d∗)2 − 2|d · d|2 (97)

leading to

F(∆∆†)2 =
β2N(0)

4
[2(d · d∗)2 − |d · d|2] (98)

The Free energy now has the form

F =

∫
FS

dk
[
d · d∗

(
2

g
+ 2µ2

Bβ
2N(0)(B · g+,k)2 − (2N(0) + µ2

BN
′′(0)(χ2B2 + 2(B · g+,k)2)) log βΛ

)
+4iµBχB · (d× d∗)N ′(0) log βΛ + µ2

Bχ
2β2N(0)(B · d)(B · d∗) +

β2N(0)

4
[2(d · d∗)2 − |d · d|2]

]
. (99)

We notice that the second derivative of the density of states can be estimated as 1/ε2F which is much smaller that β2, thus we
can throw away all terms containing N ′′(0). Expanding in T close to Tc = Λe−

1
gN(0) , we get

F =
2N(0)

Tc

[
d · d∗

(
T − Tc +

1

Tc

∫
FS

dk(µBB · g+,k)2

)
+ 2iµBB · (d× d∗)χTc

N ′(0)

N(0)
log

Λ

Tc

+ µ2
Bχ

2 1

2Tc
|µBB · d|2 +

1

8Tc
[2(d · d∗)2 − |d · d|2]. (100)

Comparing with Eq. 6 in the main text, we find that the coefficients κ, a, b, c, α, η are given by

κ =
2N(0)

Tc
, a = 2χTc

N ′(0)

N(0)
ln

Λ

Tc
, b =

1

Tc

∫
FS

dk(eB · g+,k)2, c =
χ2

2Tc
, α = −2η =

1

4Tc
(101)

where eB is the direction of the external magnetic field. We notice that the term a was obtained in the description of the
superfluid transition in He3 [15].

[1] Slater, J. C. & Koster, G. F. Simplified lcao method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954).
[2] McCann, E. & Koshino, M. The electronic properties of bilayer graphene. Reports on Progress in Physics 76, 056503 (2013).
[3] Charlier, J.-C., Gonze, X. & Michenaud, J.-P. First-principles study of the electronic properties of graphite. Phys. Rev. B 43, 4579–4589

(1991).
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