Nickel-molybdenum Nitride Nanoplate Electrocatalysts for Concurrent Electrolytic Hydrogen and Formate Productions

Supplementary Information

Li et al.

Supplementary Figures

Supplementary Fig. 1 Morphology. (**a**, **b**) SEM images of NiMo-Pre/CFC. The inset images in (**a**) and (**b**) are the diameter (left) and thickness (right) distributions of NiMo-Pre/CFC nanoplates. Scale bars, (**a**) 1 µm; (**b**) 200 nm.

Supplementary Fig. 2 XRD pattern of the NiMo-Pre/CFC.

Supplementary Fig. 3 Morphology. SEM images of Ni-Mo-N/CFC prepared at different temperatures: (**a**) 400, (**b**) 500 and (**c**) 600 °C. Scale bars, (**a**) 200 nm; (**b**) 200 nm; (**c**) 200 nm.

Supplementary Fig. 4 Element mapping images of Ni, Mo, N, O and C elements in Ni-Mo-N/CFC. Colour codes: Ni (green), Mo (yellow), N (blue), O (red) and C (white)

Supplementary Fig. 5 XPS analyses of Ni-Mo-N/CFC. (a) XPS survey spectrum and (b-d) high-resolution XPS spectra of Ni-Mo-N/CFC: (b) Ni 2p_{3/2}, (c) Mo 3d and (d) N 1s-Mo 3p. (e) O 1s and (f) C 1s.

Supplementary Fig. 6. XPS analyses of CFC. (a) XPS survey spectrum and (b, c)

high-resolution XPS spectra of CFC: (b) O 1s and (c) C 1s.

Supplementary Fig. 7 3 Successive LSV curves of Ni-Mo-N/CFC anode in 1.0 M

KOH with 0.1 M glycerol. Scan rate, 2 mV s⁻¹.

Supplementary Fig. 8 CV curves of Ni-Mo-N/CFC anode in 1.0 M KOH with and without 0.1 M glycerol. Scan rate, 50 mV s⁻¹. The redox couple Ni²⁺/Ni³⁺ disappeared as shown in the CV of glycerol electrooxidation probably due to the indirect charge transfer mechanism that Ni²⁺ is oxidized to Ni³⁺ and then completely consumed in the oxidation of glycerol to form Ni²⁺, and makes the direct reduction of Ni³⁺ to Ni²⁺ impossible.¹

Supplementary Fig. 9 Glycerol anodic oxidation polarization curves of Ni-Mo-N/CFC electrode in 1 M KOH with varied glycerol concentrations.

Supplementary Fig. 10 XRD pattern of Ni/CFC.

Supplementary Fig. 11 Morphology. (**a**, **b**) SEM images of Ni/CFC. Scale bars, (**a**) 2 µm; (**b**) 50 nm.

Supplementary Fig. 12 Electrocatalytic performances of the catalysts for glycerol oxidation. (a) Comparisons of the glycerol anodic oxidation activities among various catalysts and (b) their corresponding Tafel slopes.

1

Supplementary Fig. 13 Electrochemical impedance spectroscopy (EIS) analyses of the catalysts for glycerol oxidation. (a) Nyquist plots of Ni-Mo-N/CFC, NiMo-Pre/CFC, and CFC for glycerol electro-oxidation process in 1.0 M KOH with 0.1M glycerol. (b) The corresponding fitting Nyquist plots for Ni-Mo-N/CFC. Inset in (b) shows the proposed equivalent circuit.

Supplementary Fig. 14 Glycerol anodic oxidation activity tests of Ni-Mo-N/CFC catalysts treated at different temperatures. (a) Polarization curves for the glycerol anodic oxidations of different catalysts. (b) Double layer capacitance (C_{dl}) of different catalysts. (c-f) Electrochemical surface area (ECSA) tests of different catalysts, the scanning potential range was from -0.050 V to 0.050 V versus open circuit potential (Eoc). Eoc NiMo-pre/CFC = -0.065V, Eoc Ni-Mo-N/CFC-400 = -0.220V, Eoc Ni-Mo-N/CFC-500 =

-0.177V, Eoc _{Ni-Mo-N/CFC-600} = -0.215V.

Supplementary Fig. 15 FEs and selectivities for formate production at varied potentials.

Supplementary Fig. 16 ¹³C NMR spectra of products before and after 12h glycerol anodic oxidation on Ni-Mo-N/CFC electrode, and the spectra of $HCOO^{-}$, $CO_{3}^{2^{-}}$.

Supplementary Fig. 17 IC spectrum of products after 12h glycerol anodic oxidation on Ni-Mo-N/CFC electrode.

Supplementary Fig. 18 Product characterization of HER on Ni-Mo-N/CFC electrode with formate. (a) ¹H NMR and (b) ¹C NMR spectra of products in 1M KOH with 0.1M formate for formate reduction on Ni-Mo-N/CFC electrode.

Supplementary Fig. 19 Qualitative test of formaldehyde by phloroglucinol. Electrolyte after the electrochemical glycerol anodic oxidation with (**a**) and without (**b-d**) phloroglucinol. The electrolyte rapidly turns orange when phloroglucinol was added and then quickly shallowed, indicating the presence of formaldehyde.

Supplementary Fig. 20 Product characterization of isotope labeled glycerol oxidation. ¹³C NMR spectra for the electro-oxidation of 2-¹³C glycerol (**a**) and 1, 3-¹³C glycerol (**b**).

Supplementary Fig. 21 Chronopotentiometric curves for Ni-Mo-N/CFC of glycerol oxidation in 1 M KOH with varied glycerol concentrations.

Supplementary Fig. 22 Electrocatalytic performances of the catalysts for HER. LSV curves of various catalysts cathode (a) and corresponding Tafel slopes (b) in 1M KOH.

Supplementary Fig. 23 Electrochemical impedance spectroscopy (EIS) analyses of the catalysts for HER. (a) Nyquist plots of Ni-Mo-N/CFC, NiMo-Pre/CFC, and CFC for HER process in 1M KOH. (b) The corresponding fitting Nyquist plots for Ni-Mo-N/CFC. Inset in (b) shows the proposed equivalent circuit.

Supplementary Fig. 24 HER activity tests of Ni-Mo-N/CFC catalysts treated at varied annealing temperatures. (**a**) Polarization curves for the HER of different catalysts. (**b**) Double layer capacitance (C_{dl}) of different catalysts. (**c**-**f**) ECSA tests of different catalysts, the scanning potential range was from -0.050 V to 0.050 V versus open circuit potential (Eoc). Eoc _{NiMo-pre/CFC} = -0.7 V, Eoc _{Ni-Mo-N/CFC-400} = -0.338 V, Eoc _{Ni-Mo-N/CFC-500} = -0.8 V, Eoc _{Ni-Mo-N/CFC-600} = -0.459 V.

Supplementary Fig. 25 LSV curves for the HER of Ni-Mo-N/CFC catalyst in 1M KOH with different concentrations of glycerol.

Supplementary Fig. 26 The O 1s XPS spectra of Ni-Mo-N/CFC after glycerol oxidation and HER CP. (**a**) post-GOR Ni-Mo-N/CFC, (**b**) post-HER Ni-Mo-N/CFC.

Supplementary Fig. 27 XRD patterns of fresh, post-GOR, and post-HER Ni-Mo-N/CFC catalysts.

Supplementary Fig. 28 Mo 3d spectra and N 1s spectra analyses of Ni-Mo-N/CFC after glycerol oxidation and HER CP. High-resolution XPS spectra of post-GOR Ni-Mo-N/CFC: (a) Mo 3d and (b) N 1s-Mo 3p. High-resolution XPS spectra of post-HER Ni-Mo-N/CFC: (c) Mo 3d and (d) N 1s-Mo 3p.

Supplementary Fig. 29 The C 1s XPS spectra of Ni-Mo-N/CFC after glycerol oxidation and HER CP. (a) post-GOR Ni-Mo-N/CFC, (b) post-HER Ni-Mo-N/CFC.

Supplementary Fig. 30 Cell electrolysis on Ni-Mo-N/CFC couple with a Nafion membrane. (**a**) The FEs of the Ni-Mo-N/CFC couple with a Nafion membrane for H_2 at varied current densities. (**b**) ¹H NMR spectra of products in anode (red) and cathode (orange) electrolytes with membrane and products (blue) in electrolyte without membrane after glycerol electrolysis on Ni-Mo-N/CFC couple.

Supplementary Fig. 31 The standard curve of H_2 production obtained by gas chromatography (nitrogen as a carrier gas) and detected with thermal conductivity detector (TCD).

Supplementary Tables

Supplementary Table 1 Ratios of Ni to Mo elements in Ni-Mo-N/CFC catalyst before and after the electrochemical glycerol anodic oxidation and HER as determined by ICP-OES analysis. ST: short time reaction (20 cycles of CV scans). LT: long time reaction (20 cycles of CV scans + 12h CP).

	Ni-Mo-N	post–GOR	post-GOR	post-HER	post-HER	
	/CFC	Ni-Mo-N/CFC	Ni-Mo-N/CFC	Ni-Mo-N/CFC	Ni-Mo-N/CFC	
		ST	LT	ST	LT	
Ni : Mo	1:1.90	1:0.15	1:0.13	1:1.29	1:1.29	

Supplementary Table 2 Contents of Ni and Mo elements in the electrolyte after the electrochemical glycerol anodic oxidation and HER as determined by ICP-OES analysis.

	Ni	Мо
post-GOR ST	-	3.86ppm
post-GOR LT	-	3.17ppm
post-HER ST	-	0.09ppm
post-HER LT	-	0.09ppm

Supplementary Table 3 Ni $2P_{3/2}$ XPS area distribution of various oxidation states and satellite for Ni-Mo-N/CFC catalyst before and after the electrochemical glycerol anodic oxidation and HER.

	Ni-Mo-N /CFC	post-GOR	post-HER	
		Ni-Mo-N/CFC	Ni-Mo-N/CFC	
Ni(0)	6%	2%	2%	
Ni(II)	60%	15%	63%	
Ni(III)	0%	39%	0%	
Satellite	34%	45%	35%	

Supplementary Table 4 Recent reported catalysts for the chemical-assisted hydrogen

evolution reaction ^b

Catalyst	Electrolyte	product	three-electrode system			two-electrode system		De
			η нек (V)	η _{oer} (V)	η _{cor} (V)	E1(V)	E ₂ (V)	Keference
Ni-Mo-N/CF	1M KOH+0.1 M	Formata	0.043	1 57	1 30	1.62	1 36	This work
С	Glycerol	Formate	0.045	1.57	1.50	1.02	1.50	THIS WOLK
NF/NiMoO-A	1M KOH+0.5 M	N2,CO2		-	1.37	-	-	2
r	Urea		-					
Ni-MOF	1M KOH+0.33 M	N ₂ ,CO ₂	-	-	1.36	-	-	3
MnO ₂ /MnCo ₂	IM KOH+0.5 M	N2,CO2	-0.2	-	1.33	-	1.58	4
O4/N1	Urea							
CoSe ₂	1M KOH+ 0.5M	_	-0.084		-0.017	1.513	0.164	5
nanosheet	hydrazine							
CoCu-UMOF	1M KOH+3 M	-	-	1.597	1.365	-	-	6
Ns	Methanol							
Fe-CoP/CC	1M KOH+5mL	-	-0.359	1.707	1.572	1.57	1.44	7
	Aloe extract		(100)	(25)	(25)			
Ni ₂ P/Ni/NF	1M KOH +30mM	Furoic acid	-	1.55	1.43	1.59	1.48	8
	Furfural			(onset)	(onset)			
Co ₃ O ₄ NSs/CP	1M KOH +1M	Ethyl	-	1.5	1.445	-	-	9
	Ethanol	acetate						
NiSe nanorod	1M KOH + 1mM	benzonitrile	-	1.48	1.32	1.7	1.49	10
	Benzylamine			(onset)	(onset)	(20)	(20)	
Ni ₃ S ₂ /NF	1 M KOH+10 mM	FDCA	-0.16	1.5	1.35	1.58	1.46	11
	HMF			(onset)	(onset)			
Co ₃ O ₄	1 M KOH+40 mg	Phenol		1.50	1.54			12
NWs/CC	L ⁻¹ triclosan			1.39				

^b All the potentials here are V vs. RHE. All the potentials correspond to 10 mA cm⁻² unless otherwise marked. Numbers in parentheses are current densities in mA cm⁻². η_{COR} : potential for chemical oxidation. E₁: cell voltage for overall water-splitting. E₂: cell voltage for the organic oxidation integrated HER.

Supplementary Note 1

Theoretical Gibb's free energy (ΔG) and potential (E) of reaction for the anodic electro-oxidation of glycerol ($C_3H_8O_3$) to formic acid (HCOOH) coupled to the cathodic HER (Standard molar free energy of formation (ΔG_f): $C_3H_8O_3$ (l): -478.6 KJ mol⁻¹, H₂O (l): -237.13 KJ mol⁻¹, OH⁻ (l): -157.244 KJ mol⁻¹, HCOOH (l): -361.3 KJ mol⁻¹):

Anode reaction: $C_3H_8O_3 + 8OH^-- 8e^- \rightarrow 3HCOOH + 5H_2O$

 ΔG Anode reaction = -532.998 KJ mol⁻¹ E Anode reaction = 0.69 V

Cathode reaction: $8H_2O + 8e^- \rightarrow 4H_2 + 8OH^-$

 $\Delta G_{\text{Cathode reaction}} = 639.088 \text{ KJ mol}^{-1}$ E Cathode reaction = -0.83 V

Overall reaction: $C_3H_8O_3 + 3H_2O \rightarrow 3HCOOH + 4 H_2$

 $\Delta G_{\text{Overall reaction}} = 106.09 \text{ KJ mol}^{-1}$ E_{Overall reaction} = -0.137 V

Supplementary References

- Ashok, A. et al. Single Step Synthesis of Porous NiCoO₂ for Effective Electrooxidation of Glycerol in Alkaline Medium. J. Electrochem. Soc. 165. J3301-J3309 (2018).
- 2 Yu, Z. Y. et al. Ni–Mo–O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. *Energy Environ. Sci.* **11**, 1890-1897 (2018).
- Zhu, D. et al. Two-dimensional metal-organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation. *Chem. Commun.* 53, 10906-10909 (2017).
- Xiao, C. et al. MnO₂/MnCo₂O₄/Ni heterostructure with quadruple hierarchy: a bifunctional electrode architecture for overall urea oxidation. *J. Mater. Chem.* A 5, 7825-7832 (2017).
- 5 Zhang, J. Y. et al. Anodic Hydrazine Oxidation Assists Energy-Efficient Hydrogen Evolution over a Bifunctional Cobalt Perselenide Nanosheet Electrode. *Angew. Chem. Int. Ed.* **57**, 7649-7653 (2018).
- Wei, X. F. et al. Metal-Organic Framework Nanosheet Electrocatalysts for
 Efficient H2 Production from Methanol Solution: Methanol-Assisted Water
 Splitting or Methanol Reforming? ACS Appl. Mater. Interfaces 10, 25422-25428 (2018).
- 7 Hao, S. et al. Integrating natural biomass electro-oxidation and hydrogen evolution: using a porous Fe-doped CoP nanosheet array as a bifunctional

catalyst. Chem. Commun. 53, 5710-5713 (2017).

- Jiang N. et al. Electrocatalysis of Furfural Oxidation Coupled with H2 Evolution via Nickel-based Electrocatalysts in Water. *ChemNanoMat* **3**, 491-495 (2017).
- 9 Dai, L. et al. Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co₃O₄ Nanosheets as a Highly Selective Anode Catalyst. ACS Cent. Sci. 2, 538-544 (2016).
- Huang, Y. et al. Boosting Hydrogen Production by Anodic Oxidation of
 Primary Amines over a NiSe Nanorod Electrode. *Angew. Chem. Int. Ed.* 57, 13163-13166 (2018).
- You, B. et al. A General Strategy for Decoupled Hydrogen Production from
 Water Splitting by Integrating Oxidative Biomass Valorization. J. Am. Chem.
 Soc. 13639-13646 (2016).
- 12 Lyu, C. et al. Homologous Co₃O₄|CoP nanowires grown on carbon cloth as a high-performance electrode pair for triclosan degradation and hydrogen evolution. *Mater. Chem. Front.* 2, 323-330 (2018).