Nickel-molybdenum Nitride Nanoplate Electrocatalysts for Concurrent Electrolytic Hydrogen and Formate Productions

Supplementary Information

Li et al.

Supplementary Figures

Supplementary Fig. 1 Morphology. (**a, b**) SEM images of NiMo-Pre/CFC. The inset images in (**a**) and (**b**) are the diameter (left) and thickness (right) distributions of NiMo-Pre/CFC nanoplates. Scale bars, (**a**) 1 µm; (**b**) 200 nm.

Supplementary Fig. 2 XRD pattern of the NiMo-Pre/CFC.

Supplementary Fig. 3 Morphology. SEM images of Ni-Mo-N/CFC prepared at different temperatures: (**a**) 400, (**b**) 500 and (**c**) 600 ℃. Scale bars, (**a**) 200 nm; (**b**) 200 nm; (**c**) 200 nm.

Supplementary Fig. 4 Element mapping images of Ni, Mo, N, O and C elements in Ni-Mo-N/CFC. Colour codes: Ni (green), Mo (yellow), N (blue), O (red) and C (white)

Supplementary Fig. 5 XPS analyses of Ni-Mo-N/CFC**.** (**a**) XPS survey spectrum and (**b-d**) high-resolution XPS spectra of Ni-Mo-N/CFC: (**b**) Ni 2p3/2, (**c**) Mo 3d and (**d**) N 1s-Mo 3p. (**e**) O 1s and (**f**) C 1s.

Supplementary Fig. 6. XPS analyses of CFC. (**a**) XPS survey spectrum and (**b, c**)

high-resolution XPS spectra of CFC: (**b**) O 1s and (**c**) C 1s.

Supplementary Fig. 7 3 Successive LSV curves of Ni-Mo-N/CFC anode in 1.0 M

KOH with 0.1 M glycerol. Scan rate, 2 mV s^{-1} .

Supplementary Fig. 8 CV curves of Ni-Mo-N/CFC anode in 1.0 M KOH with and without 0.1 M glycerol. Scan rate, 50 mV s⁻¹. The redox couple Ni^{2+}/Ni^{3+} disappeared as shown in the CV of glycerol electrooxidation probably due to the indirect charge transfer mechanism that Ni^{2+} is oxidized to Ni^{3+} and then completely consumed in the oxidation of glycerol to form Ni^{2+} , and makes the direct reduction of Ni^{3+} to Ni^{2+} impossible. 1

Supplementary Fig. 9 Glycerol anodic oxidation polarization curves of Ni-Mo-N/CFC electrode in 1 M KOH with varied glycerol concentrations.

Supplementary Fig. 10 XRD pattern of Ni/CFC.

Supplementary Fig. 11 Morphology. (**a, b**) SEM images of Ni/CFC. Scale bars, (**a**) 2 µm; (**b**) 50 nm.

Supplementary Fig. 12 Electrocatalytic performances of the catalysts for glycerol oxidation. (**a**) Comparisons of the glycerol anodic oxidation activities among various catalysts and (**b**) their corresponding Tafel slopes.

 ϵ

Supplementary Fig. 13 Electrochemical impedance spectroscopy (EIS) analyses of the catalysts for glycerol oxidation. (**a**) Nyquist plots of Ni-Mo-N/CFC, NiMo-Pre/CFC, and CFC for glycerol electro-oxidation process in 1.0 M KOH with 0.1M glycerol. (**b**) The corresponding fitting Nyquist plots for Ni-Mo-N/CFC. Inset in (b) shows the proposed equivalent circuit.

Supplementary Fig. 14 Glycerol anodic oxidation activity tests of Ni-Mo-N/CFC catalysts treated at different temperatures. (**a**) Polarization curves for the glycerol anodic oxidations of different catalysts. (**b**) Double layer capacitance (C_{dl}) of different catalysts. (**c-f**) Electrochemical surface area (ECSA) tests of different catalysts, the scanning potential range was from -0.050 V to 0.050 V versus open circuit potential (Eoc). Eoc NiMo-pre/CFC = -0.065V, Eoc Ni-Mo-N/CFC-400 = -0.220V, Eoc Ni-Mo-N/CFC-500 =

 $-0.177V$, Eoc _{Ni-Mo-N/CFC-600} = $-0.215V$.

Supplementary Fig. 15 FEs and selectivities for formate production at varied potentials.

Supplementary Fig. 16¹³C NMR spectra of products before and after 12h glycerol anodic oxidation on Ni-Mo-N/CFC electrode, and the spectra of HCOO, CO_3^2 .

Supplementary Fig. 17 IC spectrum of products after 12h glycerol anodic oxidation on Ni-Mo-N/CFC electrode.

Supplementary Fig. 18 Product characterization of HER on Ni-Mo-N/CFC electrode with formate. (a) ¹H NMR and (b) ¹C NMR spectra of products in 1M KOH with 0.1M formate for formate reduction on Ni-Mo-N/CFC electrode.

Supplementary Fig. 19 Qualitative test of formaldehyde by phloroglucinol. Electrolyte after the electrochemical glycerol anodic oxidation with (**a**) and without (**b-d**) phloroglucinol. The electrolyte rapidly turns orange when phloroglucinol was added and then quickly shallowed, indicating the presence of formaldehyde.

Supplementary Fig. 20 Product characterization of isotope labeled glycerol oxidation. ¹³C NMR spectra for the electro-oxidation of 2^{-13} C glycerol (a) and 1, 3^{-13} C glycerol (**b**).

Supplementary Fig. 21 Chronopotentiometric curves for Ni-Mo-N/CFC of glycerol oxidation in 1 M KOH with varied glycerol concentrations.

Supplementary Fig. 22 Electrocatalytic performances of the catalysts for HER. LSV curves of various catalysts cathode (**a**) and corresponding Tafel slopes (**b**) in 1M KOH.

Supplementary Fig. 23 Electrochemical impedance spectroscopy (EIS) analyses of the catalysts for HER. **(a)** Nyquist plots of Ni-Mo-N/CFC, NiMo-Pre/CFC, and CFC for HER process in 1M KOH. (**b**) The corresponding fitting Nyquist plots for Ni-Mo-N/CFC. Inset in (b) shows the proposed equivalent circuit.

Supplementary Fig. 24 HER activity tests of Ni-Mo-N/CFC catalysts treated at varied annealing temperatures. (**a**) Polarization curves for the HER of different catalysts. (**b**) Double layer capacitance (C_{dl}) of different catalysts. (**c-f**) ECSA tests of different catalysts, the scanning potential range was from -0.050 V to 0.050 V versus open circuit potential (Eoc). Eoc $_{NiMo\text{-}pre/CFC} = -0.7$ V, Eoc $_{Ni\text{-}Mo\text{-}N/CFC-400} = -0.338$ V, EOC Ni-Mo-N/CFC-500 = -0.8 V, EOC Ni-Mo-N/CFC-600 = -0.459 V.

Supplementary Fig. 25 LSV curves for the HER of Ni-Mo-N/CFC catalyst in 1M KOH with different concentrations of glycerol.

Supplementary Fig. 26 The O 1s XPS spectra of Ni-Mo-N/CFC after glycerol oxidation and HER CP. (**a**) post-GOR Ni-Mo-N/CFC, (**b**) post-HER Ni-Mo-N/CFC.

Supplementary Fig. 27 XRD patterns of fresh, post-GOR, and post-HER Ni-Mo-N/CFC catalysts.

Supplementary Fig. 28 Mo 3d spectra and N 1s spectra analyses of Ni-Mo-N/CFC after glycerol oxidation and HER CP. High-resolution XPS spectra of post-GOR Ni-Mo-N/CFC: (**a**) Mo 3d and (**b**) N 1s-Mo 3p. High-resolution XPS spectra of post-HER Ni-Mo-N/CFC: (**c**) Mo 3d and (**d**) N 1s-Mo 3p.

Supplementary Fig. 29 The C 1s XPS spectra of Ni-Mo-N/CFC after glycerol oxidation and HER CP. (**a**) post-GOR Ni-Mo-N/CFC, (b) post-HER Ni-Mo-N/CFC.

Supplementary Fig. 30 Cell electrolysis on Ni-Mo-N/CFC couple with a Nafion membrane. (a) The FEs of the Ni-Mo-N/CFC couple with a Nafion membrane for H₂ at varied current densities. (b) ¹H NMR spectra of products in anode (red) and cathode (orange) electrolytes with membrane and products (blue) in electrolyte without membrane after glycerol electrolysis on Ni-Mo-N/CFC couple.

Supplementary Fig. 31 The standard curve of H_2 production obtained by gas chromatography (nitrogen as a carrier gas) and detected with thermal conductivity detector (TCD).

Supplementary Tables

Supplementary Table 1 Ratios of Ni to Mo elements in Ni-Mo-N/CFC catalyst before and after the electrochemical glycerol anodic oxidation and HER as determined by ICP-OES analysis. ST: short time reaction (20 cycles of CV scans). LT: long time reaction (20 cycles of CV scans + 12h CP).

Supplementary Table 2 Contents of Ni and Mo elements in the electrolyte after the electrochemical glycerol anodic oxidation and HER as determined by ICP-OES analysis.

Supplementary Table 3 Ni 2P_{3/2} XPS area distribution of various oxidation states and satellite for Ni-Mo-N/CFC catalyst before and after the electrochemical glycerol anodic oxidation and HER.

Supplementary Table 4 Recent reported catalysts for the chemical-assisted hydrogen

evolution reaction b

 b All the potentials here are V vs. RHE. All the potentials correspond to 10 mA cm⁻²</sup> unless otherwise marked. Numbers in parentheses are current densities in $mA \text{ cm}^{-2}$. $η_{COR}: potential for chemical oxidation. E₁: cell voltage for overall water-splitting. E₂:$ cell voltage for the organic oxidation integrated HER.

Supplementary Note 1

Theoretical Gibb's free energy (ΔG) and potential (E) of reaction for the anodic electro-oxidation of glycerol $(C_3H_8O_3)$ to formic acid (HCOOH) coupled to the cathodic HER (Standard molar free energy of formation ($\triangle G_f$): $C_3H_8O_3$ (l): -478.6 KJ mol⁻¹, H₂O (1): -237.13 KJ mol⁻¹, OH (1): -157.244 KJ mol⁻¹, HCOOH (1): -361.3 KJ $mol⁻¹$:

Anode reaction: $C_3H_8O_3 + 8OH - 8e^- \rightarrow 3HCOOH + 5H_2O$

 ΔG Anode reaction = -532.998 KJ mol⁻¹ E Anode reaction = 0.69 V

Cathode reaction: $8H_2O + 8e^- \rightarrow 4H_2 + 8OH^-$

 ΔG Cathode reaction = 639.088 KJ mol⁻¹ E Cathode reaction = -0.83 V

Overall reaction: $C_3H_8O_3 + 3H_2O \rightarrow 3HCOOH + 4 H_2$

 ΔG Overall reaction = 106.09 KJ mol⁻¹ E Overall reaction = -0.137 V

Supplementary References

- 1 Ashok, A. et al. Single Step Synthesis of Porous NiCoO₂ for Effective Electrooxidation of Glycerol in Alkaline Medium. J. Electrochem. Soc. **165**. J3301-J3309 (2018).
- 2 Yu, Z. Y. et al. Ni–Mo–O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. *Energy Environ. Sci.* **11**, 1890-1897 (2018).
- 3 Zhu, D. et al. Two-dimensional metal-organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation. *Chem. Commun.* **53**, 10906-10909 (2017).
- 4 Xiao, C. et al. $MnO_2/MnCo_2O_4/Ni$ heterostructure with quadruple hierarchy: a bifunctional electrode architecture for overall urea oxidation. *J. Mater. Chem. A* **5**, 7825-7832 (2017).
- 5 Zhang, J. Y. et al. Anodic Hydrazine Oxidation Assists Energy-Efficient Hydrogen Evolution over a Bifunctional Cobalt Perselenide Nanosheet Electrode. *Angew. Chem. Int. Ed.* **57**, 7649-7653 (2018).
- 6 Wei, X. F. et al. Metal-Organic Framework Nanosheet Electrocatalysts for Efficient H2 Production from Methanol Solution: Methanol-Assisted Water Splitting or Methanol Reforming? *ACS Appl. Mater. Interfaces* **10**, 25422-25428 (2018).
- 7 Hao, S. et al. Integrating natural biomass electro-oxidation and hydrogen evolution: using a porous Fe-doped CoP nanosheet array as a bifunctional

catalyst. *Chem. Commun.* **53**, 5710-5713 (2017).

- 8 Jiang N. et al. Electrocatalysis of Furfural Oxidation Coupled with H2 Evolution via Nickel-based Electrocatalysts in Water. *ChemNanoMat* **3**, 491-495 (2017).
- 9 Dai, L. et al. Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co3O⁴ Nanosheets as a Highly Selective Anode Catalyst. *ACS Cent. Sci.* **2**, 538-544 (2016).
- 10 Huang, Y. et al. Boosting Hydrogen Production by Anodic Oxidation of Primary Amines over a NiSe Nanorod Electrode. *Angew. Chem. Int. Ed.* **57**, 13163-13166 (2018).
- 11 You, B. et al. A General Strategy for Decoupled Hydrogen Production from Water Splitting by Integrating Oxidative Biomass Valorization. *J. Am. Chem. Soc.* 13639-13646 (2016).
- 12 Lyu, C. et al. Homologous $Co₃O₄$ CoP nanowires grown on carbon cloth as a high-performance electrode pair for triclosan degradation and hydrogen evolution. *Mater. Chem. Front.* **2**, 323-330 (2018).