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Supplementary Note 1. Mathematical assumptions

In this section, we specify the state preparation and
measurement (SPAM) procedures, obtain expressions for
the expected values of steps in the protocol over the set
of all Pauli matrices PN = {I,X,Y,Z}⊗N, and analyze the
uncertainties in experimental estimates of those expected
values. We conclude by giving a simple expression for the
ideal MS gate that facilitates the calculation of C(P ).

For this appendix only, we abuse notation slightly by
implicitly defining the channel P(A) = PAP † for any
Pauli matrix P , so that we can use expressions such as∑
P P.
We begin by specifying the mathematical assumptions

we use in our analysis. We assume that initializing N
ions into the ground state corresponds to preparing a
mixed state ρ that is independent of any subsequent con-
trol operations to be applied. We assume that measur-
ing the ions in the computational basis corresponds to
performing a fixed positive-operator-valued measurement
(POVM) that depends only upon the number of ions in
the trap and not on any prior control operations. We
assume that the noise in our implementations of a cycle
is Markovian on the timescale of the cycle and is inde-
pendent and identically distributed each time a cycle is
applied. These three assumptions are standard in bench-
marking and tomography literature.

Finally, we also assume that the noise in a cycle of
independent single-qubit gates is independent of the spe-
cific single-qubit gates being implemented. Specifically,
we assume that the noisy Markovian implementation C̃ of
a cycle C of single-qubit gates can be written as C̃ = AC
for some fixed completely positive and trace-preserving
map A. The assumption of gate-independent noise on
the random Pauli gates is weaker than the corresponding
assumption in randomized benchmarking, namely, that
the noisy implementation of any N -qubit Clifford gate
CN can be written as C̃N = ACN , independent of the
number of entangling gates required to implement CN .
We expect that this assumption can be further relaxed
using the analysis of Ref. [1] at the cost of more cumber-
some notation. This will be subject of future research.

Supplementary Note 2. State preparation and
measurement procedures

In our experiment, we can only directly perform noisy
preparations and measurements in the N -qubit compu-
tational basis {|z〉 : z ∈ ZN2 }. We now specify the ba-
sis changes and coarse graining we use to perform other
preparations and measurements. For an N -qubit matrix
Q (e.g., P , C(P ) from the main text), let BQ rotate the
computational basis to an eigenbasis of Q such that∑

z∈ZN
2

Tr [BQ(|z〉〈z|)Q]BQ(|z〉〈z|) = Q. (1)

For the processes we investigated, C(P ) is always an N -
qubit Pauli matrix. Therefore, we only need to prepare

eigenstates of Pauli matrices P and measure the expec-
tation value of Pauli matrices C(P ). Consequently, our
SPAM procedures are fully specified by defining BQ for
arbitrary Pauli matrices Q. We choose to construct the
BQ out of local Clifford operators to maximize the SPAM
coefficients (which results in a smaller statistical uncer-
tainty). Specifically, let P |j denote the jth tensor factor
of a matrix, AI = AZ = I and

AX(Z) = X, AX(X) = Y

AY (Z) = Y, AY (Y ) = X.

Then we choose the basis-changing gate for an N -qubit
Pauli matrix Q to be

BQ =

N⊗
j=1

AQ|j . (2)

Note that the basis changing procedure is independent of
the sign of Q.

We now specify the coarse-graining procedure we use
to measure the expectation value of observables. Sup-
pose a system is in a state ρ and let Pr(z|Q) be the prob-
ability of observing the computational basis outcome z

after applying the process B†Q. One measures the ex-

pectation value of Q [e.g., Q = C(P )] by applying B†Q,
measuring in the computational basis, and averaging the
probabilities of the outcomes weighted by the coefficients
Tr [BQ(|z〉〈z|)Q], where the weights are computed from
the ideal quantities. From Supplementary Equation (1)
and by the linearity of the trace,

Tr[Qρ] =
∑
z∈ZN

2

Tr [BQ(|z〉〈z|)Q] Pr(z|Q). (3)

Note that as we average the relative frequencies over all
outcomes and Tr [BQ(|z〉〈z|)Q] is in the unit disc, the
number of measurements required to estimate the expec-
tation value of Q to a fixed additive precision is indepen-
dent of the number of qubits N by a standard application
of, e.g., Hoeffding’s inequality [2].

The above estimation procedure will include several
sources of SPAM error per qubit, including errors in qubit
initialization, measuring qubits in the computational ba-
sis, and in the local processes used to change the basis.
Consequently, a protocol has to be robust to SPAM errors
to provide a practical characterization of a multi-qubit
gate.

Supplementary Note 3. Modelling the decay as a
function of the sequence length

We now determine the expected value of
∑L
l=1 fP,m,l/L

for fixed values of P and m underthe assumptions speci-
fied in Supplementary Note 1.
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Theorem 1. Let G be a Clifford cycle and G̃ be an im-
plementation of G with Markovian noise. Suppose there
exists a process A such that R̃ = AR for any Pauli pro-
cess R. Then for a fixed Pauli matrix P and positive in-
teger m, the expected value of fP,m,l from step 3c of the
protocol over all random Pauli processes R0, . . . , Rm is

〈fP,m,l〉 = β

m−1∏
j=0

FGj(P )(E , I),

where E = G†G̃A and β is a scalar that depends only on
P and Gm(P ). Moreover, β = 1 in the absence of SPAM
errors.

Proof. Substituting R̃i = ARi into the noisy version of
Eq. (5) in the main text (i.e., overset each operator with a
∼), the average superoperator applied over all sequences
for a fixed choice of random sequences is

C̃ = ARmG̃ . . .AR1G̃AR0. (4)

Inserting GG† between the ideal Pauli processes Ri and
the adjacent G̃ gives

C̃ = ARmGE . . .R1GER0 (5)

where E = G†G̃A. We can now do a standard relabelling
of the randomizing gates to obtain a twirl by setting T0 =
R0 and recursively defining

Ri = TiGT †i−1G
† (6)

for i > 0. With this relabelling,

C̃ = ATmGT †m−1ETm−1 . . . T
†
1 ET1GT

†
0 ET0. (7)

The Ti are all Pauli processes because GPG† is a Pauli
process for any Pauli process P and any Clifford process
G. Moreover, the Ti are uniformly random because the
Pauli processes are sampled uniformly at random and
form a group. Therefore averaging independently over
all T0, . . . , Tm−1 for a fixed choice of Tm results in the
effective superoperator

ATm(GẼ)m, (8)

where

Ẽ = 4−N
∑
P∈PN

P†EP. (9)

Now note that Ẽ is invariant under conjugation by Pauli
operators and so Ẽ(Q) ∝ Q for all Q ∈ PN [3]. As the
Pauli matrices form a trace-orthogonal basis for the set

of matrices,

Ẽ(Q) = 2−N Tr
[
Q†Ẽ(Q)

]
Q

= 4−N
∑
P∈PN

2−N Tr
[
QP†EP(Q)

]
Q

= 4−N
∑
P∈PN

2−N Tr [P(Q)EP(Q)]Q

= 4−N
∑
P∈PN

2−N Tr [QE(Q)]Q

= FQ(E , I)Q, (10)

for any Q ∈ PN, where we have used the fact that P(Q) =
PQP † = ±Q for any Pauli matrices P,Q and Eq. (2) in
the main text .

For any two Pauli matrices P,Q ∈ PN, let

η(Q,P ) =

{
1 if QP = PQ

−1 otherwise.
(11)

Then, from Supplementary Equation (8) with P ′ =
Gm(P ) for convenience, the expected outcome of the ideal
circuit is C = η(Tm, P )P ′. Now note that under measure-
ment errors and noisy changes of basis [i.e., errors in the
Pr(z|Q)] and folding the residual A into the measure-
ment, Supplementary Equation (3) gives the expectation

value of some operator P̃ ′ (which is not uniquely defined).
Since only the weights in Supplementary Equation (3)
depend on the sign of P ′ and are calculated from the
ideal expressions, the noisy measurement for −P ′ gives
the expectation value of −P̃ ′ by linearity.

Let ρ be the prepared state after applying a noisy
change of basis. Then the expectation value of fP,m,l
in step 3c over all sequences is

〈fP,m,l〉 = 4−N
∑

Tm∈PN

η(Tm, P
′) Tr

[
T †m(P̃ ′)(GẼ)m(ρ)

]
= αP Tr

[
P ′(GẼ)m(ρ)

]
(12)

by Lemma 2 below, where αP = 2−N Tr[PP̃ ′] is 1 in the
absence of errors.

Expanding ρ =
∑
Q∈PN ρQQ and noting that G is a

Clifford cycle, Supplementary Equation (12) reduces to

〈fP,m,l〉 =
∑
Q∈PN

αP ρQ Tr [P ′Gm(Q)]

m−1∏
j=0

FGj(Q)(E , I).

(13)

As the Pauli matrices are trace-orthogonal and P ′ =
Gm(P ), Tr [Gm(Q)P ′] = 2NδQ,P . Therefore

〈fP,m,l〉 = 2NαP ρP

m−1∏
j=0

FGj(P )(E , I), (14)

where ρP = 2−N in the absence of SPAM errors, so that
β = 2NαP ρP = 1 in the absence of SPAM errors.
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In the above proof, we make use of the following
lemma proven and applied to randomized benchmarking
in Ref. [4].

Lemma 2. For any matrix M and any Pauli matrix P ,

4−N
∑
Q∈PN

η(Q,P )Q(M) = 2−N Tr [PM ]P.

Proof. As the Pauli matrices form an orthogonal basis for
the space of matrices, we can write

M =
∑

R∈P⊗N

mRR, (15)

where mR = 2−N Tr(RM). As Q(R) = η(Q,R)R for any
Pauli matrix R,

4−N
∑
Q∈PN

η(Q,P )Q(M) =
∑

R∈P⊗N

mR(ηP · ηR)R (16)

by linearity, where

ηP · ηR = 4−N
∑
Q∈PN

η(Q,R)η(P,R). (17)

As η(Q,P ) is a real 1-dimensional representation of the
Pauli group for any fixed Pauli matrix P and η(Q,P ) and
η(Q,R) are inequivalent as representations for P 6= R,

4−N
∑
Q

η(P (m), Q)η(P,Q) = δ(P,R) (18)

by Schur’s orthogonality relations.

Supplementary Note 4. Estimating the process
fidelity

We now prove that the expectation value of Eq. (7)
in the main text provides an accurate, yet conservative,
estimate of the process fidelity in Eq. (4) in the main
text under the same assumptions as in Eq. (2) in the
main text .

Theorem 3. Let

F̂ = 4−N
∑
P∈PN

(
〈fP,m2,l〉
〈fP,m1,l〉

) 1
m2−m1

be the expected outcome of the cycle benchmarking pro-
tocol over all randomizations. Let G be a Clifford cycle
and G̃ be an implementation of G with Markovian noise.
Suppose there exists a process A such that R̃ = AR for
any Pauli process R. Then F̂ ≤ FRC(G̃,G) and

F̂ − FRC(G̃,G) = O
(

[1− FRC(G̃,G)]2
)
.

Proof. First, recall that the process fidelity is linear and
for any unitary process U ,

F (G̃,U) = F (U†G̃, I).

Therefore from Eq. (4) in the main text ,

FRC(G̃,G) = 4−N
∑
R∈PN

F (G̃R̃,GR)

= 4−N
∑
R∈PN

F (RG†G̃AR, I)

= F (Ẽ , I).

Moreover, F (E , I) = F (Ẽ , I) by Eq. (1) in the main text
and Supplementary Equation (10), and so we will prove
statements for F (E , I).

Now fix a Pauli matrix P and note that if m1 and
m2 = m1+δm are chosen so that P ′ = Gm2(P ) = Gm1(P )
(guaranteed by step 2 of the protocol), then(

〈fP,m2,l〉
〈fP,m1,l〉

)1/δm

=

δm−1∏
j=0

FGj(P ′)(E , I)1/δm (19)

by Theorem 1, as the scalar is the same for m1 and m2.
That is, the terms being averaged over in Eq. (7) in the

main text are themselves geometric means of FQ(Ẽ , Ĩ)
for different Pauli matrices Q obtained by applying G to
the sampled P . Formally, let w(Q|P ′, δm) be the relative
frequency of Q in the list (Gj(P ′) : j = 0, . . . , δm − 1).
Then(
〈fP,m2,l〉
〈fP,m1,l〉

)1/δm

=
∏
Q∈PN

FQ(E , I)ω(Q|G
m1 (P ),δm) (20)

By the inequality of the weighted arithmetic and geomet-
ric means,(

〈fP,m2,l〉
〈fP,m1,l〉

)1/δm

≤
∑
Q∈PN

w(Q|P, δm)FQ(E , I). (21)

As G is a Clifford matrix,
∑
P∈PN ω(Q|P, δm) = 1 for

all Pauli matrices Q. Therefore summing Supplementary
Equation (21) over all input Pauli matrices P gives F̂ ≤
F (E , I). To prove the approximate statement, let rQ =
1 − FQ(E , I). Expanding Supplementary Equation (20)
to second order in the rQ gives(
〈fP,m2,l〉
〈fP,m1,l〉

)1/δm

= 1−
∑
Q∈PN

ω(Q|P, δm)rQ +O(r2Q).

The approximate claim then holds as O(r2Q) = O([1 −
F (E , I)]2) by Lemma 4 below.

Lemma 4. For any completely positive and trace-
preserving map E and any Pauli matrix P ,

0 ≤ 1− FP (E , I) ≤ 2− 2F (E , I).
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Proof. Note that Supplementary Equation (10) holds for
any completely positive and trace preserving map E with
Ẽ as defined in Supplementary Equation (9). In par-

ticular, FP (Ẽ , I) = FP (E , I) for all P ∈ PN and so

F (Ẽ , I) = F (E , I) by Eq. (1) in the main text . As

Ẽ is covariant under Pauli channels, there exists a prob-
ability distribution p(Q) over the set of Pauli matrices
such that [3].

Ẽ(A) =
∑
Q

p(Q)QAQ†. (22)

For any Kraus operator decomposition, the process fi-
delity can be written as [5]

F (Ẽ , I) =
∑
Q

p(Q)|TrQ|2/4N = p(I). (23)

Substituting Supplementary Equation (22) into Eq. (2)
in the main text and using [P, I] = 0, p(Q) ≥ 0, and
Supplementary Equation (23) gives

FP (Ẽ , I) =
∑

Q:[Q,P ]=0

2p(Q)− 1

≥ 2p(I)− 1 = 2F (Ẽ , I)− 1. (24)

The lower bound follows as the FP (Ẽ , I) are eigenvalues

of Ẽ and hence are in the unit disc [6].

Supplementary Note 5. Finite sampling effects

We now consider the effect of finite samples. Specif-
ically, we will show that with appropriate choices of
sequence lengths, the uncertainty in the estimate F̂
obtained via Eq. (1) in the main text will scale as

O([1 − F ]/
√
K) where the implicit constants are inde-

pendent of the number of qubits. We will also show
that if the experimental parameters are chosen appro-
priately, the implicit constant should be at most 1, that
is, σ ≤ (1 − F )/

√
K. All the “approximately normal”

statements in this section can be replaced by rigorous
statements using the results of [7], Hoeffding’s inequal-
ity [2] and the union bound, at the expense of additional
notation and less favorable (but pessimistic) constants.

First, note that estimating the expectation value of
the sequence labelled by l with a finite number of mea-
surements R will produce an estimate of each expecta-
tion value 〈fP,m,l〉 with an error εP,m,l that is approxi-
mately normally distributed with the standard deviation
σP,m,l ∝ 1/

√
R independent of the number of qubits by

the central limit theorem. Averaging the estimated ex-
pectation values 〈fP,m,l〉 over a finite number L of ran-
dom sequences will give an estimate of 〈fP,m,l〉 with an er-
ror εP,m that is approximately normally distributed with

standard deviation σP,m ∝ 1/
√
L that is independent of

the number of qubits, again by the central limit theorem.

Formally, the error in 〈fP,m,l〉 can be divided into the av-
erage of a number of normally distributed random vari-
ables (the errors on the individual estimates), which con-

tributes O(1/
√
LR) to σP,m, and the error from sampling

a finite number of random sequences, which contributes
O(1/

√
L) to σP,m. Hence, the error will be dominated

by the finite number of random sequences. Using a series
expansion of the ratio

F̂P :=

(
〈fP,m2,l〉+ εP,m2

〈fP,m1,l〉+ εP,m1

)1/δm

,

the estimated process fidelity obtained by averaging F̂P
over K Pauli matrices will satisfy

F̂ =
1

K

∑
P

F̂P

≈
∑
P

FP
K

+
∑
P

δεP
Kδm

, (25)

where we define δεP = εP,m2
− εP,m1

. Note that δεP
is a difference between two approximately normal ran-
dom variables with standard deviation O(1/

√
L) (ne-

glecting the subleading term O[1/
√
LR]) and so V(δεP ) =

O(1/L). Assuming that the δεP and FP are independent,

the expected variance of the estimate F̂ over K Pauli ma-
trices sampled uniformly with replacement is

V2(F̂ ) ≈ K V2
P

(
FP
K

)
+K V2

(
δεP
Kδm

)
≈ V2

P (FP )

K
+

V2 (δεP )

Kδm2
. (26)

We now show that both terms in Supplementary Equa-
tion (26) can be made to scale as (1−F )2/K by choosing
parameters appropriately. The first term satisfies

V2(F̂P ) ≤ [1− F (E , I)]2 (27)

since for any Pauli matrix P ,

|F (E , I)− FP (E , I)| ≤ max
Q∈PN

|F (E , I)− FP (E , I)|

≤ 1− F (E , I) (28)

by Lemma 4. Furthermore, if the δm are chosen to be
proportional to 1/(1 − F ), then the variance of F̂ is
proportional to (1 − F )2, so that we can efficiently es-
timate 1 − F to multiplicative precision. The values
of m in Supplementary Table 1 approximately satisfy
this condition. With such choices of δm, we then have
V2(F̂ ) = O[(1 − F )2/K]. Furthermore, if L and R are
sufficiently large so that V2(δεP ) is negligible, than the
variance of the estimator will satisfy

V2(F̂ ) ≤ (1− F )2/K =: σ2
Pauli. (29)

It can be seen in Fig. (2) in the main text that the
standard deviation decreases with the square-root of the
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sampled subspaces K, with a least squares fit giving
σ = 0.0127(2)/

√
K. This is consistent with the above

analysis, which was based on the assumption that the
δεP and FP are independent. If we assume quantum pro-
jection noise (

√
p(1− p)/R) to be the only error source

in the experiments, where p is the probability of mea-
suring a certain outcome and R is the number of times
a sequence is repeated, we can calculate a lower bound
σlower for the measured data. This lower bound could be
reached if the noise in the noise in the system is com-
pletely isotropic (e.g. global depolarizing). Biased noise
or drift (see Supplementary Figure 3) will lead to un-
certainties bigger than those originating from quantum
projection noise.

The observed standard deviation σ is larger than
the lower bound given by quantum projection noise
σlower = 0.00375(1)/

√
K but smaller than the upper

bound σPauli = 0.0275(8)/
√
K on the contribution from

sampling a finite number of Pauli matrices. This suggests
that the other source of statistical uncertainty, namely, a
finite number of randomizations L and measurements per
sequence R, is sufficiently small to allow us to accurately
estimate the process fidelity.

Supplementary Note 6. Correction operators for
the MS gate

We performed cycle benchmarking for the identity and
MS gates. The MS gate satisfies MS4 = I, so that we can
restrict m to be an integral multiple of 4. Indeed, MS2 ∝
X⊗N so that we could restrict m to be even numbers by
keeping track of the sign (which would depend on the
Pauli matrix P ). To compute the expectation value of
C(P ), we need to know how an arbitrary Pauli operator
Q propagates through the MS gate. Using MS ∝ (I −
iX⊗N )/

√
2 for even N gives

MS(Q) = MSQMS†

=

{
Q if QX⊗N = X⊗NQ

iQX⊗NMS otherwise.
(30)

Supplementary Note 7. Experimental methods

The CB experiments are defined by a sequence of N -
qubit Clifford gates according to the experimental pro-
tocol in Fig. (1) in the main text . We use two distinct
types of Clifford gates, non-entangling and thus local Clif-
ford gates (gates B̃ in green and gates R̃ in blue in Fig.
(1) in the main text ) and the fully entangling MS gates

(gates G̃ in red in Fig. (1) in the main text ), which act on
all N -qubits in the register simultaneously. A local Clif-

ford gate consists of a set R =
⊗N

j=1R(θ)j of individual

single-qubit rotations R(θ)j = exp(−iθpj/2), acting on

qubit j with an angle θ, where pj ∈ [X,Y, Z] are single-
qubit Pauli operations. The fully entangling MS gate is
defined as MS = exp(−i S2

x/8), with Sx = X1 + ...+XN .
After defining the sequences we compile them into

the actual machine language [8]. In this experiment
an elementary single qubit operation consist of one ad-
dressed z-rotation sandwiched between two collective
rotations around the x- or y-axis, e.g. X(π/2)1 =
X(−π/2)12Z(π/2)1X(π/2)12 for 2 qubits. The collective
x- and y-rotations can be seen as simple basis changes on
the entire register, and thus these basis changes can be
shared by the individual qubit operations. By changing
the temporal order of the collective x-, y-rotations and
the individual z-rotations, the total number of collective
rotations can be minimized.

We expect the single qubit z-rotations to have signif-
icantly larger infidelity compared to the collective rota-
tions for the following reasons: First, the addressed laser
beam has a smaller beam size and hence has larger in-
tensity fluctuations. Second, we perform the z-rotations
using the AC-Stark effect, which is quadratically more
sensitive to intensity fluctuations than resonant x-, y-
rotations. Therefore the number of single qubit rotations
Z(θ)j needed to perform a N -qubit Pauli operation is ex-
pected to be the limiting factor for local operations. In
general, the average number of single qubit rotations per
N -qubit Pauli operation scales linearly with N . To sim-
plify the calibration procedure we only perform Z(π/2)j
rotations. Thus e.g. a Z(π)j operation is implemented
using two Z(π/2)j operations. In Supplementary Fig-
ure 1 we show the dependency of the average number of
Z(π/2)j operations on the number of qubits. On average
we implement 1.27(2) ·N addressed π/2 rotations for an
N -qubit Pauli operation.
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Supplementary Figure 1. Average number of Z(π/2)j opera-
tions needed to implement a N -qubit Pauli gate.

In Supplementary Table 1 we give an overview of the
experimental parameters that we used to estimate the lo-
cal CB and the dressed MS fidelities. The number of sub-
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Supplementary Table 1. Experimental parameters for the taken CB data for different register. Since we implement each
sequence twice, once with and once without interleaved MS gates, the total number of sequences is 2 · K · 2(or 3) · L, where
each individual sequence is repeated R times.

Qubits Subspaces K Sequence lengths m Random sequences L Total sequences Repetitions R Measurement time (h)

2 15 4, 40 10 600 100 2.6

4 255 4, 20 10 10200 100 15.7

6 43 4, 8, 12 10 2580 100 3.4

8 24 4, 8 10 960 100 2.0

10 21 4, 8 10 840 100 1.9

spaces K describes the number of individual Pauli chan-
nels we explore. For registers containing 2 and 4 qubits
we measure all possible 4N − 1 subspaces, excluding the
identity. As the success probability decays exponentially
with the sequence length m, it is sufficient to measure two
sequences lengths (see Supplementary Note 4). In the
case of 6-qubits we measure 3 different sequence lengths
to perform model test analysis (see Supplementary Note
8). For each sequence length m we measure L different
random sequences. We implement each sequence twice,
once with and once without interleaved MS gates, hence
the total number of sequences is 2 ·K · 2(or 3) · L. Since
each sequence implementation ends with a projective
measurement into one single quantum state, we repeat
every sequence R = 100 times to measure the outcome
probabilities.

Supplementary Note 8. Testing the dependence of
the estimator on the sequence length

If the noise in the system is Markovian, we expect the
estimated process fidelity to be independent of the se-
quence lengths m1 and m2 to within O([1−FRC(G̃,G)]2)
(see Theorem 3). We test this by performing measure-
ments at 3 different sequence lengths for 6 qubits, as de-
scribed in Supplementary Table 1. We validate that the
estimated process fidelity is independent ofm1 andm2 by
comparing the results of three different length pairs 4-8,
4-12 and 8-12. As can be seen in Supplementary Table 2,
the measured fidelities agree to within half a standard
deviation, which supports the validity of the assumtions
for our experimental apparatus.

Supplementary Table 2. 6-qubit process fidelities estimated
via CB (%) using different pairs sequence lengths (m1,m2).
The results illustrate that the estimated process fidelity is
independent of the sequence lengths used, subject to the con-
straint in step 2 of the protocol.

(m1,m2) Local gates Dressed MS gate

(4,8) 97.0(2) 91.3(5)

(4,12) 97.0(2) 91.2(4)

(8,12) 96.9(4) 91.3(8)

Supplementary Note 9. Testing the dependence of
the fidelity uncertainty on the register size

As we have shown in Supplementary Note 5, the vari-
ance of the fidelity estimate is independent of the num-
ber of qubits N . We experimentally test this prediction
by analyzing the variance of the measured fidelities as a
function of the register size. Since the process fidelity is
reduced for larger register sizes, the variances themselves
are expected to differ. We therefore investigate the ratio
between the observed variance and the bound of equa-
tion Supplementary Equation (29). In Supplementary
Figure 2 we plot the ratio between the standard devi-
ation σ of the measured fidelity and the upper bound
σPauli from sampling a finite number of Pauli channels
(see Supplementary Note 5) against the number of qubits
N in the register. In the data we cannot observe a clear
trend or dependency of the observed variance relative to
the worst-case bound, supporting the claim that the un-
certainty of the fidelity estimate is independent of the
register size.
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Supplementary Figure 2. Ratio between the uncertainty on
the fidelity estimate σ and the theoretical bound from sam-
pling Pauli channels σPauli against the register size.
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Supplementary Note 10. Analyzing fidelity drift

Slow temperature fluctuations on the timescale of min-
utes to days cause changes in various components of our
experimental apparatus. One of the major causes for a
loss in fidelity over time is the alignment of the laser
beams relative to the ion position. The single ion ad-
dressing laser beam is tightly focused to a spot size of
∼ 2µm and the beam position changes as the tempera-
ture varies. This change in position leads to a miscalibra-
tion of the Rabi frequency as well as an increase in inten-
sity fluctuations. We analyze the temporal dependence
of the fidelity with 4-qubit CB as depicted in Supplemen-
tary Figure 3. The 255 subspaces were measured in 3 ses-
sions, where the experimental system was recalibrated at
the beginning of each session. We approximate the drift
of the fidelity to be linear in first order and thus can de-
scribe the time dependent fidelity as F (t) = F0 − εt. We
obtain an average loss of fidelity of εL = 3.3(5) ·10−3 h−1

for local gates and εI = 5.4(8) · 10−3 h−1 for the dressed
MS gate, see Supplementary Table 3. This measurement
suggests that we can expect a maximum loss of fidelity
of 1 % when recalibrating the apparatus every two hours.

Supplementary Table 3. 4-qubit fidelity drift rates, where εL
and εD describe the loss of fidelity per hour for local gates and
the dressed MS gate. The data corresponds to the estimated
linear slopes of Supplementary Figure 3

Session εL (h−1) εD (h−1)

1 3.9(8) · 10−3 8.9(1.5) · 10−3

2 3.1(5) · 10−3 3.2(6) · 10−3

3 3.0(1.1) · 10−3 4.2(1.7) · 10−3

Average 3.3(5) · 10−3 5.4(8) · 10−3
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Supplementary Figure 3. 4-qubit Pauli fidelities for local gates (blue) and the dressed MS gate (red) plotted on the time in
hours. We measured all 255 subspaces in three measurement sessions, where the experiment was recalibrated at the beginning
of each session.
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