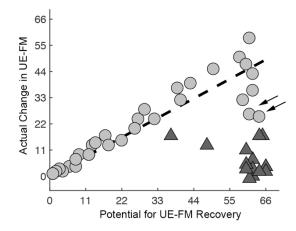
SUPPLEMENTAL MATERIAL

## SUPPLEMENTAL METHODS

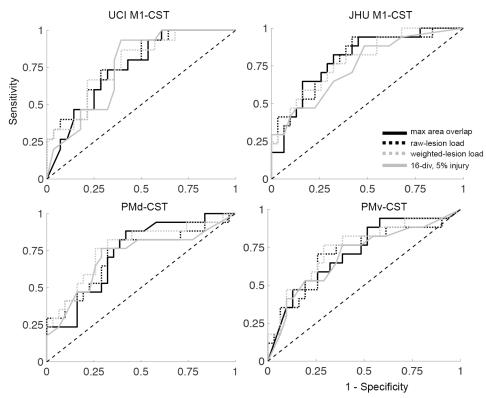
**Inclusion/Exlusion Criteria:** Patients were included when they met the following criteria at the time of consent: (1) age between 18 and 90 years; (2) experienced an ischemic stroke resulting in unilateral upper extremity motor weakness as defined by a score of  $\geq 1$  on the NIH Stroke Scale arm motor drift questions (5A or 5B); and (3) ability to follow simple commands in English. Participants with a history of developmental, neurologic, or major psychiatric disorders resulting in functional disability as well as those with visual or auditory disorders limiting their ability to participate in testing procedures were excluded.

**Methods for Spatial Normalization of Stroke Lesions:** Diffusion images were skull stripped using BET (FSL) and spatially normalized to the 2mm T1-weighted Montreal Neurological Institute (MNI) brain template using Advanced Normalization Tools (ANTs, Philadelphia, PA). For scans with stroke lesions above the level of the brainstem, co-registration included center-of mass alignment, rigid, similarity, and fully affine linear transformations. For scans with stroke lesions within the brainstem, an additional non-linear (symmetric diffeomorphic) transformation was added to ensure accurate co-registration in this region. The resulting transformation matrices were applied to the stroke masks using ANTS to bring them into the MNI space.<sup>1</sup> The anatomic accuracy of each stroke mask in template space was visually verified by two-board certified neurologists (DJL and SBS).

**Distinguishing Proportional from Limited Recoverers:** Proportional recovery predicts that most patients will achieve 70% of their recovery potential:<sup>2</sup>


 $\Delta FM_{Predicted} = 0.7 \ x \ FM_{Potential}$ 

The residual from the proportional recovery model was calculated as:


 $FM_{Residual} = \Delta FM_{Predicted} - \Delta FM_{Actual}$ 

Proportional recoverers were distinguished from limited recoverers by achieving a residual of < 10 points from predicted FM proportional recovery. The cutoff of 10 points was determined by (1) the minimally-clinically important difference (MCID) of the FM as defined by a prior study in subacute stroke patients<sup>3</sup> and (2) visual inspection of the plot of FM residuals verifying that two clear subgroups separated by a cutoff of 10 FM points. Hierarchical clustering based on Mahalanobis distances was also performed (Supplemental Figure I).<sup>4, 5</sup> We ultimately chose to use the MCID cutoff of residuals from the proportional recovery model to distinguish proportional recoverers versus limited recoverers because of the clinical relevance of this approach.

## SUPPLEMENTAL FIGURES



*Figure I.* Hierarchical clustering by Mahalanobis distances of potential for FM recovery ( $66 - FM_{Init}$ ) versus actual change in FM ( $FM_{3mo} - FM_{Init}$ ). Light gray circles show participants classified as proportional recoverers and dark gray triangles show those classified as limited recoverers. Participants were classified into the same groups based on clustering as classification based on a residual cutoff of 10 points from the proportional recoverers using clustering but limited recoverers using cutoff method.



*Figure II.* Receiver Operating Curves (ROC) curves using amount of CST injury with different methods and different tract templates (UCI M1-CST left top, JHU M1-CST right top, PMd-CST left bottom, PMv-CST left bottom) as classifier for distinguishing limited recoverers from proportional recoverers. Dotted line shows chance prediction. Max area overlap, black solid; raw-lesion load, black dotted; weighted-lesion load, gray dotted; 16-div 5% injury, gray solid.

## SUPPLEMENTAL TABLES

| Age | Gender | Ethnicity | Dominant<br>Hand | Affected<br>Arm | PreMorbid<br>mRS* | Prior<br>Stroke | tPA <sup>+</sup> | EVT <sup>‡</sup> | Infarct Location                                     | Initial<br>NIHSS | FM <sub>Init</sub> | FM <sub>3mo</sub> | Recovery<br>Status |
|-----|--------|-----------|------------------|-----------------|-------------------|-----------------|------------------|------------------|------------------------------------------------------|------------------|--------------------|-------------------|--------------------|
| 68  | Male   | White     | Right            | Right           | 0                 | 0               | 1                | 0                | Left MCA deep (corona<br>radiata / posterior limb)   | 5                | 4                  | 40                | р                  |
| 58  | Male   | White     | Right            | Right           | 2                 | 1               | 0                |                  | Left MCA deep<br>(thalamocapsular)                   | 6                | 54                 | 63                | р                  |
| 68  | Female | White     | Right            | Right           | 0                 | 1               | 0                |                  | Left MCA Deep (corona radiata)                       | 1                | 60                 | 64                | р                  |
| 56  | Male   | White     | Right            | Right           | 0                 | 0               | 1                |                  | L MCA Deep (corona<br>radiata / basal ganglia)       | 5                | 53                 | 66                | р                  |
| 85  | Female | White     | Right            | Right           |                   | 0               | 0                |                  | Left MCA Deep (corona<br>radiata / basal ganglia)    | 4                | 62                 | 64                | р                  |
| 72  | Male   | White     | Right            | Right           | 0                 | 1               | 1                | 0                | Left MCA Cortical<br>(frontal - motor /<br>premotor) | 4                | 44                 | 59                | р                  |
| 62  | Female | White     | Right            | Left            | 0                 | 0               | 0                | 0                | Right MCA / PCA<br>(Frontal + Occipital)             | 7                | 27                 | 64                | р                  |
| 66  | Male   | White     | Right            | Right           |                   | 1               | 1                |                  | Left MCA / PCA Cortical<br>+ Deep                    | 10               | 29                 | 46                | р                  |
| 75  | Male   | White     | Right            | Right           | 0                 | 0               | 0                |                  | Left MCA Deep (corona radiata, watershed)            | 4                | 39                 | 63                | р                  |
| 68  | Male   | Black     | Left             | Left            | 2                 | 0               | 0                |                  | Right PCA (Occipital +<br>Thalamus)                  | 13               | 7                  | 39                | р                  |
| 74  | Female | White     | Right            | Right           |                   | 1               | 0                |                  | Left MCA (cortical +<br>deep (caudate))              | 7                | 37                 | 65                | р                  |
| 64  |        | White     | Right            | Right           | 0                 | 0               | 0                |                  | Left MCA (cortical + deep)                           | 10               | 8                  | 58                | р                  |
| 68  | Female | White     | Right            | Left            | 0                 | 0               | 1                |                  | Right MCA (temporal tip<br>+ basal ganglia)          | 4                | 34                 | 58                | р                  |
| 77  | Female | White     | Right            | Left            | 1                 | 0               | 1                |                  | Right MCA<br>(thalamocapsular +<br>temporal tip)     | 5                | 63                 | 66                | р                  |
| 56  | Male   | White     | Left             | Right           | 1                 | 0               | 0                | 0                | Left MCA (cortical)                                  | 8                | 52                 | 66                | р                  |
| 57  | Male   | White     | Right            | Left            | 0                 | 0               | 0                | 0                | Right Brainstem (pons) +<br>Left cerebellum          | 7                | 6                  | 33                | р                  |

| 61 | Male   | White | Left  | Right | 0 | 1 | 1 | 0 Left MCA (cortical + 4 49 66 white matter)                                      |
|----|--------|-------|-------|-------|---|---|---|-----------------------------------------------------------------------------------|
| 71 | Male   | White | Right | Left  | 1 | 1 | 0 | 0 Brainstem (Right medial 5 48 61<br>anterior pons)                               |
| 76 | Female | White | Right | Right | 0 | 0 | 0 | 0 Brainstem (Left anterior 9 4 47 pons)                                           |
| 65 | Female | White | Right | Left  | 2 | 0 | 0 | 0 Right MCA (corona 6 58 62 radiata)                                              |
| 57 | Male   | White | Right | Right | 0 | 0 | 0 | 0 Left MCA (corona 2 64 66 radiata)                                               |
| 80 | Male   | White | Right | Right | 1 | 1 | 0 | 0 Bilateral cortical (L peri-<br>central sulcus, R posterior<br>parietal) 2 57 66 |
| 73 | Male   | White | Right | Left  | 0 | 0 | 0 | 0 Right MCA (scattered, 1 40 60 cortical + deep)                                  |
| 67 | Male   | White | Right | Left  | 0 | 0 | 0 | 0 Right MCA (cortical, 2 65 66 precentral gyrus)                                  |
| 71 | Female | White | Right | Right | 0 | 0 | 1 | 0 Left corona radiata 6 23 62                                                     |
| 50 | Male   | White | Left  | Left  | 0 | 0 | 1 | 1 Right MCA (cortical + 3 65 66 deep)                                             |
| 56 | Female | White | Right | Right | 0 | 0 | 1 | 0 Left MCA (deep, basal 4 54 63 ganglia)                                          |
| 47 | Female | White | Right | Left  | 0 | 0 | 1 | 1 Right MCA (cortical +10563deep)10101010                                         |
| 66 | Female | Black | Right | Left  | 0 | 0 | 1 | 1 Right MCA (cortical +92658deep)2658                                             |
| 57 | Male   | Black | Right | Left  | 0 | 0 | 0 | 0 Right Midbrain + R 9 16 61<br>thalamus + corpus<br>callosum                     |
| 63 | Male   | White | Right | Left  | 0 | 0 | 0 | 0 Right MCA (cortical + 3 58 65 deep)                                             |
| 74 | Female | White | Right | Right | 1 | 1 | 0 | 0 Left Brainstem (pons) + 13 0 4<br>Bilateral Cerebellum                          |
| 72 | Male   | White | Right | Left  | 0 | 0 | 0 | 0 Right MCA / PCA 16 0 4<br>(occipital, medial<br>temporal,<br>thalamocapsular)   |

| 62 | Female | Hispanic | Left  | Right | 2 | 0 | 1 | pall         | t MCA Deep (globus<br>lidus / internal<br>sule)                        | 9  | 4  | 11 | 1 |
|----|--------|----------|-------|-------|---|---|---|--------------|------------------------------------------------------------------------|----|----|----|---|
| 82 | Female | White    | Right | Left  | 0 | 0 | 1 | 1 Rig<br>Dee | ht MCA Cortical +<br>ep (frontal / temporal /<br>al ganglia)           | 21 | 4  | 4  | 1 |
| 66 | Female | White    | Right | Right | 0 | 0 | 0 | radi         | t MCA deep (corona<br>iata / external capsule)                         | 8  | 5  | 31 | 1 |
| 88 | Female | White    | Right | Left  | 2 | 0 | 1 | MC           | ltifocal, Bilateral<br>CA (Right cortical +<br>al ganglia / L frontal) | 17 | 4  | 4  | 1 |
| 21 | Female | White    | Right | Left  | 3 | 0 | 0 | Dee<br>tem   | ht MCA Cortical +<br>ep (frontal / parietal /<br>poral / BG)           | 15 | 1  | 18 | 1 |
| 70 | Female | White    | Left  | Right | 2 | 0 | 0 | 0 Lef<br>Dee | t MCA (Cortical +                                                      | 21 | 5  | 4  | 1 |
| 58 | Male   | White    | Left  | Left  | 0 | 1 | 0 | radi         | ht MCA Deep (corona<br>ata +<br>amocapsular)                           | 6  | 18 | 31 | 1 |
| 51 | Male   | White    | Right | Left  | 0 | 0 | 0 | radi         | ht MCA Deep (corona<br>iata + posterior<br>amen)                       | 11 | 6  | 17 | 1 |
| 80 | Female | White    | Right | Left  | 2 | 0 | 0 |              | t corpus callosum +<br>instem (Medulla)                                | 9  | 0  | 2  | 1 |
| 71 | Female | White    | Left  | Left  | 0 | 0 | 0 | 0 Rig        | ht MCA (cortical)                                                      | 16 | 4  | 7  | 1 |
| 48 | Male   | White    | Left  | Right | 0 | 0 | 1 | 0 Lef        | t MCA (cortical + p)                                                   | 17 | 2  | 27 | 1 |
| 55 | Male   | Male     | Right | Right | 0 | 0 | 0 |              | t PCA (thalamus +<br>lbrain)                                           | 20 | 2  | 4  | 1 |
| 57 | Female | White    | Right | Left  | 0 | 0 | 0 | 0 Rig        | ht MCA deep                                                            | 13 | 6  | 11 | 1 |
| 60 | Female | White    | Right | Left  | 2 | 0 | 0 | dee          |                                                                        | 10 | 2  | 19 | 1 |
| 62 | Male   | Male     | Right | Left  | 0 | 1 | 0 |              | ht MCA (cortical +<br>p, scattered)                                    | 11 | 6  | 9  | 1 |

*Table I.* Baseline participant and stroke characteristics grouped by proportional (p, top) versus limited (l, bottom) recoverer status. \*mRS = modified Rankin Scale

<sup>+</sup>tPA = alteplase

<sup>‡</sup>EVT = endovascular therapy §p = proportional recover, l = limited recoverer

|      |      | UCI-M1 CST |      |      |      | JHU M | 1-CST |      |      | PMd- | CST  |      | Р    | Mv-CS | Т    |      |
|------|------|------------|------|------|------|-------|-------|------|------|------|------|------|------|-------|------|------|
|      |      | Max        | RLL  | WLL  | 16/5 | Max   | RLL   | WLL  | 16/5 | Max  | RLL  | WLL  | 16/5 | Max   | RLL  | WLL  |
|      |      | Area       |      |      |      | Area  |       |      |      | Area |      |      |      | Area  |      |      |
| UCI  | Max  |            |      |      |      |       |       |      |      |      |      |      |      |       |      |      |
| M1-  | Area |            | 1    |      |      |       |       |      |      |      |      |      |      |       |      |      |
| CST  | RLL  | 0.79       |      |      |      |       |       |      |      |      |      |      |      |       |      |      |
|      | WLL  | 0.80       | 0.97 |      |      |       |       |      |      |      |      |      |      |       |      |      |
|      | 16/5 | 0.89       | 0.78 | 0.77 |      |       |       |      |      |      |      |      |      |       |      |      |
| JHU  | Max  | 0.89       | 0.83 | 0.80 | 0.85 |       |       |      |      |      |      |      |      |       |      |      |
| M1-  | Area |            |      |      |      |       |       |      |      |      |      |      |      |       |      |      |
| CST  | RLL  | 0.75       | 0.90 | 0.90 | 0.76 | 0.86  |       |      |      |      |      |      |      |       |      |      |
|      | WLL  | 0.76       | 0.91 | 0.91 | 0.77 | 0.86  | 1.0   |      |      |      |      |      |      |       |      |      |
|      | 16/5 | 0.80       | 0.88 | 0.86 | 0.83 | 0.88  | 0.92  | 0.91 |      |      |      |      |      |       |      |      |
| PMd- | Max  | 0.93       | 0.84 | 0.81 | 0.90 | 0.94  | 0.81  | 0.81 | 0.89 |      |      |      |      |       |      |      |
| CST  | Area |            |      |      |      |       |       |      |      |      |      |      |      |       |      |      |
|      | RLL  | 0.75       | 0.95 | 0.91 | 0.79 | 0.81  | 0.87  | 0.88 | 0.89 | 0.85 |      |      |      |       |      |      |
|      | WLL  | 0.75       | 0.94 | 0.90 | 0.78 | 0.81  | 0.86  | 0.85 | 0.88 | 0.84 | 0.99 |      | -    |       |      |      |
|      | 16/5 | 0.82       | 0.80 | 0.76 | 0.92 | 0.83  | 0.74  | 0.75 | 0.87 | 0.92 | 0.84 | 0.84 |      |       |      |      |
| PMv- | Max  | 0.73       | 0.66 | 0.68 | 0.67 | 0.65  | 0.62  | 0.63 | 0.69 | 0.77 | 0.71 | 0.68 | 0.68 |       |      |      |
| CST  | Area |            |      |      |      |       |       |      |      |      |      |      |      |       |      |      |
|      | RLL  | 0.70       | 0.92 | 0.87 | 0.68 | 0.75  | 0.79  | 0.79 | 0.79 | 0.78 | 0.94 | 0.92 | 0.71 | 0.73  |      |      |
|      | WLL  | 0.71       | 0.91 | 0.87 | 0.67 | 0.75  | 0.77  | 0.77 | 0.79 | 0.78 | 0.94 | 0.93 | 0.72 | 0.74  | 0.99 |      |
|      | 16/5 | 0.80       | 0.76 | 0.75 | 0.81 | 0.74  | 0.68  | 0.69 | 0.77 | 0.83 | 0.79 | 0.77 | 0.83 | 0.87  | 0.79 | 0.79 |

*Table II.* Correlation matrix showing correlations between CST injury values estimated by different methods (max area overlap, raw lesion-load, weighted lesion-load, and 16-Div, 5% injury) and on different CSTs (UCI M1-CST, JHU M1-CST, PMd-CST, PMv-CST).

|                      |      | UCI M | 1-CST |      | JHU M1-CST |      |      |      |  |
|----------------------|------|-------|-------|------|------------|------|------|------|--|
|                      | AUC  | Thr   | Sens  | Spec | AUC        | Thr  | Sens | Spec |  |
| Max area overlap     | 0.75 | 0.94  | 0.47  | 0.86 | 0.80       | 0.63 | 0.65 | 0.84 |  |
| Raw lesion load      | 0.77 | 2.18  | 0.4   | 0.93 | 0.80       | 0.71 | 0.41 | 0.97 |  |
| Weighted lesion load | 0.77 | 5.69  | 0.27  | 1    | 0.79       | 1.0  | 0.53 | 0.87 |  |
| 16 Div, 5% Injury    | 0.75 | 0.56  | 0.93  | 0.61 | 0.75       | 0.81 | 0.29 | 1    |  |

|                      |      | PMd- | CST  |      | PMv-CST |      |      |      |  |
|----------------------|------|------|------|------|---------|------|------|------|--|
|                      | AUC  | Thr  | Sens | Spec | AUC     | Thr  | Sens | Spec |  |
| Max area overlap     | 0.74 | 0.94 | 0.24 | 1    | 0.72    | 0.85 | 0.47 | 0.87 |  |
| Raw lesion load      | 0.72 | 3.43 | 0.29 | 1    | 0.71    | 0.86 | 0.71 | 0.74 |  |
| Weighted lesion load | 0.77 | 2.37 | 0.77 | 0.74 | 0.75    | 2.41 | 0.47 | 0.90 |  |
| 16 Div, 5% Injury    | 0.71 | 0.56 | 0.76 | 0.71 | 0.70    | 0.88 | 0.41 | 0.90 |  |

*Table III*. Area under the curve (AUC), optimal threshold values (Thr), and sensitivity (Sens) and specificity (Spec) for performance of threshold injury values for classifying limited recoverers versus proportional recoverers using CSTs from M1 (top) and PMd/PMv (bottom) seed regions.

| CST Injury | Total # Patients | # Proportional    | # Limited Recoverers |
|------------|------------------|-------------------|----------------------|
|            |                  | Recoverers (n=31) | (n=17)               |
| 0-25%      | 13               | 12                | 1                    |
| 26 - 50%   | 15               | 11                | 4                    |
| 51-75%     | 11               | 5                 | 6                    |
| 76-100%    | 9                | 3                 | 6                    |

*Table IV*. Proportional and limited recoverers grouped by percent CST injury. CST Injury values were determined here using the maximum cross-sectional area method on the JHU M1-CST tract. These are the same data as presented in the ROC AUC figure (Supplemental Figure II) and table (Supplemental Table III) above, but here presented in quartiles for clearer impact.

|                                 |            | Model 1         |         |                      | Model 2         |         | Model 3              |                |             |  |
|---------------------------------|------------|-----------------|---------|----------------------|-----------------|---------|----------------------|----------------|-------------|--|
|                                 | Beta       | 95%<br>CI       | p-value | Beta                 | 95%<br>CI       | p-value | Beta                 | 95%<br>CI      | p-<br>value |  |
| CST Injury                      | -0.65      | -0.98,<br>-0.31 | < 0.001 | -0.65                | -0.99,<br>-0.31 | < 0.001 | -0.43                | -0.94,<br>0.08 | 0.10        |  |
| M1-pM<br>injury                 | -          | -               | -       | 0.007                | -0.18,<br>0.20  | 0.94    | 0.18                 | -0.18,<br>0.55 | 0.32        |  |
| CST * M1-<br>pM injury          | -          | -               | -       | -                    | -               | -       | -0.38                | -1.07,<br>0.30 | 0.26        |  |
| Overall<br>Model R <sup>2</sup> | $R^2=0.25$ | -               | < 0.001 | R <sup>2</sup> =0.25 | -               | 0.002   | R <sup>2</sup> =0.27 | -              | 0.003       |  |
| R <sup>2</sup> Change           | -          | -               | -       | $\Delta R^2 = 0$     | -               | 0.94    | $\Delta R^2 = .021$  | -              | 0.26        |  |

*Table V.* Hierarchical linear regression including CST injury (Model 1), CST Injury + M1-pM injury (Model 2), and CST injury + M1-pM + interaction term (Model 3). CI=Confidence Interval

## SUPPLEMENTAL REFERENCES

- 1. Bianciardi M, Toschi N, Edlow BL, Eichner C, Setsompop K, Polimeni JR, et al. Toward an in vivo neuroimaging template of human brainstem nuclei of the ascending arousal, autonomic, and motor systems. *Brain Connect.* 2015;5:597-607
- 2. Prabhakaran S, Zarahn E, Riley C, Speizer A, Chong JY, Lazar RM, et al. Interindividual variability in the capacity for motor recovery after ischemic stroke. *Neurorehabil Neural Repair*. 2008;22:64-71
- 3. Arya KN, Verma R, Garg RK. Estimating the minimal clinically important difference of an upper extremity recovery measure in subacute stroke patients. *Top Stroke Rehabil.* 2011;18 Suppl 1:599-610
- 4. Winters C, van Wegen EE, Daffertshofer A, Kwakkel G. Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke. *Neurorehabil Neural Repair*. 2015;29:614-622
- 5. Stinear CM, Byblow WD, Ackerley SJ, Smith MC, Borges VM, Barber PA. Proportional motor recovery after stroke: Implications for trial design. *Stroke*. 2017;48:795-798