Supporting Information

Femtosecond Laser-Produced Underwater "Superpolymphobic" Nanorippled Surfaces: Repelling Liquid Polymers in Water for Applications of Controlling Polymer Shape and Adhesion

Jiale Yong^{1,2}, Subhash C. Singh¹, Zhibing Zhan¹, Mohamed EIKabbash¹, Feng Chen^{2,*}, Chunlei Guo^{1,*}

¹The Institute of Optics, University of Rochester, Rochester, New York, 14627, USA
²Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronics & Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
*Corresponding author: guo@optics.rochester.edu (C.G.) chenfeng@mail.xjtu.edu.cn (F.C.)

Including Movie S1 and S2, and Figure S1~S4.

Movie S1. Process of a small water droplet spreading out on the laser-induced rough surface in air.

Movie S2. Process of an underwater liquid PDMS droplet being moved to contact and leave the rough stainless steel surface.

150.000

200.000

100.000

50.000

um 282.348

250.000

Figure S1. Cross-sectional profiles of the laser-induced microgrooves array at different location.

0.000 0.000

Figure S2. (a) Underwater PDMS liquid droplet on the flat stainless steel surface. (b) Underwater liquid PDMS droplet adhering to the flat stainless steel substrate.

Figure S3. Influence of the adopted interval of the laser scanning lines on the wettability of the laser-ablated stainless steel surfaces. (a) Water wettability. (b) Wettability of a liquid PDMS droplet on the sample surfaces in water. (c,d) Process of an underwater PDMS droplet being moved to contact and leave the rough stainless steel surfaces: (c) $\Lambda = 180 \,\mu\text{m}$ and (d) $\Lambda = 200 \,\mu\text{m}$.

Figure S4. Images of the porous stainless steel sheet before and after femtosecond laser ablation. (a) Photograph of an original porous sheet. (b) Transmission photograph of an original porous illuminated by a backlight. (c) Photograph of a laser-ablated porous sheet. The color of the laser-ablated area becomes black. (d) 3D profile of a single microhole on the laser-ablated stainless steel sheet.