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Response to Reviewers: Reviewer reports:

Reviewer #1: Zhang et al. explore the parameter space of 10X libraries and the
subsequent effects of those parameters on de novo assembly performance. They also
developed an in silico simulator and that generates results similar to experimental
findings. The manuscript is well written and easy to understand.
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We thank the reviewer for these positive comments and address each point below.

That said, I think there are some analyses missing that should be included:

1. I think you should variant call off of the de novo assemblies to see if there are any
differences you are missing because you're only looking at things at a very high
structural level.

We have now called SNVs and SVs from our de novo assemblies and from other
methods. Please find our results in the responses to points 2-4 of reviewer2.

2. How is phasing affected? I don't see any data on that other than total diploid regions.
You should include the changes to the phase block N50. It's mentioned in the abstract,
but I don't see it anywhere else.

We have showed the trend of phased block N50 in different linked-read sets in Figure
S14, now we also provided the values of phase block N50s in Table S6

3. Besides NA50 you should include assembly errors such as breakpoints,
translocations, inversions, relocations, etc…..
You have a nice dataset here, you should try to get more out of it.

Thank you for the suggestions. We have re-run QUAST and generated several
detailed statistics which are now shown in Table S4. These results are consistent with
the contig N50s reported in Figure 3.

Minor comments:
58-66, Probably should add this reference for PacBio CCS sequencing, contig N50 is
15 mb, https://www.biorxiv.org/content/10.1101/519025v2
We have added this reference

65-66, I'd argue that this statement is a bit strong, cost is lowering, and throughput is
increasing for these systems
This is now lines 70-72. We have rephrased the sentence and now write: “However,
long-fragment sequencing suffers from extremely high cost (in the case of PacBio
CCS), or low base quality (in the case of single-pass reads of either technology),
hampering its usefulness for personal genome assembly.”

68 Not a complete sentence
We fixed this

Ref 27 isn't our stLFR paper, the doi for that is 10.1101/gr.245126.118, and it is
commercially available now in some parts of the world
We have added the new reference and deleted the confusing words in this sentence.

Reviewer #2: Zhang and co-authors present a parameter study for 10x linked-read
sequencing experiments with the objective of evaluating the influence of experimentally
controllable parameters on the final diploid assembly quality. The authors perform
basic performance evaluation in terms of common metrics such as N50 values and
provide technical recommendations for designing linked-read sequencing experiments.
Additionally, Zhang et al. implemented a software tool for simulating linked-read
sequencing data, which they use for parameter assessment given the known
(simulated) truth.

While such studies that provide guidance to users of a sequencing technology are very
valuable in principle, I have a number of concerns that should be addressed:

1. There is a closely related article by Luo et al. (2017, DOI:
10.1016/j.csbj.2017.10.002) that has been missed. The authors should clarify what the
added value of their study is beyond the work by Luo et al. This comment applies to
both aspects: guidance to users in terms of 10x sequencing experiments and the
utility/features of their data simulation tool (note that Luo et al. also provide a
simulator).
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We appreciate and cite the work by Luo et al. However, our study provides (1) a more
flexible simulation tool and (2) an extensive set of new sequence data.

Regarding (1)
A. We explicitly allow users to input CF, CR, Wμ_FL and μ_FL, which have strong
connections with library preparation and Illumina sequencing. For example, CF is
driven by input DNA amount and μ_FL by DNA preparation and potential size selection.
LRSIM only lets the user set the total number of reads.
B. The usability of LRTK-SIM is better than LRSIM. LRSIM requires many third party
packages and software to be installed first, such as Inline::C perl library, DWGSIM etc.
It is not convenient for the users with insufficient computer experience. LRTK-SIM was
written in Python and no third-party software was required. It can be installed and
gotten started easily. LRTK-SIM can parallel simulate multiple libraries with a variety of
parameters simultaneously. The users can compare the performance of different
parameters in one run.

Regarding (2)
Luo et al. compared the influence of different parameters by simulation only, which
does not always reflect the situation in real sequencing. In our study, we prepared six
real libraries with different parameters and could validate our observations from
simulation data.

2. The focus of this manuscript is on guiding researchers who are after a cost-effective
characterization of individual human genomes. In my view, Zhang et al. should go the
full distance and additionally compare to standard Illumina sequencing followed by
mapping and variant calling as a baseline. The assembly metrics employed are not so
very informative when it comes to the question of which variation (relative to the
reference genome) is been missed/captured in standard approaches.

While human assembly is the focus, we believe that much of the interest in our work
will come mainly from researchers who are interested in assembling novel genomes.
We use human as an assembly model because assembly quality can be gauged by
comparison to the reference sequence. Nonetheless ...

Beyond comparing to standard Illumina sequencing, including a detailed comparison to
reference-based processing of 10x data (e.g. using LongRanger) would be interesting.
In this way, this study would by much more helpful for planning sequencing studies.

... in response to this comment, we now systematically investigate SNV and SV calls
from our assemblies. We compare with standard Illumina data and reference-based
processing of our 10x data. The standard Illumina data were downloaded from
Genome In A Bottle and analyzed with SVABA to generate SV calls, and with BWA
and FreeBayes to generate SNV calls. Long ranger was used to generate SNVs and
SVs (only deletions) for 10x reference-based analysis. We noted that R9 failed to be
analyzed by Long Ranger due to its extremely large CF. We compared SNV and SV
calls among the different approaches using vcfeval
(https://github.com/RealTimeGenomics/rtg-tools) and truvari
(https://github.com/spiralgenetics/truvari), respectively.

For SNVs, we compared the calls from three strategies to the gold standard of
NA12878 (ftp://ftp-
trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/latest/GRCh38/) and
NA24385 (ftp://ftp-
trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/latest/G
RCh38/).

We found that SNVs from reference-based processing of Illumina and 10x data were
comparable, and both of them were better than assembly-based SNV calls. For SVs,
our assemblies generated many calls that were missed by the reference-based
strategy.

We now provide several additional supplementary tables (Table S7-S12) to present
these results.
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3. The main reason (in my view) for pursuing de novo assembly of human genomes is
to access structural variation that is missed otherwise. An evaluation on how much
structural variation is (accurately) captured would be of interest to many readers. This
is actually something that the authors point out in the Discussion themselves:
"Arguably, the metric that matters most in the context of a personal genome is the
discovery of variation that lower-cost approaches do not enable."

As implied by the quote, we agree with the reviewer's comment. Consequently, we now
compare three linked-read sets from HG002 with the Tier 1 SV benchmark from
Genome in a Bottle by using truvari (https://github.com/spiralgenetics/truvari). The
results are summarized in Table S13.

4. PacBio CCS reads are available for HG002 (see Wenger at al.,
http://dx.doi.org/10.1101/519025). Mapping those CCS reads back to your diploid
assemblies and calling variants provides an easy and powerful opportunity to assess
the sequence quality from an independent technology.

These data became available while our manuscript was in review. We note that the
PacBio CCS calls on HG002 are generally reasonably accurate but are not guaranteed
to be correct in the absence of a gold standard. Therefore, we prefer to compare them
in an overlap analysis with our calls, as opposed to implying that they are a gold
standard by using the term "validation". We used vapor (https://github.com/mills-
lab/vapor) to validate our SV calls based on PacBio CCS reads from HG002 and
include Table S14 to show the validation rates.

Beyond this, your evaluation could be improved by also adding an assembly evaluation
perspective that is more biologically motivated, e.g., number of recovered
genes/disrupted genes or similar (this should be supported by Quast-LG/BUSCO).

We have added this analysis in Table S4.

Minor comments

- line 51: pedigree based phasing is quite powerful even for trios (where it is able to
phase all variants that are homozygous in at least one individual), so I disagree to the
statement that this is only feasible in large pedigrees.
We fixed this and removed confusing words.

- lines 60ff: it is unclear which study your are referring to here, please add the citation
at the end of the sentence (N50 31.1Mb)
We included a new reference here.

- line 68: broken sentence; also, putting the citation at the end of the sentence
increases readability
We fixed this issue.

- lines 71/72: again, unclear which study you are referring to ("Long Fragment Read")
We included a new reference here.

- lines 125ff: is there a specific reason why five and three? (And not, e.g., five and
five?) Also, the meaning of L, M, and H in the subscript of L should be explained
Because we generated two additional libraries (L_1L and L_1M for NA12878) to
evaluate the effects of CF and CR in assembly, and we believe the trend should be
consistent in the two samples. L, M and H represent low, medium and high CF in the
experiments. We have clarified this in the manuscript.

- line 129: percent of what?
The percent of GEM in 10x Chromium system.

- line 151: please be more specific about which version of hg38 was used (detail once
if identical hg38 was used throughout the rest of the paper [lines 165, 171, 195 and so
on...])
The reference was downloaded from 10x website with the version of GRCh38
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Reference 2.1.0.

- line 172: please provide an exact reference for the high confidence regions that you
used (e.g., file URL)
We have added the URL in the manuscript.

- line 208: "in in"
We fixed this.

- line 208: this sentence is talking about real data, so the reference to Fig 2C and 2D
does not match.
We clarified this in the manuscript.

- line 209: "...but not dramatically... [...] ...appreciably" - this is subjective language,
please rephrase and be more fact-oriented (for instance by including the numbers you
refer to in parentheses).
We included the numbers and rephrased the sentence to be more fact-oriented.

- line 250: "_Alignment" ?
We fixed this.

- line 251: what is the denominator for these 91% all bases that are not Ns in the
reference genome? (Note that for this analysis, the version of hg38 matters, see
comment above).
“N”s do not contribute to the denominator.

- The authors mention stLFR in line 278. There's a new preprint that's worth
citing/discussing: http://dx.doi.org/10.1101/324392
We have cited their latest version.

- line 296: "extremely long" please say what extremely long means here
We defined “extremely long” as the DNA fragments longer than 200kb.

- line 570: please be more specific what you mean by "in-house programs", and where
the respective sources are available (is that the "Evaluate_diploid_assembly" github?)
All the source codes for assembly evaluation are available in
https://github.com/zhanglu295/Evaluate_diploid_assembly. We added this information
in the sentence.

- please add a - preferably open source - license file to your github repositories
We added the license files in the GitHub.

- "sample prep" is jargon and should be replaced by "sample preparation" (eg. line 41,
but also elsewhere)
We have updated all the “sample prep” to “sample preparation” in the manuscripts.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Yes
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Have you included all the information
requested in your manuscript?

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes
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Abstract 14 

Background: Producing cost-effective haplotype-resolved personal genomes remains 15 

challenging. 10x Linked-Read sequencing, with its high base quality and long-range information, 16 

has been demonstrated to facilitate de novo assembly of human genomes and variant detection. 17 

In this study, we investigate in depth how the parameter space of 10x library preparation and 18 

sequencing affects assembly quality, on the basis of both simulated and real libraries. 19 

Findings: We prepared and sequenced eight 10x libraries with a diverse set of parameters from 20 

standard cell lines NA12878 and NA24385 and performed whole genome assembly on the data. 21 

We also developed the simulator LRTK-SIM to follow the workflow of 10x data generation and 22 

produce realistic simulated Linked-Read data sets. We found that assembly quality could be 23 

improved by increasing the total sequencing coverage (C) and keeping physical coverage of DNA 24 

fragments (CF) or read coverage per fragment (CR) within broad ranges. The optimal physical 25 

coverage was between 332X and 823X and assembly quality worsened if it increased to greater 26 

than 1,000X for a given C. Long DNA fragments could significantly extend phase blocks, but 27 

decreased contig contiguity. The optimal length-weighted fragment length (W𝜇𝐹𝐿) was around 50 28 

– 150kb. When broadly optimal parameters were used for library preparation and sequencing, ca. 29 

80% of the genome was assembled in a diploid state. 30 

Conclusion: The Linked-Read libraries we generated and the parameter space we identified 31 

provide theoretical considerations and practical guidelines for personal genome assemblies 32 

based on 10x Linked-Read sequencing. 33 

Keywords: 10x Linked-Read sequencing, de novo assembly, diploid human genome, library 34 

preparation  35 
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Data description 36 

Introduction 37 

The human genome holds the key for understanding the genetic basis of human evolution, 38 

hereditary illnesses and many phenotypes. Whole-genome reconstruction and variant discovery, 39 

accomplished by analysis of data from whole-genome sequencing experiments, are foundational 40 

for the study of human genomic variation and analysis of genotype-phenotype relationships. Over 41 

the past decades, cost-effective whole-genome sequencing has been revolutionized by short-42 

fragment approaches, the most widespread of which have been the consistently improving 43 

generations of the original Solexa technology [1, 2], now referred to as Illumina sequencing. 44 

Illumina's strengths and weaknesses are inherent in the sample preparation and sequencing 45 

chemistry. Illumina generates short paired reads (2x150 base pairs for the highest-throughput 46 

platforms) from short fragments (usually 400-500 base pairs) [3]. Because many clonally amplified 47 

molecules generate a robust signal during the sequencing reaction, Illumina's average per-base 48 

error rates are very low. 49 

 50 

The lack of long-range contiguity between end-sequenced short fragments limits their application 51 

for reconstructing personal genomes. Long-range contiguity is important for phasing variants and 52 

dealing with genomic complex regions. For haplotyping, variants can be phased by population-53 

based methods [4, 5] or family-based recombination inference [6, 7]. However, such approaches 54 

are only feasible for common variants in single individuals or when a trio or larger pedigree is 55 

sequenced. Furthermore, highly polymorphic regions such as the HLA in which the reference 56 

sequence does not adequately capture the diversity segregating in the population are refractory 57 

to mapping-based approaches and require de novo assembly to reconstruct [8]. Short-read/short-58 

fragment data are challenged by interspersed repetitive sequences from mobile elements and by 59 

segmental duplications, and only support highly fragmented genome reconstruction [9, 10]. 60 
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 61 

In principle, many of these challenges can be overcome by long-read/long-fragment sequencing 62 

[11, 12]. Assembly of Pacific Biosciences (PacBio) or Oxford Nanopore (ONT) data can yield 63 

impressive contiguity of contigs and scaffolds. In one study [13], scaffold N50 reached 31.1Mb by 64 

hierarchically integrating PacBio long reads and BioNano for a hybrid assembly, which also 65 

uncovered novel tandem repeats and replicated the structural variants that were newly included 66 

in the updated hg38 human reference sequence. Another study [14] produced human genome 67 

assemblies with ONT data, in which a contig N50 ~3Mb was achieved, and long contigs covered 68 

all class I HLA regions. A recent whole genome assembly of NA24385 [15] with high quality 69 

PacBio CCS reads generated contigs with an N50 of 15Mb. However, long-fragment sequencing 70 

suffers from extremely high cost (in the case of PacBio CCS), or low base quality (in the case of 71 

single-pass reads of either technology), hampering its usefulness for personal genome assembly.  72 

 73 

Hierarchical assembly pipelines in which multiple data types are used  as another approach for 74 

genome assembly [16]. For example, in the reconstruction of an Asian personal genome, fosmid 75 

clone pools and Illumina data were merged, but because fosmid libraries are highly labor intensive 76 

to generate and sequence, this approach is not generalizable to personal genomes. The "Long 77 

Fragment Read" (LFR) approach [17], where a long fragment is sequenced at high depth via 78 

single-molecule fragmented amplification, reported promising personal genome assembly and 79 

variant phasing by attaching a barcode to the short reads derived from the same long fragment. 80 

However, because LFR is implemented in a 384 well plate, many long fragments would be 81 

labelled by the same barcodes, making it difficult for binning short-reads, and the great 82 

sequencing depth required rendered LFR not cost-effective. 83 

 84 

An alternative approach is offered by the 10x Genomics Chromium system, which distributes the 85 

DNA preparation into millions of partitions where partition-specific barcode sequences are 86 
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attached to short amplification products that are templated off the input fragments. Because of 87 

the limited reaction efficiency in each partition, the sequencing depth for each fragment is too 88 

shallow to reconstruct the original long-fragment, distinguishing this approach from LFR [18]. 89 

However, to compensate for the low read coverage of each fragment, each genomic region is 90 

covered by hundreds of DNA fragments, giving overall sequence coverage that is in a range 91 

comparable to standard Illumina short-fragment sequencing while providing very high physical 92 

coverage. Novel computational approaches leveraging the special characteristics of 10x 93 

Genomics data have already generated significant advances in power and accuracy of 94 

haplotyping [19, 20], cancer genome reconstruction [21, 22], metagenomic assemblies [23] , and 95 

de novo assembly of human and other genomes [24-26], compared to standard Illumina short-96 

fragment sequencing. While the uniformity of sequence coverage is not as good as with PCR-97 

free Illumina libraries, 10x Linked-Read sequencing is a promising technology that combines low 98 

per-base error and good small-variant discovery with long-range information for much improved 99 

SV detection in mapping-based approaches [22, 27], and the possibility of long-range contiguity 100 

in de novo assembly [24, 26, 28]. 101 

 102 

Practical advantages of the technology include the low DNA input mass requirement (1ng per 103 

library, or approximately 300 haploid human genome equivalents). Real input quantities can vary, 104 

along with other factors, to influence an interconnected array of parameters that are relevant to 105 

genome assembly and reconstruction. The parameters over which the experimenter has influence 106 

are (Figure 1): i). CR: average Coverage of short Reads per fragment; ii). CF: average physical 107 

Coverage of the genome by long DNA Fragments; iii). NF/P: Number of Fragments per Partition; 108 

iv). Fragment length distribution, several parameters of which are used, specifically 𝜇𝐹𝐿: Average 109 

Unweighted DNA Fragment Length and W𝜇𝐹𝐿 : Length-Weighted average of DNA Fragment 110 

Length. Note that several parameters depend on each other. For example, a greater amount of 111 

input DNA will increase NF/P; shorter fragments increase NF/P at the same DNA input amount 112 
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compared to longer fragments; less input DNA will (within practical constraints) increase CR and 113 

decrease CF; and their absolute values are set by how much total sequence coverage is 114 

generated because CR x CF = C. 115 

 116 

Our goal in this study was to experimentally explore the 10x parameter space and evaluate the 117 

quality of de novo diploid assembly as a function of the parameter values. For example, we set 118 

out to ask whether longer input fragments produce better assemblies, or what the effect of 119 

sequencing vs. physical coverage is on contiguity of assembly. In order to constrain the parameter 120 

space, we first performed computer simulations with reasonably realistic synthetic data. The 121 

simulation results suggested certain parameter combinations that we then approximated in the 122 

generation of real, high-depth, sequence data on two human reference genome cell lines, 123 

NA12878 and NA24385. These simulated and real data sets were then used to produce de novo 124 

assemblies, with an emphasis on the performance of 10x's Supernova2 [24]. We finally assessed 125 

the quality of the assemblies using standard metrics of contiguity and accuracy, facilitated by the 126 

existence of a gold standard (in the case of simulations) and comparisons to the reference 127 

genome (in the case of real data). 128 

 129 

Library preparation, physical parameters and sequencing coverage 130 

We made six DNA preparations that varied in fragment size distribution and amount of input DNA, 131 

three each from NA12878 and NA24385. From these, we prepared eight libraries, five from 132 

NA12878 and three from NA24385 (Table S1).  To generate libraries 𝐿1𝐿 ,  𝐿1𝑀  and 𝐿1𝐻  (the 133 

subscripts L, M and H represent low, medium and high CF, respectively), genomic DNA was 134 

extracted from ca. 1 million cultured NA12878 cells using the Gentra Puregene Blood Kit following 135 

manufacturer's instructions (Qiagen, Cat. No 158467). The GEMs were divided into 3 tubes with 136 

5%, 20%, and 75% to generate libraries 𝐿1𝐿, 𝐿1𝑀 and 𝐿1𝐻, respectively (Figure S1-S3). For the 137 
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other libraries, to generate longer DNA fragments (W𝜇𝐹𝐿=150kb and longer, Figure S4-S8), a 138 

modified protocol was applied. Two-hundred thousand NA12878 or NA24385 cells of fresh culture 139 

were added to 1mL cold 1x PBS in a 1.5 ml tube and pelleted for 5 minutes at 300g. The cell 140 

pellets were completely resuspended in the residual supernatant by vortexing and then lysed by 141 

adding 200ul Cell Lysis Solution and 1ul of RNaseA Solution (Qiagen, Cat. No 158467), mixing 142 

by gentle inversion, and incubating at 37C for 15-30 minutes. This cell lysis solution is used 143 

immediately as input for the 10x Chromium preparation (ChromiumTM Genome Library & Gel 144 

Bead Kit v2, PN-120258; ChromiumTM i7 Multiplex Kit, PN-120262). Fragment size of the input 145 

DNA can be controlled by gentle handling during lysis and DNA preparation for Chromium. The 146 

amount of input DNA (between 1.25 and 4 ng) was varied to achieve a wide range of physical 147 

coverage (CF).The Chromium Controller was operated and the GEM preparation was performed 148 

as instructed by the manufacturer. Individual libraries were then constructed by end repairing, A-149 

tailing, adapter ligation and PCR amplification. All libraries were sequenced with three lanes of 150 

paired-end 150bp runs on the Illumina HiSeqX to obtain very high coverage (C=94x-192x), though 151 

the two with the fewest number of gel beads (𝐿1𝐿 and 𝐿1𝑀) exhibited high PCR duplication rates 152 

because of the reduced complexity of the libraries (Table S1). 153 

 154 

Linked-Reads subsampling 155 

The high sequencing coverage in the libraries allowed subsampling to facilitate the matching of 156 

parameters among the different libraries, for purposes of comparability; these subsampled 157 

Linked-Read sets are denoted 𝑅𝑖𝑑  (Figure 1). We aligned the 10x Linked-Reads to human 158 

reference genome (hg38, GRCh38 Reference 2.1.0 from 10x website) followed by removing PCR 159 

duplication by barcode-aware analysis in Long Ranger[21]. Original input DNA fragments were 160 

inferred by collecting the read-pairs with the same barcode that were aligned in proximity to each 161 

other. A fragment was terminated if the distance between two consecutive reads with the identical 162 
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barcode larger than 50kb. Fragments were required to have at least two read pairs with the same 163 

barcode and a length of at least 2 kb. Partitions with fewer than three fragments were removed. 164 

We subsampled short-reads for each fragment to satisfy the expected CR. 165 

 166 

Generating 10x simulated libraries by LRTK-SIM 167 

To compare the observations from real data with a known truth set, we developed LRTK-SIM, a 168 

simulator that follows the workflow of the 10x Chromium system and generates synthetic Linked-169 

Reads like those produced by an Illumina HiSeqX machine (Supplementary Information and 170 

Figure S9). Based on the parameters commonly employed by 10x Genomics Linked-Read 171 

sequencing and the characteristics of our libraries, LRTK-SIM generated simulated datasets from 172 

the human reference (hg38), explicitly modeling the five key steps in real data generation. 173 

Parameters in parentheses are from the standard 10x Genomics protocol: 1. Shearing genomic 174 

DNA into long fragments (W𝜇𝐹𝐿  from 50kb to 100kb); 2. Loading DNA to the 10x Chromium 175 

instrument (~1.25ng DNA); 3. Allocating DNA fragments into partitions which are attached the 176 

unique barcodes (~10 fragments per partition); 4. Generating short fragments; 5. Generating 177 

Illumina paired-end short reads (800M~1200M reads). LRTK-SIM first generated a diploid 178 

reference genome as a template by duplicating the human reference genome (hg38) into two 179 

haplotypes and inserting SNVs from high-confidence regions in GIAB of NA12878 (ftp://ftp-180 

trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/latest/GRCh38/HG001_GRCh38_GIA181 

B_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-182 

X_v.3.3.2_highconf_nosomaticdel_noCENorHET7.bed); For low-confidence regions we 183 

randomly simulated 1 SNV per 1 kb. The ratio was 2:1 for heterozygous and homozygous SNVs. 184 

From this diploid reference genome, LRTK-SIM generated long DNA fragments by randomly 185 

shearing each haplotype with multiple copies into pieces whose lengths were sampled from an 186 

exponential distribution with mean of 𝜇𝐹𝐿 . These fragments were then allocated to pseudo-187 
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partitions, and all the fragments within each partition were assigned the same barcode. The 188 

number of fragments for each partition was randomly picked from a Poisson distribution with mean 189 

of NF/P. Finally, paired-end short reads were generated according to CR and replaced the first 16bp 190 

of the reads from forward strand to the assigned barcodes followed by 7 Ns. More information 191 

about implementation can be found in Supplementary Information. From that diploid genome, 192 

Linked-Read datasets were generated that varied in CR, CF and  𝜇𝐹𝐿  (W𝜇𝐹𝐿 ) (Table S2-S3). 193 

Varying NF/P was only done for chromosome 19 because of the infeasibility of running Supernova2 194 

on whole genome assemblies with large NF/P; within practically reasonable values, NF/P does not 195 

appear to influence assembly quality (Figure S10). In total, we generated 17 simulated Linked-196 

Read datasets to explore the overall parameter space (Table S2-S3) and 11 to match the 197 

parameters of the abovementioned real libraries (Figure 1). 198 

 199 

Human genome diploid assembly and evaluation 200 

The scaffolds were generated by the “pseudohap2” output of Supernova2, which explicitly 201 

generated two haploid scaffolds, simultaneously. Contigs were generated by breaking the 202 

scaffolds if at least 10 consecutive ‘N’s appeared, per definition by Supernova2. For the 203 

simulations of human chromosome 19, we used the scaffolds from the “megabubbles” output. 204 

Contig and scaffold N50 and NA50 were used to evaluate assembly quality. Contigs longer than 205 

500bp were aligned to hg38 by Minimap2[29]. We calculated contig NA50 on the basis of contig 206 

misassemblies reported by QUAST-LG [30]. For scaffolds (longer than 1kb), we calculated the 207 

NA50 following Assemblathon 1's procedure [31] (Supplementary Information). 208 

 209 

Genomic variant calls from diploid assembly 210 

We compared single nucleotide variants (SNVs) and structural variants (SVs) from the diploid 211 

regions of our assemblies with the ones from standard Illumina data and reference-based 212 
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processing of our 10x data. The standard Illumina data were downloaded from Genome in a Bottle 213 

[32] and analyzed with SVABA [33] to generate SV calls, and with BWA [34] and FreeBayes [35] 214 

to generate SNV calls. Long ranger (https://support.10xgenomics.com/genome-215 

exome/software/pipelines/latest/ what-is-long-ranger) was used to generate SNV and SV (only 216 

deletions) calls for 10x reference-based analysis. We noted that R9 failed to be analyzed by Long 217 

Ranger due to its extremely large CF. For SNVs, we benchmarked the calls from three strategies 218 

using the gold standard of NA12878 (ftp://ftp-219 

trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/latest/GRCh38/) and NA24385 220 

(ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_ 221 

son/latest/GRCh38/). For SVs, we compared three linked-read sets (R9, R10, R11) from HG002 222 

with the Tier 1 SV benchmark from Genome in a Bottle [36] and used VaPoR [37] to validate our 223 

SV calls based on PacBio CCS reads from NA24385 (Highly-accurate long-read sequencing 224 

improves variant detection and assembly of a human genome). We compared SNV and SV calls 225 

among the different approaches using vcfeval [38] and truvari [36], respectively. 226 

 227 

Performance of diploid assembly: influence of total coverage Diploid assembly by Linked-228 

Reads requires sufficient total read coverage (C=CRCF) to generate long contigs and scaffolds. 229 

In this experiment, to explore the roles of both physical coverage (CF) and per-fragment read 230 

coverage (CR), we first generated eight simulated libraries whose total coverage C ranged from 231 

16x to 78x: four with CR fixed and increasing CF and four with fixed CF, and increasing CR (Table 232 

S2). Contig and scaffold N50s increased along with increasing either CF or CR (Figure 2A and 233 

2B). To investigate whether the trend was also present in the real datasets, we analyzed six real 234 

libraries (three by varying CF, and the other three by varying CR; Figure 1): as C increased, we 235 

varied CF and CR independently by fixing the other parameter. Contig and scaffold N50s also 236 

increased in these simulation (Figure 2C and 2D) and real linked-read sets (Figure 2E and 2F) 237 

as a function of total coverage C. Contig lengths did increase a little (621.4kb to 758.1kb for 238 

https://support.10xgenomics.com/genome-exome/software/pipelines/latest/what-is-long-ranger
https://support.10xgenomics.com/genome-exome/software/pipelines/latest/what-is-long-ranger
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/latest/GRCh38/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/latest/GRCh38/
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simulation; 110.7kb to 119.6kb for real data) when C was increased beyond 56X. Accuracy, which 239 

we define as the ratio between NA50 (N50 after breaking contigs or scaffolds at assembly errors) 240 

and N50 (Figure 2C and 2E), changed 18% for simulation and 7% for real data (587.5kb to 241 

713.3kb for simulation; 97.1kb to 104.5kb for real data). For scaffolds in the real data sets, when 242 

C increased from 48X (𝑅3) to 67X (𝑅4), both scaffold N50 and NA50 were significantly improved 243 

(N50: 13.4Mb to 30.6Mb; NA50: 6.3Mb to 12.0Mb), but the accuracy dropped slightly from 46.6% 244 

to 39.1%, which indicated that scaffold accuracy may be refractory to extremely high C (Figure 245 

2F). These results indicated that assembly length and accuracy were comparable over a broad 246 

range of CF and CR at constant C, which implied that assembly quality was mainly determined by 247 

C. 248 

 249 

Performance of diploid assembly: influence of fragment length and physical coverage. To 250 

investigate if input weighted fragment length (as measured by W𝜇𝐹𝐿) influenced assembly quality, 251 

we generated four simulated libraries (Table S3) with fixed CF and CR and a range of fragment 252 

lengths (Figure 3A). Contig length decreased with increasing fragment length, a trend that was 253 

also seen in six real libraries (Figure 3B; C=56X; 𝑅6 to 𝑅11 in Figure 1). We then simulated 254 

another six libraries with the same parameters as the real ones to explore the effects of physical 255 

coverage at constant C=56x (Figure 3C). Contig lengths decreased as a function of increasing 256 

physical coverage, a trend that is somewhat less clear in real data possibly due to confounding 257 

other parameters such as fragment length (Figure 3D). The two linked-read sets with the worst 258 

contig qualities in NA12878 (𝑅7) and NA24385 (𝑅10) also showed a significant increase of the 259 

number of breakpoints (Table S4) 260 

 261 

Performance of diploid assembly: nature of the source genome. Assembly errors may occur 262 

because of heterozygosity, repetitive sequences, or sequencing error. To illuminate possible 263 
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sources of assembly error, we performed simulations by generating 10x-like Linked-Reads as 264 

above from human chromosome 19, and then quantified assembly error against these synthetic 265 

gold standards. Removal of interspersed repeat sequences from the source genome resulted in 266 

better contigs with no loss of accuracy in experiments by varying CF, CR and 𝜇𝐹𝐿(Figure 4A, 4C 267 

and 4E) and better scaffolds only if CR was above 1X (Figure 4D). Removal of variation had little 268 

effect on contigs and only gave rise to longer scaffolds if CR was above 0.8X (Figure S11), which 269 

is difficult to achieve with real libraries. Finally, a 1% uniform sequencing error had no discernible 270 

effect (Figure S12). 271 

 272 

Performance of diploid assembly: fraction of genome in diploid state. While contiguity is an 273 

important parameter for any whole genome assembly, evaluation of diploid assemblies 274 

necessitates estimating the fraction of the genome in which the assembly recovered the diploid 275 

state. To this end, we divided the contigs generated by Supernova2 into “diploid contigs”, which 276 

were extracted from its megabubble structures, and “haploid contigs” from non-megabubble 277 

structures. Pairs of scaffolds were extracted as the two haplotypes from  megabubble structures 278 

if they shared the same start and end nodes in the assembly graph. Diploid contigs were 279 

generated by breaking the candidate scaffolds at the sequences with least 10 consecutive ‘N’s 280 

and were aligned to human reference genome (hg38) by Minimap2. The genome was split into 281 

500bp windows and diploid regions were defined as the maximum extent of successive windows 282 

covered by two contigs, each from one haplotype. Alignment against the human reference 283 

genome revealed the overall genome coverages of the six assemblies to be around 91%. For 284 

most assemblies, 70%-80% of the genome was covered by two homologous contigs (Table 1), 285 

with 𝑅6
 only reaching 58.9%, probably due to the short fragments of the DNA preparation 286 

(𝜇𝐹𝐿=24kb). We also analyzed another seven assemblies produced by 10x Genomics, all of which 287 

had diploid fractions of about 80% as well (Table S5). In the male NA24385, non-288 

pseudoautosomal regions of the X chromosome are hemizygous and should therefore be 289 
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recovered as haploid regions. Between 79.9% and 87.6% of these regions were covered by one 290 

contig exactly depending on the assembled library. Library construction parameters other than 291 

fragment length appeared to have had little impact on the proportion of diploid regions (Tables 1 292 

and Table S5). 293 

 294 

Overlapping the diploid regions from the assemblies of the same individual revealed that 50.24% 295 

and 67.27% of the genome for NA12878 and NA24385 (Figure S13), respectively, were diploid 296 

in all the three assemblies. NA12878 was lower because of the low percentage of diploid regions 297 

in assembly 𝑅6  (Table 1). The overlaps were significantly greater than expected by chance 298 

(NA12878: 33.3%, p-value=0.0049; NA24385: 45.4%, p-value=0.0029. Chi square test). These 299 

observations were consistent with heterozygous variants being enriched in certain genomic 300 

segments, in which two haplotypes were more easily differentiated by Supernova2. Phase block 301 

lengths were mainly determined by total coverage C and increased in real data with increasing 302 

fragment length (Figure S14, Table S6). 303 

 304 

Performance of diploid assembly: quality of variant calls. The ultimate goal of human genome 305 

assembly is to accurately identify genomic variants. We compared the SNVs and SVs from our 306 

assemblies with the calls from referenced-based processing of standard Illumina and 10x data, 307 

and benchmarked them using gold standard from Genome in a Bottle and PacBio CCS reads. 308 

We found the SNVs from referenced-based processing of standard Illumina and 10x data were 309 

comparable and both of them were better than assembly-based calls (Table S7 and S8) For SVs, 310 

our assemblies generated many calls that were missed by the reference-based strategy (Table 311 

S9-S12) and even by the Tier 1 benchmark of Genome in a Bottle (Table S13), and half of the 312 

deletions and a majority of insertions could be validated by PacBio CCS reads (Table S14). 313 

 314 
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Discussion 315 

In this study, we investigated human diploid assembly using 10x Linked-Read sequencing data 316 

on both simulated and real libraries. We developed the simulator LRTK-SIM to examine the likely 317 

impact of parameters in diploid assembly and compared results from simulated reads to those 318 

from real libraries. We thus determined the impact of key parameters (CR, CF, NF/P and 𝜇𝐹𝐿/W𝜇𝐹𝐿) 319 

with respect to assembly continuity and accuracy. Our study provides a general strategy to 320 

evaluate assemblies of 10x data and may have implications for the evaluation of other barcode-321 

based sequencing technologies such as CPTv2-seq [39] or stLRF [40] in the future. 322 

 323 

10x Practicalities  324 

For standard Illumina sequencing, library complexity is usually sufficient to generate tremendous 325 

numbers of reads from unique templates and read coverage can be increased simply by 326 

sequencing more. However, the 10x Chromium system performs amplification in each partition, 327 

and generally only about 20% to 40% of the original long fragment sequence can be captured as 328 

short fragments and eventually as reads, resulting in shallow sequencing coverage per fragment. 329 

Sequencing more deeply does not increase the per-fragment coverage much as most of the extra 330 

reads are from PCR duplicates. The solution is to sequence multiple 10x libraries constructed 331 

from the same DNA preparation and merge them for analysis. This means that CR remains in the 332 

standard range where PCR duplicates are relatively rare, but CF increases proportionally to the 333 

number of libraries used. A practical limitation to this approach is that Supernova2 limits the 334 

number of barcodes to 4.8 million. 335 

 336 

Our results showed that in practice, CF should be between 335X and 823X, but no larger than 337 

1000X, given the optimal coverage of C=56X recommended by 10x and the requirement for 338 

sufficient per-fragment read coverage. Surprisingly, we observed that including more extremely 339 
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long fragments was detrimental for assembly quality. This is possibly due to the loss of barcode 340 

specificity for fragments spanning repetitive sequences. From a computational perspective, too 341 

many long fragments are harmful to deconvolving the de bruijn graph, as more complex paths 342 

need to be picked out. In our experiments, W𝜇𝐹𝐿 between 50kb and 150kb is the best choice to 343 

generate reliable assemblies. 344 

 345 

Parameters driving assembly quality 346 

Our results regarding assembly quality, and the 10x parameters that influence it, may be useful 347 

for efforts in which de novo assemblies are important for generation of an initial reference 348 

sequence. We show that maximization of N50 does not necessarily reflect assembly quality, 349 

which we were able to compare to NA50 because there exists a high-quality human reference 350 

genome. Contig and scaffold lengths mostly increased with ascending sequencing coverage, and 351 

at sufficient overall sequence coverage it did not matter much whether the increasing coverage 352 

C was accomplished by increasing CR or CF. However, both contig and scaffold accuracy 353 

decreased with increasing C. We also found, counterintuitively, that contig and scaffold length 354 

mostly decreased with increasing fragment length, a phenomenon that may be due to the specific 355 

implementation; however, until there is another assembler that can be compared to Supernova2 356 

it will not be possible to reason about this effect. In addition, intrinsic properties of the genome 357 

matter greatly, as removal of repeats or lack of variation dramatically improves assembly quality. 358 

 359 

Diploid assembly is the appropriate approach for assembly of genomes of diploid organisms that 360 

harbor variation. Therefore, an important metric to evaluate diploid assembly is the fraction of the 361 

genome that is assembled in a diploid state. The short input fragment length of 𝑅6 resulted in 362 

roughly 20% less of the genome in a diploid state (<60% vs <80%) compared to the other libraries 363 

of the same individual. This observation suggests that in addition to metrics such as N50, 364 
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evaluation of assembly quality should also include the fraction of the genome (or the assembly) 365 

that is in a diploid state. 366 

 367 

Cost-benefit analysis 368 

Overall, we have attempted to give practical guidelines to assembly of 10x data with Supernova2 369 

and evaluate the performance across a wide range of metrics. Arguably, the metric that matters 370 

most in the context of a personal genome is the discovery of variation that lower-cost approaches 371 

do not enable. We estimate that the cost increase over standard Illumina sequencing is about 2x, 372 

given the 10X preparation cost and the higher level of sequence coverage required. There may 373 

be many applications for which this combination of excellent single nucleotide variant detection 374 

(via barcode-aware read mapping) and precise structural variant discovery (via assembly), 375 

achieved by the same data set, is worth the price. 376 

 377 

Comparison with hybrid assemblies 378 

Hybrid assembly strategies have been applied successfully to produce human genome assembly 379 

of long contiguity [13, 14, 41]. In these studies, long contigs are first produced by single-molecule 380 

long-reads, such as PacBio (NG50=1.1Mb; [13]) or Nanopore (NG50=3.21Mb; [14]) comparing 381 

favorably to our best results for Linked-Reads assemblies (NG50=236kb). Scaffolding is then 382 

performed with complementary technologies such as BioNano to capture chromosomal level long-383 

range information. It promoted the scaffold N50 of PacBio to 31.1Mb [13] and Illumina mate-pair 384 

sequencing with 10x data to 33.5Mb [25]. Using SuperNova2, the scaffold N50 from our studies 385 

reached ~27.86Mb (𝑅6) on the basis of 10x data alone, suggesting that 10x technology gives 386 

broadly comparable results at a fraction of the price of long-read-based hybrid assemblies. 387 

  388 
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Availability of supporting data 389 

The raw sequencing data are deposited in the Sequence Read Archive and the corresponding 390 

BioProject accession number is PRJNA527321. Diploid assemblies and the codes for comparison 391 

are currently available at http://mendel.stanford.edu/supplementarydata/zhang_SN2_2019 and 392 

https://github.com/zhanglu295/Evaluate_diploid_assembly. LRTK-SIM is publicly available at 393 

https://github.com/zhanglu295/LRTK-SIM. 394 

 395 

Additional files 396 

Table S1. Parameters of libraries prepared for NA12878 and NA24385. 397 

Table S2. Parameters used to generate linked-read sets for evaluating the impact of CF and CR 398 

on assemblies. 399 

Table S3. Parameters used to generate linked-read sets for evaluating the impact of 𝜇𝐹𝐿 and 400 

NF/P on assemblies. 401 

Table S4. Contig misassemblies and recovered transcripts of the six assemblies. 402 

Table S5. Genomic coverage and fraction of contigs in diploid state generated by Supernova2 403 

for the seven libraries prepared by 10x Genomics. Non-PAR: non-pseudoautosomal regions of 404 

X chromosome. WFU, YOR, YORM, PR are female; HGP, ASH and CHI are male. 405 

Table S6. Phase block N50s of the six assemblies. 406 

Table S7. Comparison SNV calls from standard Illumina data, 10x reference-based calls, and 407 

assembly-based calls for NA12878. All calls were compared to the Genome in a Bottle benchmark. 408 

Table S8. Comparison SNV calls from standard Illumina data, 10x reference-based calls, and 409 

assembly-based calls for NA24385. All calls were compared to the Genome in a Bottle benchmark. 410 

Table S9. Comparison of SV calls from standard Illumina data and 10x assembly-based calls for 411 

NA12878. 412 

Table S10. Comparison of SV calls from standard Illumina data and 10x assembly-based calls 413 

for NA24385. 414 

Table S11. Comparison of SV calls from 10x reference-based and assembly-based calls for 415 

NA12878. 416 

Table S12. Comparison of SV calls from 10x reference-based and assembly-based calls for 417 

NA24385. 418 

http://mendel.stanford.edu/supplementarydata/zhang_SN2_2019
https://github.com/zhanglu295/Evaluate_diploid_assembly
https://github.com/zhanglu295/LRTK-SIM
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Table S13. Comparison of SV calls from our de novo assemblies with the Tier 1 SV benchmark 419 

from Genome in a Bottle. 420 

Table S14. Proportion of assembly-based SV calls supported by PacBio CCS reads. 421 

Figure S1. Basic statistics for 𝑳𝟏𝑳. The distributions of A. the number of fragments per partition; 422 

B. sequencing depth per fragment; C. probability density function of unweighted fragment lengths; 423 

D. cumulative density function of unweighted fragment lengths; E. reversed cumulative density 424 

function of unweighted fragment lengths; F. reversed cumulative density function of weighted 425 

fragment lengths. 426 

Figure S2. Basic statistics for 𝑳𝟏𝑴. The distributions of A. number of fragments per partition; B. 427 

sequencing depth per fragment; C. probability density function of unweighted fragment lengths; 428 

D. cumulative density function of unweighted fragment lengths; E. reversed cumulative density 429 

function of unweighted fragment lengths; F. reversed cumulative density function of weighted 430 

fragment lengths. 431 

Figure S3. Basic statistics for 𝑳𝟏𝑯. The distributions of A. number of fragments per partition; B. 432 

sequencing depth per fragment; C. probability density function of unweighted fragment lengths; 433 

D. cumulative density function of unweighted fragment lengths; E. reversed cumulative density 434 

function of unweighted fragment lengths; F. reversed cumulative density function of weighted 435 

fragment lengths. 436 

Figure S4. Basic statistics for 𝑳𝟐. The distributions of A. number of fragments per partition; B. 437 

sequencing depth per fragment; C. probability density function of unweighted fragment lengths; 438 

D. cumulative density function of unweighted fragment lengths; E. reversed cumulative density 439 

function of unweighted fragment lengths; F. reversed cumulative density function of weighted 440 

fragment lengths. 441 

Figure S5. Basic statistics for 𝑳𝟑. The distributions of A. number of fragments per partition; B. 442 

sequencing depth per fragment; C. probability density function of unweighted fragment lengths; 443 

D. cumulative density function of unweighted fragment lengths; E. reversed cumulative density 444 

function of unweighted fragment lengths; F. reversed cumulative density function of weighted 445 

fragment lengths. 446 

Figure S6. Basic statistics for 𝑳𝟒. The distributions of A. number of fragments per partition; B. 447 

sequencing depth per fragment; C. probability density function of unweighted fragment lengths; 448 

D. cumulative density function of unweighted fragment lengths; E. reversed cumulative density 449 

function of unweighted fragment lengths; F. reversed cumulative density function of weighted 450 

fragment lengths. 451 
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Figure S7. Basic statistics for 𝑳𝟓. The distributions of A. number of fragments per partition; B. 452 

sequencing depth per fragment; C. probability density function of unweighted fragment lengths; 453 

D. cumulative density function of unweighted fragment lengths; E. reversed cumulative density 454 

function of unweighted fragment lengths; F. reversed cumulative density function of weighted 455 

fragment lengths. 456 

Figure S8. Basic statistics for 𝑳𝟔. The distributions of A. number of fragments per partition; B. 457 

sequencing depth per fragment; C. probability density function of unweighted fragment lengths; 458 

D. cumulative density function of unweighted fragment lengths; E. reversed cumulative density 459 

function of unweighted fragment lengths; F. reversed cumulative density function of weighted 460 

fragment lengths. 461 

Figure S9. The workflow of LRTK-SIM to simulate linked-reads 462 

Figure S10. The effect of NF/P on human diploid assembly of chromosome 19 by Supernova2, 463 

where C (C=60X; CF=300X and CR=0.2X) and 𝜇𝐹𝐿 (𝜇𝐹𝐿=37kb) are fixed. 464 

Figure S11. Comparison of assembly qualities from 10x data with and without single nucleotide 465 

variants by changing CF, CR and 𝜇𝐹𝐿. CR was fixed to 0.2X in A and B; CF was fixed to 300X in 466 

C and D; CR was fixed 0.2X and CF was fixed 300X in E and F.  467 

Figure S12. Comparison of assembly qualities from 10x data with (1% uniform) and without 468 

sequencing error by changing CF, CR and 𝜇𝐹𝐿. CR was fixed to 0.2X in A and B; CF was fixed to 469 

300X in C and D; CR was fixed 0.2X and CF was fixed 300X in E and F. 470 

Figure S13. Overlaps of diploid regions for the three libraries from the same sample. Diploid 471 

regions for NA12878 (A) and NA24385 (B). The percentages denote the proportion of genome is 472 

diploid. 473 

Figure S14. Phase block N50s as a function of different parameter combinations. A. simulated 474 

linked-reads with predefined parameters (Table S5) by changing CF and CR; B. simulated linked-475 

reads with matched parameters of real linked-read sets (Table S2) by changing CF and CR; C. 476 

real linked-read sets (Table S2) by changing CF and CR; D. simulated linked-read sets (Table S3) 477 

with different 𝑊𝜇𝐹𝐿; E. simulated linked-read sets with matched parameters (Table S3) with real 478 

linked-read sets as C=56X; F. real linked-read sets with C=56X (Table S3). 479 
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Table 496 

Linked-

reads set 

Overall 

(%) 

Diploid 

regions 

(%) 

Haploid 

regions 

(%)  

Non-PAR 

(%) 

Total contig 

length 

(contig>500bp) 

Length of contigs 

from megabubble 

(contig>500bp) 

Percentage 

(%) 

𝑅6 91.9 58.9 27.7 - 5,632,483,053 3,758,345,846 66.73 

𝑅7 91.1 73.3 11.3 - 5,613,140,437 4,668,186,478 83.17 

𝑅8 91.7 77.2 9.2 - 5,635,127,471 4,896,821,850 86.90 

𝑅9 91.3 73.4 12.2 85.9 5,637,615,919 4,438,175,621 78.72 

𝑅10 91.7 79.2 5.8 79.9 5,749,001,471 4,793,226,150 83.37 

𝑅11 91.7 78.1 7.9 87.6 5,677,566,094 4,723,083,367 83.19 

 497 

Table 1. Genomic coverage of contigs generated by Supernova2. Non-PAR: non-498 

pseudoautosomal regions of X chromosome. 𝑅6, 𝑅7 and 𝑅8 are female; 𝑅9, 𝑅10 and 𝑅11 are male. 499 

  500 
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Figures 501 

Figure 1. The linked-read sets prepared to evaluate the impact of CF, CR, 𝜇𝐹𝐿 and W𝜇𝐹𝐿 on 502 

human diploid assembly.  503 
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 504 

Figure 2. Contig and scaffold lengths (N50 and NA50) as a function of CF or CR. A and B: 505 

Simulated Linked-Reads with predefined parameters (Table S2); C and D: Simulated Linked-506 

reads with matched parameters of real Linked-Read data sets (Figure 1); E and F: Real linked-507 

read sets (Figure 1).  508 
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 509 

Figure 3. Contig qualities (N50 and NA50) as a function of fragment length 𝑊𝜇𝐹𝐿 or physical 510 

coverage CF, at C=56X. A and C, results from simulations; B and D, results from real data. 511 
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 512 

Figure 4. Comparison of contig and scaffold lengths from 10x data with masked and unmasked 513 

repetitive sequences by changing CF, CR and 𝜇𝐹𝐿. CR was fixed to 0.2X in A and B; CF was fixed 514 

to 300X in C and D; CR was fixed to 0.2X and CF was fixed to 300X in E and F. 515 

  516 
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Table 

Linked-

reads set 

Overall 

(%) 

Diploid 

regions 

(%) 

Haploid 

regions 

(%)  

Non-PAR 

(%) 

Total contig 

length 

(contig>500bp) 

Length of contigs 

from megabubble 

(contig>500bp) 

Percentage 

(%) 

𝑅6 91.9 58.9 27.7 - 5,632,483,053 3,758,345,846 66.73 

𝑅7 91.1 73.3 11.3 - 5,613,140,437 4,668,186,478 83.17 

𝑅8 91.7 77.2 9.2 - 5,635,127,471 4,896,821,850 86.90 

𝑅9 91.3 73.4 12.2 85.9 5,637,615,919 4,438,175,621 78.72 

𝑅10 91.7 79.2 5.8 79.9 5,749,001,471 4,793,226,150 83.37 

𝑅11 91.7 78.1 7.9 87.6 5,677,566,094 4,723,083,367 83.19 

 

Table 1. Genomic coverage of contigs generated by Supernova2. Non-PAR: non-

pseudoautosomal regions of X chromosome. 𝑅6, 𝑅7 and 𝑅8 are female; 𝑅9, 𝑅10 and 𝑅11 are male. 
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NF/P = Number of fragments per partition
µFL = Mean fragment length
WµFL = Weighted mean fragment length
CR = Read coverage per fragment
CF = Physical (fragment) coverage
C = total coverage
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WµFL,µFL
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10 - 100
µFL = 10-100kb
WµFL = 20-400kb
CR = 0.1x - 0.4x
CF = 200x - 1000x
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