
GigaScience
 

Assessment of human diploid genome assembly with 10x Linked-Reads data
--Manuscript Draft--

 
Manuscript Number: GIGA-D-19-00092R2

Full Title: Assessment of human diploid genome assembly with 10x Linked-Reads data

Article Type: Data Note

Funding Information: National Institute of Standards and
Technology
(na)

Not applicable

Abstract: Background: Producing cost-effective haplotype-resolved personal genomes remains
challenging. 10x Linked-Read sequencing, with its high base quality and long-range
information, has been demonstrated to facilitate de novo assembly of human genomes
and variant detection. In this study, we investigate in depth how the parameter space of
10x library preparation and sequencing affects assembly quality, on the basis of both
simulated and real libraries. Findings: We prepared and sequenced eight 10x libraries
with a diverse set of parameters from standard cell lines NA12878 and NA24385 and
performed whole genome assembly on the data. We also developed the simulator
LRTK-SIM to follow the workflow of 10x data generation and produce realistic
simulated Linked-Read data sets. We found that assembly quality could be improved
by increasing the total sequencing coverage (C) and keeping physical coverage of
DNA fragments (CF) or read coverage per fragment (CR) within broad ranges. The
optimal physical coverage was between 332X and 823X and assembly quality
worsened if it increased to greater than 1,000X for a given C. Long DNA fragments
could significantly extend phase blocks, but decreased contig contiguity. The optimal
length-weighted fragment length (Wμ_FL) was around 50 – 150kb. When broadly
optimal parameters were used for library preparation and sequencing, ca. 80% of the
genome was assembled in a diploid state. Conclusion: The Linked-Read libraries we
generated and the parameter space we identified provide theoretical considerations
and practical guidelines for personal genome assemblies based on 10x Linked-Read
sequencing. Keywords: 10x Linked-Read sequencing, de novo assembly, diploid
human genome, library preparation

Corresponding Author: arend sidow

UNITED STATES

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author: Lu Zhang

First Author Secondary Information:

Order of Authors: Lu Zhang

Xin Zhou

Ziming Weng

arend sidow

Order of Authors Secondary Information:

Response to Reviewers: Reviewer reports:
Reviewer #2: The authors improved the manuscript substantially and implemented
many of the suggested changes. I wonder, however, whether there was a mixup of
document versions because not all changes described in the response are reflected in
the manuscript (including trivial ones like fixing the "_Alignment", now in line 283; also
Luo et al. is still not cited). Maybe the authors can double check that they indeed

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



uploaded the latest version?

Thank you for pointing out this oversight. We have double-checked everything and
added a section to the appropriate place in the Methods where we explain the
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red.)

Beyond that, the only concern left for me is the poor concordance of small variant calls.
For the Illumina and 10x calls, my guess is that they went into the evaluation
completely unfiltered, where FreeBayes (and the LongRanger pipeline which is based
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and half of all calls are missed by the assembly strategy. How did the authors call
variants from the assemblies? Given that the GIAB benchmark regions are
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explanation for the poor recall.
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2.The single base variants in the de bruijn graph are represented as small bubbles,
which would be flattened due to various reasons. The k-mer coverage is one of the
critical thresholds, but the length of k-mer is much shorter than reads and the
sequencing qualities are not taken into consideration. These may lead to miscount the
coverage of variant alleles in the bubbles.

We have added an explanatory sentence in the last section of the Results.
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Abstract 16 

Background: Producing cost-effective haplotype-resolved personal genomes remains 17 

challenging. 10x Linked-Read sequencing, with its high base quality and long-range information, 18 

has been demonstrated to facilitate de novo assembly of human genomes and variant detection. 19 

In this study, we investigate in depth how the parameter space of 10x library preparation and 20 

sequencing affects assembly quality, on the basis of both simulated and real libraries. 21 
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Results: We prepared and sequenced eight 10x libraries with a diverse set of parameters from 22 

standard cell lines NA12878 and NA24385 and performed whole genome assembly on the data. 23 

We also developed the simulator LRTK-SIM to follow the workflow of 10x data generation and 24 

produce realistic simulated Linked-Read data sets. We found that assembly quality could be 25 

improved by increasing the total sequencing coverage (C) and keeping physical coverage of DNA 26 

fragments (CF) or read coverage per fragment (CR) within broad ranges. The optimal physical 27 

coverage was between 332X and 823X and assembly quality worsened if it increased to greater 28 

than 1,000X for a given C. Long DNA fragments could significantly extend phase blocks, but 29 

decreased contig contiguity. The optimal length-weighted fragment length (W𝜇𝐹𝐿) was around 50 30 

– 150kb. When broadly optimal parameters were used for library preparation and sequencing, ca. 31 

80% of the genome was assembled in a diploid state. 32 

Conclusions: The Linked-Read libraries we generated and the parameter space we identified 33 

provide theoretical considerations and practical guidelines for personal genome assemblies 34 

based on 10x Linked-Read sequencing. 35 

Keywords: 10x Linked-Read sequencing, de novo assembly, diploid human genome, library 36 

preparation  37 
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Background 38 

The human genome holds the key for understanding the genetic basis of human evolution, 39 

hereditary illnesses and many phenotypes. Whole-genome reconstruction and variant discovery, 40 

accomplished by analysis of data from whole-genome sequencing experiments, are foundational 41 

for the study of human genomic variation and analysis of genotype-phenotype relationships. Over 42 

the past decades, cost-effective whole-genome sequencing has been revolutionized by short-43 

fragment approaches, the most widespread of which have been the consistently improving 44 

generations of the original Solexa technology [1, 2], now referred to as Illumina sequencing. 45 

Illumina's strengths and weaknesses are inherent in the sample preparation and sequencing 46 

chemistry. Illumina generates short paired reads (2x150 base pairs for the highest-throughput 47 

platforms) from short fragments (usually 400-500 base pairs) [3]. Because many clonally amplified 48 

molecules generate a robust signal during the sequencing reaction, Illumina's average per-base 49 

error rates are very low. 50 

 51 

The lack of long-range contiguity between end-sequenced short fragments limits their application 52 

for reconstructing personal genomes. Long-range contiguity is important for phasing variants and 53 

dealing with genomic complex regions. For haplotyping, variants can be phased by population-54 

based methods [4, 5] or family-based recombination inference [6, 7]. However, such approaches 55 

are only feasible for common variants in single individuals or when a trio or larger pedigree is 56 

sequenced. Furthermore, highly polymorphic regions such as the HLA in which the reference 57 

sequence does not adequately capture the diversity segregating in the population are refractory 58 

to mapping-based approaches and require de novo assembly to reconstruct [8]. Short-read/short-59 

fragment data are challenged by interspersed repetitive sequences from mobile elements and by 60 

segmental duplications, and only support highly fragmented genome reconstruction [9, 10]. 61 

 62 
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In principle, many of these challenges can be overcome by long-read/long-fragment sequencing 63 

[11, 12]. Assembly of Pacific Biosciences (PacBio) or Oxford Nanopore (ONT) data can yield 64 

impressive contiguity of contigs and scaffolds. In one study [13], scaffold N50 reached 31.1Mb by 65 

hierarchically integrating PacBio long reads and BioNano for a hybrid assembly, which also 66 

uncovered novel tandem repeats and replicated the structural variants (SVs) that were newly 67 

included in the updated hg38 human reference sequence. Another study [14] produced human 68 

genome assemblies with ONT data, in which a contig N50 ~3Mb was achieved, and long contigs 69 

covered all class I HLA regions. A recent whole genome assembly of NA24385 [15] with high 70 

quality PacBio CCS reads generated contigs with an N50 of 15Mb. However, long-fragment 71 

sequencing suffers from extremely high cost (in the case of PacBio CCS), or low base quality (in 72 

the case of single-pass reads of either technology), hampering its usefulness for personal genome 73 

assembly.  74 

 75 

Hierarchical assembly pipelines in which multiple data types are used  as another approach for 76 

genome assembly [16]. For example, in the reconstruction of an Asian personal genome, fosmid 77 

clone pools and Illumina data were merged, but because fosmid libraries are highly labor intensive 78 

to generate and sequence, this approach is not generalizable to personal genomes. The "Long 79 

Fragment Read" (LFR) approach [17], where a long fragment is sequenced at high depth via 80 

single-molecule fragmented amplification, reported promising personal genome assembly and 81 

variant phasing by attaching a barcode to the short reads derived from the same long fragment. 82 

However, because LFR is implemented in a 384 well plate, many long fragments would be 83 

labelled by the same barcodes, making it difficult for binning short-reads, and the great 84 

sequencing depth required rendered LFR not cost-effective. 85 

 86 

An alternative approach is offered by the 10x Genomics Chromium system, which distributes the 87 

DNA preparation into millions of partitions where partition-specific barcode sequences are 88 
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attached to short amplification products that are templated off the input fragments. Because of 89 

the limited reaction efficiency in each partition, the sequencing depth for each fragment is too 90 

shallow to reconstruct the original long-fragment, distinguishing this approach from LFR [18]. 91 

However, to compensate for the low read coverage of each fragment, each genomic region is 92 

covered by hundreds of DNA fragments, giving overall sequence coverage that is in a range 93 

comparable to standard Illumina short-fragment sequencing while providing very high physical 94 

coverage. Novel computational approaches leveraging the special characteristics of 10x 95 

Genomics data have already generated significant advances in power and accuracy of 96 

haplotyping [19, 20], cancer genome reconstruction [21, 22], metagenomic assemblies [23] , and 97 

de novo assembly of human and other genomes [24-26], compared to standard Illumina short-98 

fragment sequencing. While the uniformity of sequence coverage is not as good as with PCR-99 

free Illumina libraries, 10x Linked-Read sequencing is a promising technology that combines low 100 

per-base error and good small-variant discovery with long-range information for much improved 101 

SV detection in mapping-based approaches [22, 27], and the possibility of long-range contiguity 102 

in de novo assembly [24, 26, 28]. 103 

 104 

Practical advantages of the technology include the low DNA input mass requirement (1ng per 105 

library, or approximately 300 haploid human genome equivalents). Real input quantities can vary, 106 

along with other factors, to influence an interconnected array of parameters that are relevant to 107 

genome assembly and reconstruction. The parameters over which the experimenter has influence 108 

are (Figure 1): i). CR: average Coverage of short Reads per fragment; ii). CF: average physical 109 

Coverage of the genome by long DNA Fragments; iii). NF/P: Number of Fragments per Partition; 110 

iv). Fragment length distribution, several parameters of which are used, specifically 𝜇𝐹𝐿: Average 111 

Unweighted DNA Fragment Length and W𝜇𝐹𝐿 : Length-Weighted average of DNA Fragment 112 

Length. Note that several parameters depend on each other. For example, a greater amount of 113 

input DNA will increase NF/P; shorter fragments increase NF/P at the same DNA input amount 114 
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compared to longer fragments; less input DNA will (within practical constraints) increase CR and 115 

decrease CF; and their absolute values are set by how much total sequence coverage is 116 

generated because CR x CF = C. 117 

 118 

Our goal in this study was to experimentally explore the 10x parameter space and evaluate the 119 

quality of de novo diploid assembly as a function of the parameter values. For example, we set 120 

out to ask whether longer input fragments produce better assemblies, or what the effect of 121 

sequencing vs. physical coverage is on contiguity of assembly. In order to constrain the parameter 122 

space, we first performed computer simulations with reasonably realistic synthetic data. The 123 

simulation results suggested certain parameter combinations that we then approximated in the 124 

generation of real, high-depth, sequence data on two human reference genome cell lines, 125 

NA12878 and NA24385. These simulated and real data sets were then used to produce de novo 126 

assemblies, with an emphasis on the performance of 10x's Supernova2 [24]. We finally assessed 127 

the quality of the assemblies using standard metrics of contiguity and accuracy, facilitated by the 128 

existence of a gold standard (in the case of simulations) and comparisons to the reference 129 

genome (in the case of real data). 130 

 131 

Methods 132 

 133 

Library preparation, physical parameters and sequencing coverage 134 

We made six DNA preparations that varied in fragment size distribution and amount of input DNA, 135 

three each from NA12878 (Coriell Cat# GM12878, RRID:CVCL_7526) and NA24385 (Coriell Cat# 136 

GM24385, RRID:CVCL_1C78). From these, we prepared eight libraries, five from NA12878 and 137 

three from NA24385 (Table S1).  To generate libraries 𝐿1𝐿, 𝐿1𝑀 and 𝐿1𝐻 (the subscripts L, M and 138 

H represent low, medium and high CF, respectively), genomic DNA was extracted from ca. 1 139 
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million cultured NA12878 cells using the Gentra Puregene Blood Kit following manufacturer's 140 

instructions (Qiagen, Cat. No 158467). The GEMs were divided into 3 tubes with 5%, 20%, and 141 

75% to generate libraries 𝐿1𝐿, 𝐿1𝑀 and 𝐿1𝐻, respectively (Figure S1-S3). For the other libraries, 142 

to generate longer DNA fragments (W𝜇𝐹𝐿=150kb and longer, Figure S4-S8), a modified protocol 143 

was applied. Two-hundred thousand NA12878 or NA24385 cells of fresh culture were added to 144 

1mL cold 1x PBS in a 1.5 ml tube and pelleted for 5 minutes at 300g. The cell pellets were 145 

completely resuspended in the residual supernatant by vortexing and then lysed by adding 200ul 146 

Cell Lysis Solution and 1ul of RNaseA Solution (Qiagen, Cat. No 158467), mixing by gentle 147 

inversion, and incubating at 37C for 15-30 minutes. This cell lysis solution is used immediately 148 

as input for the 10x Chromium preparation (ChromiumTM Genome Library & Gel Bead Kit v2, 149 

PN-120258; ChromiumTM i7 Multiplex Kit, PN-120262). Fragment size of the input DNA can be 150 

controlled by gentle handling during lysis and DNA preparation for Chromium. The amount of 151 

input DNA (between 1.25 and 4 ng) was varied to achieve a wide range of physical coverage 152 

(CF).The Chromium Controller was operated and the GEM preparation was performed as 153 

instructed by the manufacturer. Individual libraries were then constructed by end repairing, A-154 

tailing, adapter ligation and PCR amplification. All libraries were sequenced with three lanes of 155 

paired-end 150bp runs on the Illumina HiSeqX to obtain very high coverage (C=94x-192x), though 156 

the two with the fewest number of gel beads (𝐿1𝐿 and 𝐿1𝑀) exhibited high PCR duplication rates 157 

because of the reduced complexity of the libraries (Table S1). 158 

 159 

Linked-Reads subsampling 160 

The high sequencing coverage in the libraries allowed subsampling to facilitate the matching of 161 

parameters among the different libraries, for purposes of comparability; these subsampled 162 

Linked-Read sets are denoted 𝑅𝑖𝑑  (Figure 1). We aligned the 10x Linked-Reads to human 163 

reference genome (hg38, GRCh38 Reference 2.1.0 from 10x website) followed by removing PCR 164 
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duplication by barcode-aware analysis in Long Ranger[21]. Original input DNA fragments were 165 

inferred by collecting the read-pairs with the same barcode that were aligned in proximity to each 166 

other. A fragment was terminated if the distance between two consecutive reads with the identical 167 

barcode larger than 50kb. Fragments were required to have at least two read pairs with the same 168 

barcode and a length of at least 2 kb. Partitions with fewer than three fragments were removed. 169 

We subsampled short-reads for each fragment to satisfy the expected CR. 170 

 171 

Generating 10x simulated libraries by LRTK-SIM 172 

To compare the observations from real data with a known truth set, we developed LRTK-SIM, a 173 

simulator that follows the workflow of the 10x Chromium system and generates synthetic Linked-174 

Reads like those produced by an Illumina HiSeqX machine (Supplementary Information and 175 

Figure S9). Based on the parameters commonly employed by 10x Genomics Linked-Read 176 

sequencing and the characteristics of our libraries, LRTK-SIM generated simulated datasets from 177 

the human reference (hg38), explicitly modeling the five key steps in real data generation. 178 

Parameters in parentheses are from the standard 10x Genomics protocol: 1. Shearing genomic 179 

DNA into long fragments (W𝜇𝐹𝐿  from 50kb to 100kb); 2. Loading DNA to the 10x Chromium 180 

instrument (~1.25ng DNA); 3. Allocating DNA fragments into partitions which are attached the 181 

unique barcodes (~10 fragments per partition); 4. Generating short fragments; 5. Generating 182 

Illumina paired-end short reads (800M~1200M reads). LRTK-SIM first generated a diploid 183 

reference genome as a template by duplicating the human reference genome (hg38) into two 184 

haplotypes and inserting single nucleotide variants (SNVs) from high-confidence regions in GIAB 185 

of NA12878 (ftp://ftp-186 

trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/latest/GRCh38/HG001_GRCh38_GIA187 

B_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-188 

X_v.3.3.2_highconf_nosomaticdel_noCENorHET7.bed); For low-confidence regions we 189 

randomly simulated 1 SNV per 1 kb. The ratio was 2:1 for heterozygous and homozygous SNVs. 190 
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From this diploid reference genome, LRTK-SIM generated long DNA fragments by randomly 191 

shearing each haplotype with multiple copies into pieces whose lengths were sampled from an 192 

exponential distribution with mean of 𝜇𝐹𝐿 . These fragments were then allocated to pseudo-193 

partitions, and all the fragments within each partition were assigned the same barcode. The 194 

number of fragments for each partition was randomly picked from a Poisson distribution with mean 195 

of NF/P. Finally, paired-end short reads were generated according to CR and replaced the first 16bp 196 

of the reads from forward strand to the assigned barcodes followed by 7 Ns. More information 197 

about implementation can be found in Supplementary Information. From that diploid genome, 198 

Linked-Read datasets were generated that varied in CR, CF and  𝜇𝐹𝐿  (W𝜇𝐹𝐿 ) (Table S2-S3). 199 

Varying NF/P was only done for chromosome 19 because of the infeasibility of running Supernova2 200 

on whole genome assemblies with large NF/P; within practically reasonable values, NF/P does not 201 

appear to influence assembly quality (Figure S10). In total, we generated 17 simulated Linked-202 

Read datasets to explore the overall parameter space (Table S2-S3) and 11 to match the 203 

parameters of the abovementioned real libraries (Figure 1). 204 

 205 

LRTK-SIM provides more flexible simulation parameters than another method for simulating 206 

linked-read data, LRSIM [29]. It explicitly allows users to input CF, CR, W𝜇𝐹𝐿 and 𝜇𝐹𝐿, which have 207 

strong connections with library preparation and Illumina sequencing, whereas LRSIM only lets the 208 

user set the total number of reads. For example, CF is driven by input DNA amount, and 𝜇𝐹𝐿 by 209 

DNA preparation and potential size selection. Also, LRSIM requires many third party packages 210 

and software to be installed first, such as Inline::C perl library and DWGSIM [30]. By contrast, 211 

LRTK-SIM was written in Python and no third-party software is required to run it. LRTK-SIM can 212 

simulate multiple libraries with a variety of parameters simultaneously, and users can compare 213 

the performance of different parameters in one run. 214 

 215 
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Human genome diploid assembly and evaluation 216 

The scaffolds were generated by the “pseudohap2” output of Supernova2, which explicitly 217 

generated two haploid scaffolds, simultaneously. Contigs were generated by breaking the 218 

scaffolds if at least 10 consecutive ‘N’s appeared, per definition by Supernova2. For the 219 

simulations of human chromosome 19, we used the scaffolds from the “megabubbles” output. 220 

Contig and scaffold N50 and NA50 were used to evaluate assembly quality. Contigs longer than 221 

500bp were aligned to hg38 by Minimap2[31]. We calculated contig NA50 on the basis of contig 222 

misassemblies reported by QUAST-LG [32]. For scaffolds (longer than 1kb), we calculated the 223 

NA50 following Assemblathon 1's procedure [33] (Supplementary Information). 224 

 225 

Genomic variant calls from diploid assembly 226 

We compare SNVs and SVs from the diploid regions of our assemblies with the ones from 227 

standard Illumina data and reference-based processing of our 10x data. The standard Illumina 228 

data were downloaded from Genome in a Bottle (GIAB) [34] and analyzed with SVABA [35] to 229 

generate SV calls, and with BWA (BWA, RRID:SCR_010910) [36] and FreeBayes (FreeBayes, 230 

RRID:SCR_010761) [37] to generate SNV calls. Long ranger 231 

(https://support.10xgenomics.com/genome-exome/software/pipelines/latest/ what-is-long-ranger) 232 

was used to generate SNV and SV (only deletions) calls for 10x reference-based analysis. We 233 

note that R9 failed to be analyzed by Long Ranger due to its extremely large CF. For SNVs, we 234 

compared the calls from three strategies using the benchmark of NA12878 (ftp://ftp-235 

trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/latest/GRCh38/) and NA24385 236 

(ftp://ftp-237 

trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/latest/GRCh38/). 238 

For SVs, we compared three linked-read sets (R9, R10, R11) from HG002 with the Tier 1 SV 239 

benchmark from GIAB [38] and used VaPoR [39] to validate our SV calls based on PacBio CCS 240 

https://support.10xgenomics.com/genome-exome/software/pipelines/latest/what-is-long-ranger
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/latest/GRCh38/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/latest/GRCh38/
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reads from NA24385 [40]. We compared SNV and SV calls among the different approaches using 241 

vcfeval [41] and truvari [38], respectively. 242 

 243 

Results 244 

 245 

Performance of diploid assembly: influence of total coverage 246 

Diploid assembly by Linked-Reads requires sufficient total read coverage (C=CRCF) to generate 247 

long contigs and scaffolds. In this experiment, to explore the roles of both physical coverage (CF) 248 

and per-fragment read coverage (CR), we first generated eight simulated libraries whose total 249 

coverage C ranged from 16x to 78x: four with CR fixed and increasing CF and four with fixed CF, 250 

and increasing CR (Table S2). Contig and scaffold N50s increased along with increasing either 251 

CF or CR (Figure 2A and 2B). To investigate whether the trend was also present in the real 252 

datasets, we analyzed six real libraries (three by varying CF, and the other three by varying CR; 253 

Figure 1): as C increased, we varied CF and CR independently by fixing the other parameter. 254 

Contig and scaffold N50s also increased in these simulation (Figure 2C and 2D) and real linked-255 

read sets (Figure 2E and 2F) as a function of total coverage C. Contig lengths did increase a little 256 

(621.4kb to 758.1kb for simulation; 110.7kb to 119.6kb for real data) when C was increased 257 

beyond 56X. Accuracy, which we define as the ratio between NA50 (N50 after breaking contigs 258 

or scaffolds at assembly errors) and N50 (Figure 2C and 2E), changed 18% for simulation and 259 

7% for real data (587.5kb to 713.3kb for simulation; 97.1kb to 104.5kb for real data). For scaffolds 260 

in the real data sets, when C increased from 48X (𝑅3) to 67X (𝑅4), both scaffold N50 and NA50 261 

were significantly improved (N50: 13.4Mb to 30.6Mb; NA50: 6.3Mb to 12.0Mb), but the accuracy 262 

dropped slightly from 46.6% to 39.1%, which indicated that scaffold accuracy may be refractory 263 

to extremely high C (Figure 2F). These results indicated that assembly length and accuracy were 264 
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comparable over a broad range of CF and CR at constant C, which implied that assembly quality 265 

was mainly determined by C. 266 

 267 

Performance of diploid assembly: influence of fragment length and physical 268 

coverage 269 

To investigate if input weighted fragment length (as measured by W𝜇𝐹𝐿) influenced assembly 270 

quality, we generated four simulated libraries (Table S3) with fixed CF and CR and a range of 271 

fragment lengths (Figure 3A). Contig length decreased with increasing fragment length, a trend 272 

that was also seen in six real libraries (Figure 3B; C=56X; 𝑅6  to 𝑅11 in Figure 1). We then 273 

simulated another six libraries with the same parameters as the real ones to explore the effects 274 

of physical coverage at constant C=56x (Figure 3C). Contig lengths decreased as a function of 275 

increasing physical coverage, a trend that is somewhat less clear in real data possibly due to 276 

confounding other parameters such as fragment length (Figure 3D). The two linked-read sets 277 

with the worst contig qualities in NA12878 (𝑅7) and NA24385 (𝑅10) also showed a significant 278 

increase of the number of breakpoints (Table S4) 279 

 280 

Performance of diploid assembly: nature of the source genome 281 

Assembly errors may occur because of heterozygosity, repetitive sequences, or sequencing error. 282 

To illuminate possible sources of assembly error, we performed simulations by generating 10x-283 

like Linked-Reads as above from human chromosome 19, and then quantified assembly error 284 

against these synthetic gold standards. Removal of interspersed repeat sequences from the 285 

source genome resulted in better contigs with no loss of accuracy in experiments by varying CF, 286 

CR and 𝜇𝐹𝐿(Figure 4A, 4C and 4E) and better scaffolds only if CR was above 1X (Figure 4D). 287 

Removal of variation had little effect on contigs and only gave rise to longer scaffolds if CR was 288 
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above 0.8X (Figure S11), which is difficult to achieve with real libraries. Finally, a 1% uniform 289 

sequencing error had no discernible effect (Figure S12). 290 

 291 

Performance of diploid assembly: fraction of genome in diploid state 292 

While contiguity is an important parameter for any whole genome assembly, evaluation of diploid 293 

assemblies necessitates estimating the fraction of the genome in which the assembly recovered 294 

the diploid state. To this end, we divided the contigs generated by Supernova2 into “diploid 295 

contigs”, which were extracted from its megabubble structures, and “haploid contigs” from non-296 

megabubble structures. Pairs of scaffolds were extracted as the two haplotypes from  297 

megabubble structures if they shared the same start and end nodes in the assembly graph. 298 

Diploid contigs were generated by breaking the candidate scaffolds at the sequences with least 299 

10 consecutive ‘N’s and were aligned to human reference genome (hg38) by Minimap2. The 300 

genome was split into 500bp windows and diploid regions were defined as the maximum extent 301 

of successive windows covered by two contigs, each from one haplotype. Alignment against the 302 

human reference genome revealed the overall genome coverages of the six assemblies to be 303 

around 91%. For most assemblies, 70%-80% of the genome was covered by two homologous 304 

contigs (Table 1), with 𝑅6
 only reaching 58.9%, probably due to the short fragments of the DNA 305 

preparation (𝜇𝐹𝐿=24kb). We also analyzed another seven assemblies produced by 10x Genomics, 306 

all of which had diploid fractions of about 80% as well (Table S5). In the male NA24385, non-307 

pseudoautosomal regions of the X chromosome are hemizygous and should therefore be 308 

recovered as haploid regions. Between 79.9% and 87.6% of these regions were covered by one 309 

contig exactly depending on the assembled library. Library construction parameters other than 310 

fragment length appeared to have had little impact on the proportion of diploid regions (Tables 1 311 

and Table S5). 312 

 313 
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Overlapping the diploid regions from the assemblies of the same individual revealed that 50.24% 314 

and 67.27% of the genome for NA12878 and NA24385 (Figure S13), respectively, were diploid 315 

in all the three assemblies. NA12878 was lower because of the low percentage of diploid regions 316 

in assembly 𝑅6  (Table 1). The overlaps were significantly greater than expected by chance 317 

(NA12878: 33.3%, p-value=0.0049; NA24385: 45.4%, p-value=0.0029. Chi square test). These 318 

observations were consistent with heterozygous variants being enriched in certain genomic 319 

segments, in which two haplotypes were more easily differentiated by Supernova2. Phase block 320 

lengths were mainly determined by total coverage C and increased in real data with increasing 321 

fragment length (Figure S14, Table S6). 322 

 323 

Performance of diploid assembly: quality of variant calls 324 

The ultimate goal of human genome assembly is to accurately identify genomic variants. We 325 

therefore compared the SNVs and SVs from our assemblies with the calls from referenced-based 326 

processing of standard Illumina and 10x data, and benchmarked them using gold standard from 327 

GIAB [38, 42] and PacBio CCS reads [40]. Accuracy of SNV calls from reference-based 328 

processing of standard Illumina and 10x data were comparable, but both were better than 329 

assembly-based calls (Table S7 and S8). The likely reason for the relatively poor performance of 330 

assembly-based SNV calls is that the assemblies contain only about 80% of the genome in a 331 

diploid state. For SVs, our assemblies generated many calls that were missed by the reference-332 

based strategy (Table S9-S12) and even by the Tier 1 benchmark of GIAB (Table S13), and half 333 

of the deletions and a majority of insertions could be validated by PacBio CCS reads (Table S14). 334 

 335 

Discussion 336 

In this study, we investigated human diploid assembly using 10x Linked-Read sequencing data 337 

on both simulated and real libraries. We developed the simulator LRTK-SIM to examine the likely 338 
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impact of parameters in diploid assembly and compared results from simulated reads to those 339 

from real libraries. We thus determined the impact of key parameters (CR, CF, NF/P and 𝜇𝐹𝐿/W𝜇𝐹𝐿) 340 

with respect to assembly continuity and accuracy. Our study provides a general strategy to 341 

evaluate assemblies of 10x data and may have implications for the evaluation of other barcode-342 

based sequencing technologies such as CPTv2-seq [43] or stLRF [44] in the future. 343 

 344 

10x Practicalities  345 

For standard Illumina sequencing, library complexity is usually sufficient to generate tremendous 346 

numbers of reads from unique templates and read coverage can be increased simply by 347 

sequencing more. However, the 10x Chromium system performs amplification in each partition, 348 

and generally only about 20% to 40% of the original long fragment sequence can be captured as 349 

short fragments and eventually as reads, resulting in shallow sequencing coverage per fragment. 350 

Sequencing more deeply does not increase the per-fragment coverage much as most of the extra 351 

reads are from PCR duplicates. The solution is to sequence multiple 10x libraries constructed 352 

from the same DNA preparation and merge them for analysis. This means that CR remains in the 353 

standard range where PCR duplicates are relatively rare, but CF increases proportionally to the 354 

number of libraries used. A practical limitation to this approach is that Supernova2 limits the 355 

number of barcodes to 4.8 million. 356 

 357 

Our results showed that in practice, CF should be between 335X and 823X, but no larger than 358 

1000X, given the optimal coverage of C=56X recommended by 10x and the requirement for 359 

sufficient per-fragment read coverage. Surprisingly, we observed that including more extremely 360 

long fragments was detrimental for assembly quality. This is possibly due to the loss of barcode 361 

specificity for fragments spanning repetitive sequences. From a computational perspective, too 362 

many long fragments are harmful to deconvolving the de bruijn graph, as more complex paths 363 
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need to be picked out. In our experiments, W𝜇𝐹𝐿 between 50kb and 150kb is the best choice to 364 

generate reliable assemblies. 365 

 366 

Parameters driving assembly quality 367 

Our results regarding assembly quality, and the 10x parameters that influence it, may be useful 368 

for efforts in which de novo assemblies are important for generation of an initial reference 369 

sequence. We show that maximization of N50 does not necessarily reflect assembly quality, 370 

which we were able to compare to NA50 because there exists a high-quality human reference 371 

genome. Contig and scaffold lengths mostly increased with ascending sequencing coverage, and 372 

at sufficient overall sequence coverage it did not matter much whether the increasing coverage 373 

C was accomplished by increasing CR or CF. However, both contig and scaffold accuracy 374 

decreased with increasing C. We also found, counterintuitively, that contig and scaffold length 375 

mostly decreased with increasing fragment length, a phenomenon that may be due to the specific 376 

implementation; however, until there is another assembler that can be compared to Supernova2 377 

it will not be possible to reason about this effect. In addition, intrinsic properties of the genome 378 

matter greatly, as removal of repeats or lack of variation dramatically improves assembly quality. 379 

 380 

Diploid assembly is the appropriate approach for assembly of genomes of diploid organisms that 381 

harbor variation. Therefore, an important metric to evaluate diploid assembly is the fraction of the 382 

genome that is assembled in a diploid state. The short input fragment length of 𝑅6 resulted in 383 

roughly 20% less of the genome in a diploid state (<60% vs <80%) compared to the other libraries 384 

of the same individual. This observation suggests that in addition to metrics such as N50, 385 

evaluation of assembly quality should also include the fraction of the genome (or the assembly) 386 

that is in a diploid state. 387 

 388 
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Cost-benefit analysis 389 

Overall, we have attempted to give practical guidelines to assembly of 10x data with Supernova2 390 

and evaluate the performance across a wide range of metrics. Arguably, the metric that matters 391 

most in the context of a personal genome is the discovery of variation that lower-cost approaches 392 

do not enable. We estimate that the cost increase over standard Illumina sequencing is about 2x, 393 

given the 10X preparation cost and the higher level of sequence coverage required. There may 394 

be many applications for which this combination of excellent single nucleotide variant detection 395 

(via barcode-aware read mapping) and precise structural variant discovery (via assembly), 396 

achieved by the same data set, is worth the price. 397 

 398 

Comparison with hybrid assemblies 399 

Hybrid assembly strategies have been applied successfully to produce human genome assembly 400 

of long contiguity [13, 14, 45]. In these studies, long contigs are first produced by single-molecule 401 

long-reads, such as PacBio (NG50=1.1Mb; [13]) or Nanopore (NG50=3.21Mb; [14]) comparing 402 

favorably to our best results for Linked-Reads assemblies (NG50=236kb). Scaffolding is then 403 

performed with complementary technologies such as BioNano to capture chromosomal level long-404 

range information. It promoted the scaffold N50 of PacBio to 31.1Mb [13] and Illumina mate-pair 405 

sequencing with 10x data to 33.5Mb [25]. Using SuperNova2, the scaffold N50 from our studies 406 

reached ~27.86Mb (𝑅6) on the basis of 10x data alone, suggesting that 10x technology gives 407 

broadly comparable results at a fraction of the price of long-read-based hybrid assemblies. 408 

  409 
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Availability of Supporting Data and Materials 410 

The raw sequencing data are deposited in the Sequence Read Archive and the corresponding 411 

BioProject accession number is PRJNA527321. Diploid assemblies and the codes for comparison 412 

are currently available at http://mendel.stanford.edu/supplementarydata/zhang_SN2_2019 and 413 

https://github.com/zhanglu295/Evaluate_diploid_assembly. LRTK-SIM is publicly available at 414 

https://github.com/zhanglu295/LRTK-SIM. Additional supporting data is available in the 415 

GigaScience GigaDB database [46]. 416 

 417 

Abbreviation 418 

LFR: Long Fragment Read; ONT: Oxford Nanopore; PacBio: Pacific Biosciences; SNVs: single 419 

nucleotide variants; SVs: structural variants 420 

 421 

Additional files 422 

Table S1. Parameters of libraries prepared for NA12878 and NA24385. 423 

Table S2. Parameters used to generate linked-read sets for evaluating the impact of CF and CR 424 

on assemblies. 425 

Table S3. Parameters used to generate linked-read sets for evaluating the impact of 𝜇𝐹𝐿 and 426 

NF/P on assemblies. 427 

Table S4. Contig misassemblies and recovered transcripts of the six assemblies. 428 

Table S5. Genomic coverage and fraction of contigs in diploid state generated by Supernova2 429 

for the seven libraries prepared by 10x Genomics. Non-PAR: non-pseudoautosomal regions of 430 

X chromosome. WFU, YOR, YORM, PR are female; HGP, ASH and CHI are male. 431 

Table S6. Phase block N50s of the six assemblies. 432 

Table S7. Comparison SNV calls from standard Illumina data, 10x reference-based calls, and 433 

assembly-based calls for NA12878. All calls were compared to the Genome in a Bottle benchmark. 434 

Table S8. Comparison SNV calls from standard Illumina data, 10x reference-based calls, and 435 

assembly-based calls for NA24385. All calls were compared to the Genome in a Bottle benchmark. 436 

Table S9. Comparison of SV calls from standard Illumina data and 10x assembly-based calls for 437 

NA12878. 438 

http://mendel.stanford.edu/supplementarydata/zhang_SN2_2019
https://github.com/zhanglu295/Evaluate_diploid_assembly
https://github.com/zhanglu295/LRTK-SIM
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Table S10. Comparison of SV calls from standard Illumina data and 10x assembly-based calls 439 

for NA24385. 440 

Table S11. Comparison of SV calls from 10x reference-based and assembly-based calls for 441 

NA12878. 442 

Table S12. Comparison of SV calls from 10x reference-based and assembly-based calls for 443 

NA24385. 444 

Table S13. Comparison of SV calls from our de novo assemblies with the Tier 1 SV benchmark 445 

from Genome in a Bottle. 446 

Table S14. Proportion of assembly-based SV calls supported by PacBio CCS reads. 447 

Figure S1. Basic statistics for 𝑳𝟏𝑳. The distributions of A. the number of fragments per partition; 448 

B. sequencing depth per fragment; C. probability density function of unweighted fragment lengths; 449 

D. cumulative density function of unweighted fragment lengths; E. reversed cumulative density 450 

function of unweighted fragment lengths; F. reversed cumulative density function of weighted 451 

fragment lengths. 452 

Figure S2. Basic statistics for 𝑳𝟏𝑴. The distributions of A. number of fragments per partition; B. 453 

sequencing depth per fragment; C. probability density function of unweighted fragment lengths; 454 

D. cumulative density function of unweighted fragment lengths; E. reversed cumulative density 455 

function of unweighted fragment lengths; F. reversed cumulative density function of weighted 456 

fragment lengths. 457 

Figure S3. Basic statistics for 𝑳𝟏𝑯. The distributions of A. number of fragments per partition; B. 458 

sequencing depth per fragment; C. probability density function of unweighted fragment lengths; 459 

D. cumulative density function of unweighted fragment lengths; E. reversed cumulative density 460 

function of unweighted fragment lengths; F. reversed cumulative density function of weighted 461 

fragment lengths. 462 

Figure S4. Basic statistics for 𝑳𝟐. The distributions of A. number of fragments per partition; B. 463 

sequencing depth per fragment; C. probability density function of unweighted fragment lengths; 464 

D. cumulative density function of unweighted fragment lengths; E. reversed cumulative density 465 

function of unweighted fragment lengths; F. reversed cumulative density function of weighted 466 

fragment lengths. 467 

Figure S5. Basic statistics for 𝑳𝟑. The distributions of A. number of fragments per partition; B. 468 

sequencing depth per fragment; C. probability density function of unweighted fragment lengths; 469 

D. cumulative density function of unweighted fragment lengths; E. reversed cumulative density 470 

function of unweighted fragment lengths; F. reversed cumulative density function of weighted 471 

fragment lengths. 472 
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Figure S6. Basic statistics for 𝑳𝟒. The distributions of A. number of fragments per partition; B. 473 

sequencing depth per fragment; C. probability density function of unweighted fragment lengths; 474 

D. cumulative density function of unweighted fragment lengths; E. reversed cumulative density 475 

function of unweighted fragment lengths; F. reversed cumulative density function of weighted 476 

fragment lengths. 477 

Figure S7. Basic statistics for 𝑳𝟓. The distributions of A. number of fragments per partition; B. 478 

sequencing depth per fragment; C. probability density function of unweighted fragment lengths; 479 

D. cumulative density function of unweighted fragment lengths; E. reversed cumulative density 480 

function of unweighted fragment lengths; F. reversed cumulative density function of weighted 481 

fragment lengths. 482 

Figure S8. Basic statistics for 𝑳𝟔. The distributions of A. number of fragments per partition; B. 483 

sequencing depth per fragment; C. probability density function of unweighted fragment lengths; 484 

D. cumulative density function of unweighted fragment lengths; E. reversed cumulative density 485 

function of unweighted fragment lengths; F. reversed cumulative density function of weighted 486 

fragment lengths. 487 

Figure S9. The workflow of LRTK-SIM to simulate linked-reads 488 

Figure S10. The effect of NF/P on human diploid assembly of chromosome 19 by Supernova2, 489 

where C (C=60X; CF=300X and CR=0.2X) and 𝜇𝐹𝐿 (𝜇𝐹𝐿=37kb) are fixed. 490 

Figure S11. Comparison of assembly qualities from 10x data with and without single nucleotide 491 

variants by changing CF, CR and 𝜇𝐹𝐿. CR was fixed to 0.2X in A and B; CF was fixed to 300X in 492 

C and D; CR was fixed 0.2X and CF was fixed 300X in E and F.  493 

Figure S12. Comparison of assembly qualities from 10x data with (1% uniform) and without 494 

sequencing error by changing CF, CR and 𝜇𝐹𝐿. CR was fixed to 0.2X in A and B; CF was fixed to 495 

300X in C and D; CR was fixed 0.2X and CF was fixed 300X in E and F. 496 

Figure S13. Overlaps of diploid regions for the three libraries from the same sample. Diploid 497 

regions for NA12878 (A) and NA24385 (B). The percentages denote the proportion of genome is 498 

diploid. 499 

Figure S14. Phase block N50s as a function of different parameter combinations. A. simulated 500 

linked-reads with predefined parameters (Table S5) by changing CF and CR; B. simulated linked-501 

reads with matched parameters of real linked-read sets (Table S2) by changing CF and CR; C. 502 

real linked-read sets (Table S2) by changing CF and CR; D. simulated linked-read sets (Table S3) 503 

with different 𝑊𝜇𝐹𝐿; E. simulated linked-read sets with matched parameters (Table S3) with real 504 

linked-read sets as C=56X; F. real linked-read sets with C=56X (Table S3). 505 
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Table 522 

Linked-

reads set 

Overall 

(%) 

Diploid 

regions 

(%) 

Haploid 

regions 

(%)  

Non-PAR 

(%) 

Total contig 

length 

(contig>500bp) 

Length of contigs 

from megabubble 

(contig>500bp) 

Percentage 

(%) 

𝑅6 91.9 58.9 27.7 - 5,632,483,053 3,758,345,846 66.73 

𝑅7 91.1 73.3 11.3 - 5,613,140,437 4,668,186,478 83.17 

𝑅8 91.7 77.2 9.2 - 5,635,127,471 4,896,821,850 86.90 

𝑅9 91.3 73.4 12.2 85.9 5,637,615,919 4,438,175,621 78.72 

𝑅10 91.7 79.2 5.8 79.9 5,749,001,471 4,793,226,150 83.37 

𝑅11 91.7 78.1 7.9 87.6 5,677,566,094 4,723,083,367 83.19 

 523 

Table 1. Genomic coverage of contigs generated by Supernova2. Non-PAR: non-524 

pseudoautosomal regions of X chromosome. 𝑅6, 𝑅7 and 𝑅8 are female; 𝑅9, 𝑅10 and 𝑅11 are male. 525 

  526 
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Figures 527 

Figure 1. The linked-read sets prepared to evaluate the impact of CF, CR, 𝜇𝐹𝐿 and W𝜇𝐹𝐿 on 528 

human diploid assembly.  529 
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 530 

Figure 2. Contig and scaffold lengths (N50 and NA50) as a function of CF or CR. A and B: 531 

Simulated Linked-Reads with predefined parameters (Table S2); C and D: Simulated Linked-532 

reads with matched parameters of real Linked-Read data sets (Figure 1); E and F: Real linked-533 

read sets (Figure 1).  534 
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 535 

Figure 3. Contig qualities (N50 and NA50) as a function of fragment length 𝑊𝜇𝐹𝐿 or physical 536 

coverage CF, at C=56X. A and C, results from simulations; B and D, results from real data. 537 
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 538 

Figure 4. Comparison of contig and scaffold lengths from 10x data with masked and unmasked 539 

repetitive sequences by changing CF, CR and 𝜇𝐹𝐿. CR was fixed to 0.2X in A and B; CF was fixed 540 

to 300X in C and D; CR was fixed to 0.2X and CF was fixed to 300X in E and F. 541 

  542 
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Table 

Linked-

reads set 

Overall 

(%) 

Diploid 

regions 

(%) 

Haploid 

regions 

(%)  

Non-PAR 

(%) 

Total contig 

length 

(contig>500bp) 

Length of contigs 

from megabubble 

(contig>500bp) 

Percentage 

(%) 

𝑅6 91.9 58.9 27.7 - 5,632,483,053 3,758,345,846 66.73 

𝑅7 91.1 73.3 11.3 - 5,613,140,437 4,668,186,478 83.17 

𝑅8 91.7 77.2 9.2 - 5,635,127,471 4,896,821,850 86.90 

𝑅9 91.3 73.4 12.2 85.9 5,637,615,919 4,438,175,621 78.72 

𝑅10 91.7 79.2 5.8 79.9 5,749,001,471 4,793,226,150 83.37 

𝑅11 91.7 78.1 7.9 87.6 5,677,566,094 4,723,083,367 83.19 

 

Table 1. Genomic coverage of contigs generated by Supernova2. Non-PAR: non-

pseudoautosomal regions of X chromosome. 𝑅6, 𝑅7 and 𝑅8 are female; 𝑅9, 𝑅10 and 𝑅11 are male. 
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