
Supporting Information: Specification of neural
model of MT and MST

This appendix outlines the mathematical specification of the neural model of MT and
MST simulated in the present study. The model extends the Competitive Dynamics
Model and builds on the ViSTARS model [1, 2] to encompass object motion during
self-motion, motion parallax, and disparity [3, 4]. The sections that follow present the
baseline model used in Simulation 1. Modifications for Simulation 2 are described in
the main text and those for Simulation 3 are described in a section at the end of the
appendix.

Notation

When defining functions, we use the notation F (x1, . . . , xn; p1, . . . , pm), where F is the
function name, x1, . . . , xn are the independent variables, and p1, . . . , pm are
parameters. In expressions and equations, we use the notation F (x1, . . . , xn)a, where
F is the name, x1, . . . , xn are the independent variables, and a refers to the relevant
model area, if applicable. Specific parameter values used in Gaussian or von Mises
tuning curves appear in Table 2, values that relate to neural dynamics appear in Table
3.

We use d to index direction preference (e.g. d = 1, . . . , d̂, d̂ = 24). Parameters that

appear with a hat refer to ordinal count (e.g. d̂ refers to the 24 MT tuning directions
between 0° and 360°). The symbol θd refers to the specific angles to which MT units
are tuned. We use s to index speed tuning preference and ρ4,6s to refer to specific
speeds to which units are tuned, where the superscript 4, 6 in this case indicates that
the speeds correspond to model MT Layer 4,6 (input layer). We index horizontal and
vertical position in retinal coordinates by (x, y).

Considering that the input comes as a sequence of digital images, we assumed for
convenience a 1-to-1 mapping between pixels in each image and the regular grid of
units in retinal coordinates, meaning (x, y) also indexes the pixels along each linear
dimension of an input frame. MSTd cells sample space more coarsely and we use (i, j)
to index their preferred singularity position.

We assume that the model input arrives as discrete snapshots (i.e. frames of video).
The model operates in continuous time t so we relate frame number f = 1, 2, ..., n and
t using the expression f = dte, where d·e indicates the ceiling operation.

MT Layer 4,6

The response of units in the input layers of MT is obtained by filtering the input
motion signal ~vx,y,f with tuning curves that define their joint sensitivity to direction
and speed. The MT direction tuning followed a von Mises distribution:

V (a;µ, κ) =
eκ(a−µ)

eκ
(1)

that we evaluated at V
(
Θx,y,f ; θd, b

4,6
)

for all x, y, and f . We extract the angle of
the motion vector at each position (Θx,y,f ) via the two argument form of the
arctangent function.

Θx,y,f = arctan2(vdy,f , vdx,f ) (2)
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Eq 1 matches this angle with the preferred direction θd of each unit, where the
parameter b4,6 controls the direction tuning width. We normalized Eq 1 so that it
outputs a maximum of 1 when the peak tuning of the unit matches the input.

MT L4,6 units process the input signal for speed by computing

ρx,y,f =
√
v2dx,f + v2dy,f (3)

and evaluating the following Gaussian tuning curve at G
(
ρx,y,f ; ρ4,6s , σ4,6

s

)
for all x, y,

and f :

G (a;µ, σ) =
1√
2πσ

e
−
(
a−µ√

2σ

)2

(4)

where σ4,6
s controls the width of the tuning curve across speeds and ρ4,6s define the

speeds that yield the maximal sensitivity in the MT population. As indicated in Table
1, we created units tuned to five speeds (s = 1, 2 . . . , ŝ; ŝ = 5) and defined the speeds
that elicit the maximal filter response according to speed distribution quintiles present
in the first frame of each input ( ~ρ1).

The speed tuning curves increased in tuning width, proportional to speed s as
follows:

σ4,6
s = σ4,6

spd

(
1 + esσ

4,6
ds

)
(5)

We computed the MT L4,6 activation M4,6
x,y,d,s,f by multiplicatively combining the

input direction and speed tuning curve outputs:

M4,6
x,y,d,s,f =

[
V
(
Θx,y,f ; θd, b

4,6
)] [

G
(
ρx,y,f ; ρ4,6s , σ4,6

s

)]
(6)

MT Layer 2-3 (MT+)

MT+ units perform a spatial integration of MT L4,6 activity M4,6
x,y,d,s,f throughout

the receptive field using a two-dimensional Gaussian (2D) filter:

G (x, y;x0, y0, σx, σy) =
1

2πσxσy
e
−
((

x−x0√
2σx

)2
+

(
y−y0√

2σy

)2)2

(7)

The following 2D convolution function specifies how this integration occurs:

C (wx,y;µx, µy, σx,y, g) = g
∑
n

∑
m

G (n,m, µx, µy, σx,y, σx,y)wx−n,y−m, (8)

where wx−n,y−m defines the input cell activity (e.g. M4,6 −−MT+) and g represents
the gain of the convolution pooling operation.

We evaluate Eq. 8 at C+
x,y,d,s,f = C

(
M4,6
x,y,d,s,f ;x, y, σMT+,cent, 1

)
to obtain the

MT+ input.

We defined the MT+ activity M+
x,y,d,s according to the leaky integrator equation

dM+
x,y,d,s

dt
= −M+

x,y,d,s +
(

1−M+
x,y,d,s

)
C+
x,y,d,s,dte (9)

Among models that explain MSTd responses based on their feedforward input from
MT, those that include a nonlinearity that compresses the MT signals perform
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best [5]. The compressive nonlinearity could be explained by synaptic depression, the
tendency for the same inputs to lose their efficacy over time. We modeled MT+

synaptic depression Y +
x,y,d,s as follows:

1

τ+
dY +

x,y,d,s

dt
= 1− Y +

x,y,d,s(1 + κ+M+
x,y,d,s) (10)

N+
x,y,d,s = Y +

x,y,d,sM
+
x,y,d,s (11)

where N+
x,y,d,s denotes the output signal to MSTd from MT+ units, τ+ is the

synaptic time constant, and κ+ represents the rate at which the efficacy of the input
signal M+

x,y,d,s declines over time [6].

MSTd

Visual self-motion pattern matching (MT+ −MSTd)

Model MSTd cells estimate the pattern of motion parallax that corresponds to the
observer’s self-motion. For the present simulations, we implemented radial pattern
selectivity (Eq. 1). We created direction templates that select MT+ signals when they
appear in a location that is locally consistent with the preferred global radial pattern.
For example, the rightward direction template pools the responses of MT+ cells tuned
to rightward motion when their receptive fields coincide with the right side of the
visual field. The following equations define these templates Td,i,j,x,y that integrate
MT+ cells tuned to direction d, normalized by the total number of pooled cells (x̂ŷ)
(Eq. 14):

χi,j,x,y = arctan2(y − j, x− i) (12)

T̃d,i,j,x,y =

{
1 2π(d−1−d̂)

d̂
< χi,j,x,y <

2π(d−d̂)
d̂

0 otherwise
(13)

Td,i,j,x,y =
1

x̂ŷ
T̃d,i,j,x,y (14)

The following equation matches the direction templates (Td,i,j,x,y) with the output
signals from MT+ (N+

x,y,d,s) to resolve the direction component of the feedforward
input (Ri,j,s) to the MSTd unit that prefers a singularity positioned at (i, j):

Ri,j,s =
∑
x

∑
y

∑
d

e−b
MSTd((x−i)2+(y−j)2)Td,i,j,x,yN

+
x,y,d,s. (15)

In Eq. 15, the exponential function makes MSTd units more sensitive to motion
nearby the preferred singularity position and the parameter bMSTd modulates how the
sensitivity decreases with distance.

Speed tuning (MT+ −MSTd)

Model MSTd contains units tuned for three distinct speed profiles: speed summating
cells, band-pass cells, and gradient cells. The former two cells obtain their speed
sensitivity by evaluating the MT+ signal N+

x,y,d,s with the previously described

functions Eqs. 2 and 3, respectively. Gradient cells not only match MT+ signals that
are locally consistent with the preferred radial template direction, but the activity
must come from MT+ units tuned to the appropriate speed at different eccentricities
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(i.e. input from cells tuned to faster speeds at greater eccentricities). We impose the
first condition by matching MT+ signals N+

x,y,d,s with the direction templates Td,i,j,x,y
(Eq. 14), and the second condition via the following annular speed templates
(Es,i,j,x,y):

Ẽs,i,j,x,y =

{
1 ρ4,6s−1 ≤ ρx,y,0 < ρ4,6s
0 otherwise

(16)

Ěs,i,j,x,y =
1

x̂ŷ
Ẽs,i,j,x,y (17)

In Eq. 16, ρ4,6 refers to the set of speeds to which MT units that elicit the maximal
responses. As described above, we configured MT in our simulations with tuning to
five different speeds (ŝ = 5), and defined specific values according to the quintiles
present in the first input frame ρx,y,0. Considering that self-motion in the present
study is always forward translation, Ěs,i,j,x,y appears as five concentric, disjoint annuli
centered on the singularity (i, j). To mitigate aliasing effects owing to the steep
discontinuities between successive annuli, the gradient cell speed templates take a
weighted sum of units tuned to similar speeds:

Es,i,j,x,y = D(Ěs,i,j,x,y; s, σgradspd ) (18)

where D(·) refers to the 1D convolution

D(wx0 ;µ, σ) =
∑
n

G(n− x0;µ, σ)wx0 (19)

along the speed dimension, where σgradspd represents the degree of pooling between MT
cells tuned to similar speeds.

Network dynamics

The input signal to MSTd units depends on the unit’s preferred motion parallax
pattern. For gradient cells, the input signal is defined according to the following
function IGCi,j (·):

IGCi,j (wx,y,s) =
∑
x

∑
y

∑
s

∑
d

Td,i,j,x,yEs,i,j,x,ywx,y,d,s (20)

For band-pass and speed summating cells, we composed the functions that define the
direction component of the radial template match (Ri,j,s, Eq. 15) and the appropriate
speed profile (U(·) for summating cells (Eq. 2), and Bs(·) for band-pass cells (Eq. 3)).
For example, we generated the input to band-pass cells by evaluating
IBPi,j,s = Bs(Ri,j,s).

MSTd units compete with one another in recurrent networks [3, 7, 8] that
implement divisive interactions. We define the activity of band-pass cells PBPi,j,s using
the following equation:

dPBPi,j,s
dt

= −αMSTdPBPi,j,s + (1− PBPi,j,s)(IBPi,j,s + Z(PBPi,j,s; γ
MSTd,ΓMSTd))

− PBPi,j,s(
∑
n 6=i

∑
m 6=j

∑
o6=s

Z(PBPn,m,o; γ
MSTd,ΓMSTd)) (21)

where αMSTd defines the passive decay rate of each unit, IBPi,j,s refers to the input

signal, and Z(Pi,j,s; γ
MSTd,ΓMSTd) is the on-center/off-surround recurrent feedback
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MSTd units send one another. The last term involving the three summands means
that each unit receives inhibition from units that either have a different receptive field
position (n,m), or speed tuning (o). The recurrent feedback is defined by the sigmoid
function

Z(w; γ,Γ) =
(w − Γ)2

γ2 + (w − Γ)2
(22)

where w is the activity of the unit sending the feedback signal, γ defines the inflection
point of the sigmoid, and Γ represents the activity threshold that must be overcome in
order to send the feedback signal. The sigmoid recurrent feedback function allows
MSTd units to compete with one another to resolve winners without necessarily
eliminating all the other weaker activity across the network (i.e. soft
winner-take-all) [9, 10].

Speed summating PSSi,j and gradient PGCi,j cells obey similar equations, except note
the absence of speed specific subscripts s:

dPSSi,j
dt

= −αMSTdPSSi,j + (1− PSSi,j )(ISSi,j + Z(PSSi,j ; γMSTd,ΓMSTd))

− PSSi,j (
∑
n 6=i

∑
m6=j

Z(PSSn,m; γMSTd,ΓMSTd)) (23)

dPGCi,j
dt

= −αMSTdPGCi,j + (1− PGCi,j )(IGCi,j + Z(PGCi,j ; γMSTd,ΓMSTd))

− PGCi,j (
∑
n 6=i

∑
m6=j

Z(PGCn,m; γMSTd,ΓMSTd)) (24)

Feedback (MSTd−MT−,MSTd−MSTv)

MSTd units send feedback to suppress cells in MT− and MSTv tuned to directions
and speeds that are locally consistent with the global pattern preferred by the most
active MSTd cell. The feedback described here implements the tuning curve
W (w;µ, σ) introduced above (Eq. 4; see General Methods and Figure 3 for intuition).
We evaluate the feedback tuning curve separately for speed and direction. For
example, to resolve the direction component of the feedback, we evaluate
W (θd;χi∗,j∗,x,y, σ

MSTd,FB
dir ) where θd represents the direction preference of the

targeted MT units, χi∗,j∗,x,y (Eq. 12) is the set of angles corresponding to the
preferred optic flow pattern of the most active MSTd cell whose preferred singularity
is positioned at (i∗, j∗), and σMSTd,FB

dir controls the extent to which the feedback
signal affects MT−/MSTv units with similar direction preferences. The maximum
weight in Eq. 4 is 1 because only the most active MSTd unit tuned to each pattern
type may send feedback (i.e. winner-take-all).

We compute the feedback from band-pass (KBP
x,y,d,s), speed-summating (KSS

x,y,d,s),

and gradient(KGC
x,y,d,s) cells as follows:

KBP
x,y,d,s =

[
W (θd;χi∗,j∗,x,y, σ

MSTd,FB
dir )

] [
W (s; s∗, σMSTd,FB

spd )
]

(25)

KSS
x,y,d,s = W (θd;χi∗,j∗,x,y, σ

MSTd,FB
dir ) (26)

KGC
x,y,d,s =

[
W (θd;χi∗,j∗,x,y, σ

MSTd,FB
dir )

] [
W (s; Ẽs,i,j,x,y, σ

MSTd,FB
spd )

]
(27)
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where s∗ indicates the preferred speed of the most active MSTd unit and Ẽs,i,j,x,y is
the gradient cell annular speed sectors (Eq. 17). Note from Eq. 26 that speed
summating cells send equivalent feedback, regardless of the speed tuning of the
recipient cell, while band-pass cells concentrate the feedback weight around recipient
cells tuned to similar preferred speeds (Eq. 25). Eq. 27 indicates that gradient cells
send the strongest feedback to units most similar to those that sent feedforward input.

The feedback signal that reaches recipient cells in MT−/MSTv is the sum of
Eqs. 25- 27:

KMSTd
x,y,d,s =

∑
n

ωnH
[
ωn − ΓFB

]
ϑne

bMSTd((x−i)2+(y−j)2) (28)

where ω =
{
PBPi∗,j∗,s∗ , P

SS
i∗,j∗ , P

GC
i∗,j∗

}
and ϑ =

{
KBP
x,y,d,s,K

SS
x,y,d,s,K

GC
x,y,d,s

}
, H [·]

represents the Heaviside step function, ΓFB indicates the activity threshold that each
type of MSTd unit must exceed to send feedback, and the exponential function
increases feedback weights to MT−/MSTv units that have receptive fields at
eccentricities far from the preferred singularity position (distance-dependent
weighting).

The model proposes that the feedback to MT−/MSTv exerts a net inhibitory
effect, which may or may not originate from inhibitory neurons in MSTd. If the
feedback circuit follows the laminar anatomy common to other visual areas (e.g.
between V1 and MT) [11–13], feedback projections from MSTd may be excitatory and
target excitatory neurons in MT/MSTv. Within this canonical circuit, excitatory
MSTd feedback projections may target several MT layers, including layer 6 [12], and
neurons therein may project to inhibitory interneurons [14] as well as those involved in
feedforward processing [15] within layer 4. Neurons in layer 4 project to layer 2/3 [16],
which contains neurons with excitatory and inhibitory surrounds (MT+ and MT−

cells) [17]. Thus, even though the MSTd–MT feedback projections may be excitatory,
they may exert inhibitory effects on MT− cells through local inhibitory populations
distributed throughout MT, consistent with the structure of the model. Modeling
these indirect pathways in detail from MSTd to MT−/MSTv extends beyond the aims
of the present paper, so we use inhibitory feedback as a simplification.

MT Layer 2-3 (MT−)

MT− units perform an on-center/off-surround integration of MT L4,6 signals. We
obtain the center input by evaluating the 2D convolution function C(·) (Eq. 8):

C−x,y,d,s,f = C(M4,6
x,y,d,s,f ;x, y, σMT−,cent, gMT−,cent), which mimics the MT+ center

input (Eq. 9).

To resolve the spatial component of the inhibitory surround, we evaluate Eq. 8 at

SMT−,1
x,y,d,s,f = (C(M4,6

x,y,d,s,f );x, y, σMT−,surr, gMT−,surr), where σMT−,surr controls the

spatial extent of the integration with σMT−,surr > σMT−,cent, and gMT−,surr is the

inhibitory filter gain. We pass the output SMT−,1
x,y,d,s,f of this convolution through a von

Mises filter (Eq. 1) that defines the directional selectivity of the surround:

SMT−,2
x,y,d,s,f = g−dirV (SMT−,1

x,y,d,s,f , θd, b
−
dir) (29)

where b−dir controls the direction selectivity of the surround tuning and g−dir is the filter
gain. The speed component of the inhibitory surround is computed according to:

SMT−,3
x,y,d,s,f = D(SMT−,2

x,y,d,s,f ; s, σ−spd) (30)
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where σ−spd controls the speed selectivity of the surround and the function D(·) refers
to the 1D Gaussian filter convolution (Eq. 19).

Model MT− dynamics obey the following on-center/off-surround network:

dM−x,y,d,s
dt

= −M−x,y,d,s+(1−M−x,y,d,s)C
−
x,y,d,s,dte− (β−+M−x,y,d,s)(K

MSTd
x,y,d,s +SMT−,3

x,y,d,s,dte)

(31)
where β− specifies the hyperpolarizing lower bound of each unit’s activation when
suppressed and KMSTd

x,y,d,s refers to the feedback signal from MSTd (Eq. 28). The

inhibitory term in Eq. 31 exerts a divisive effect when β− is small and a joint
subtractive-and-divisive effect otherwise.

MSTv

MSTv units perform an on-center/off-surround integration of signals from MT−,
much in the same way MT− integrates feedforward signals from MT L4,6. Aside from
larger receptive fields, the main difference is that MSTv cells respond proportionally
to the average speed, like speed summating cells in MSTd. To model this, we perform
a spatial integration of rectified MT− signals, weighted by their speed in both center
and surround:

Cvx,y,d = (C(U(dM−x,y,d,se
+));x, y, σv,cent, gv,cent) (32)

Sv,1x,y,d = (C(U(dM−x,y,d,se
+));x, y, σv,surr, gv,surr) (33)

where U(·) is the weighted sum defined by Eq. 2 and d·e+ indicates rectification. We
filtered the surround output Sv,1x,y,d by the von Mises filter V to establish direction
selectivity:

Sv−,2x,y,d = gvdir

d̂∑
n=1

V (θn, θd, b
v
dir)S

v,1
x,y,n (34)

The following equation describes the network dynamics of MSTv units P vx,y,d (c.f.
[7]):

dP vx,y,d
dt

= −P vx,y,d + (1− P vx,y,d)Cvx,y,d − (βMSTv + P vx,y,d)(U(KMSTd
x,y,d,s) + Sv,2x,y,d) (35)

Modifications for Simulation 3

Notationally, we use h to index horizontal relative disparities in MT, δ4,6h to refer to
specific depths to which MT units are tuned (units: cm relative to fixation), k indexes
the disparities to which MSTd units are tuned, and φk refers to specific MSTd
disparities in categorical units (e.g. ‘near’, ‘fixational’, and ‘far’).

Model input

We expanded the input motion vectors ~vx,y,f to include the depth of each point:
~vx,y,f = (vdx,f , vdy,f , vh,f ), where vh,f refers to the depth relative to fixation in units
of cm. Negative values reflect closer depths and positive values reflect farther depths.
The fixation depth is assumed to remain consistent in each simulation. We defined
MT disparity units maximally sensitive to one of five disparities: two crossed (near),
two uncrossed (far), and one at fixation. Unless otherwise specified, the relative
depths that yield the maximum responses (δ4,6h ) differ by 15 cm increments.
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MT L4,6

Each disparity tuned unit integrates the input depth signal with weights defined by
q4,6G(vh,f ; δ4,6h , σ4,6

h ), where G(·) refers to the Gaussian function defined by Eq. 4, σ4,6
h

controls the width of the disparity tuning curves, and q4,6 represents the disparity gain
to simulate the tendency for stereo stimuli to garner greater activation in MT [18,19].
We configured σ4,6

h to decrease with depth (Eq. 36), which resulted in the tuning
curves that decrease in amplitude with depth due to filter normalization, as depicted
in Figure 2d.

σ4,6
h (h;σ0, σdh) = σ0 − σ0σddisp(h− 1) (36)

We evaluate Eq. 36 with σ4,6
h (h;σ4,6

disp0
, σ4,6
ddisp0

) to obtain this behavior.

As mentioned above, we multiplicatively combine the disparity filters with those
tailored to direction and speed:

M4,6
x,y,d,s,h,t =

[
V
(
Θx,y,f ; θd, b

4,6
)] [

G
(
ρx,y,f ; ρ4,6s , σ4,6

s

)] [
q4,6G(vh,f ; δ4,6h , σ4,6

h )
]

(37)

Disparity tuning (MT+ −MSTd)

We collapsed MT+ disparities into three categorical values for band-pass cells and
speed summating cells: ‘near’, ‘fixational’, and ‘far’ (φk). We applied the Gaussian

weighting function G(h;φk, σ
MSTd,FF
disp ) defined by Eq. 4 to perform the transformation,

where σMSTd,FF
disp controls the degree of pooling between similar MT+ disparities to

resolve those in MSTd. The mapping is realized by the following convolution:

Q(wk) = qMSTd
∑
h

G(h;φk, σ
MSTd,FF
h )wh (38)

where qMSTd is the disparity gain. The type of disparity tuning defined by Eq. 38
corresponds to non-direction-dependent disparity (non-DDD) cells that comprise most
of the disparity tuned cells in MSTd (Yang et al., 2011).

For gradient cells, we created direction Td,i,j,x,y (Eq. 14) and speed Es,i,j,x,y
(Eq. 18) templates as before, but now we weight each speed annulus inversely with
respect to depth. For example, if s = 1 indicates a slow speed, s = 5 indicates a fast
speed, d = 1 indicates a near disparity, and d = 5 indicates a far disparity, we weight
the region corresponding to s = 1 with d = 5, s = 2 with d = 4, and so on. We
achieved this mapping with the following Gaussian convolution:

Jd,s,i,j,x,y = D(Es,i,j,x,y; ĥ− h, σgraddisp ) (39)

Network dynamics

We obtain the input for band-pass and summating cells by composing the direction
and speed functions defined above with the MT+/MSTd disparity mapping:
IBPi,j,s,k = Q(Bs(Ri,j,s);φk, σ

MSTd
disp ). To compute the gradient cell input IGCi,j , first we

perform the convolution specified by Eq. 39 to derive Jd,s,i,j,x,y, second we substitute
Jd,s,i,j,x,y for Es,i,j,x,y when solving for IGCi,j (Eq. 20), and last we sum over MT
disparities.

The dynamical equations for all types of disparity tuned MSTd units are identical
to those defined above, except for the extra disparity dimension (e.g. PBPi,j,s,k).
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Disparity specific feedback (MSTd−MT−/MSTd−MSTv)

Disparity specific feedback from MSTd to MT− and MSTv follows the same
overarching rule outlined in General Methods (see Figure 3b): near MSTd units
maximally inhibit near MT−/MSTv units, fixational units maximally inhibit
fixational MT−/MSTv, and far units maximally inhibit far MT−/MSTv. We
implement this in band-pass and speed summating cells by multiplying Gaussian
disparity weights to those that define existing direction and speed based projections.
For example:

KBP
x,y,d,s,h =

[
W (θd;χi∗,j∗,x,y, σ

MSTd,FB
dir )

] [
W (s; s∗, σMSTd,FB

spd )
] [
W (h; k∗, σMSTd,FB

disp )
]

(40)

where σMSTd,FB
disp controls the extent to which feedback from MSTd units tuned to a

particular disparity influences MT−/MSTv cells tuned to other disparities.

MT Layer 2-3 (MT−)

We implement MT− units with disparity tuned surrounds, following the same pattern

as direction and speed. After computing the direction component SMT−,2
x,y,d,s,t (Eq. 29)

and speed component SMT−,3
x,y,d,s,t (Eq. 30) of the MT surround, we added an analogous

stage for disparity:

SMT−,4
x,y,d,s,h,t = D(SMT−,3

x,y,d,s,h,t;h, σ
−
disp) (41)

where σ−disp determines the disparity selectivity of the surround.

MSTv

We configured the MSTv surrounds as untuned for disparity — motion at any
disparity inhibits MSTv units when it appears in the surround:

Sv,4x,y,d,h = qMSTv
∑
p 6=h

Sv,3x,y,d,p (42)

where, qMSTv denotes the surround disparity gain.

Tables

Parameter Area Purpose Description Value Unit

d̂ All Direction Number of direction tunings 24 Ordinal
θ All Direction Directions to which units are tuned [-180,

. . . ,165]
°

ŝ All Speed Number of speed tunings 5 Ordinal

ĥ All* Disparity Number of disparity tunings 5 Ordinal

k̂ MSTd Disparity Number of MSTd disparity tunings 3 Ordinal
φMSTd MSTd Disparity MSTd disparities -2,0,2 N/A
x̂ All* Spatial Size of horizontal dimension 64 Pixels

(°)
ŷ All* Spatial Size of vertical dimension 64 Pixels

(°)
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î MSTd Spatial Number of evenly spaced horizon-
tal singularities to which MSTd
units are tuned

16 Ordinal

ĵ MSTd Spatial Number of evenly spaced vertical
singularities to which MSTd units
are tuned

16 Ordinal

qMSTd MSTd Disparity Disparity dependent gain 2.0 N/A

σgraddisp MSTd Disparity Gradient cell disparity tuning
width

0.05 N/A

σgradspd MSTd Speed Gradient cell speed tuning width 0.05 N/A

σMSTd,FF
disp MSTd Disparity MT+–MSTd disparity tuning

width
0.75 N/A

σMSTd,FB
dir MSTd Direction MSTd–MT−/MSTv direction tun-

ing width
4 °

σMSTd,FB
spd MSTd Speed MSTd–MT−/MSTv speed tuning

width
0.2 N/A

σMSTd,FB
disp MSTd Disparity MSTd–MT−/MSTv disparity tun-

ing width
4 N/A

ΓFB MSTd All Feedback signal threshold 0.01 mean
spk/sec

gMSTd MSTd Spatial Feedback gain 1.0 N/A
bMSTd MSTd Spatial Extent of MSTd distance-

dependent spatial integration
from the preferred singularity
position

5× 10−3 Pixels
(°)

σv,cent MSTv Spatial Center RF extent 0.5 Pixels
(°)

gv,cent MSTv Spatial Center RF gain 4 N/A
σv,surr MSTv Spatial Surround RF extent 4 Pixels

(°)
gv,surr MSTv Spatial Surround RF gain 6 N/A
qMSTv MSTv Disparity Surround disparity gain 1.5 N/A
bvdir MSTv Direction Tuning width 7 Pixels

(°)
gvdir MSTv Direction Tuning gain 0.26 N/A
σ−disp MT− Disparity Surround disparity selectivity 1 N/A

σMT−,cent MT− Spatial Center RF extent 0.5 Pixels
(°)

gMT−,cent MT− Spatial Center RF gain 1.5 N/A

σMT−,surr MT− Spatial Surround RF extent 4 Pixels
(°)

gMT−,surr MT− Spatial Surround RF gain 0.5 N/A
b−dir MT− Direction Tuning width 7 °
g−dir MT− Direction Tuning gain 0.26 N/A
σ−spd MT− Speed Tuning width 1 N/A

σMT+,cent MT+ Spatial Tuning width 3 Pixels
(°)

b4,6 MTL4, 6 Direction Tuning width 4 °
σ4,6
spd MTL4, 6 Speed Tuning width 0.01 N/A
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σ4,6
ds MTL4, 6 Speed Speed-dependent increase in tun-

ing width
0.1 N/A

σ4,6
disp0

MTL4, 6 Disparity Base tuning width 8 N/A

σ4,6
ddisp0

MTL4, 6 Disparity Disparity-dependent increase in
tuning width

0.5 N/A

Table 1. Tuning curve parameter values used in simulations of neural model. All∗
indicates that the parameter(s) apply to all areas of the model, except MSTd. Where
applicable, we parameterized the model in pixel units for convenience for processing
stimuli represented as a set of motion vectors in a sequence of digital images.

Parameter Area Description Value Unit

αMSTd MSTd Decay rate 0.1 mean spk/sec
γMSTd MSTd Recurrent feedback sigmoid func-

tion infection point
0.12 mean spk/sec

ΓMSTd MSTd Recurrent feedback signal thresh-
old

0.28 mean spk/sec

βMSTv MSTv Hyperpolarization activity lower
bound

0.3 mean spk/sec

β− MT− Hyperpolarization activity lower
bound

0.4 mean spk/sec

κ+ MT+ Depressive synapse recovery rate 10 mean spk/sec
τ+ MT+ Depressive synapse time constant 10 sec−1

Table 2. Parameter values related to neural model dynamics. Spk denotes spike and
mean spk/sec are in normalized units.
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