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The mathematical formalism of multilayer networks [Kivelä et al., 2014, New-
man, 2018], a generalization of ordinary graphs (i.e., ‘monolayer networks’), was
developed recently to help study multitudinous types of networks and to unify them
into one framework. In this appendix, we complement the main text with an in-
troduction to this formalism. We follow the mathematical approach of the review
article [Kivelä et al., 2014], including most of their terminology and much of their
notation. Another useful resource is [Porter, 2018], which is an expository summary
of multilayer networks for mathematics students.1

1. Mathematical Formalism

A multilayer network M = (VM , EM , V, L) has an underlying set V = {1, . . . , N}
of N entities (i.e., ‘physical nodes’) that occur on layers in L, which we construct
as a sequence, L = {La}da=1, of sets L1, . . . , Ld of elementary layers, where d is the
number of ‘aspects’ (i.e., types of layering). One ‘layer’ in L is thus a combination,
through the Cartesian product L1×· · ·×Ld, of ‘elementary layers’ from all aspects.
Therefore, each layer in a multilayer network includes one elementary layer from
each aspect. For example, if the sets of elementary layers of a multilayer network are
L1 = {1, 2} (so 1 and 2 are each elementary layers, perhaps representing different
points in time) and L2 = {X,Y, Z}, then the network’s layers are (1, X), (1, Y ),
(1, Z), (2, X), (2, Y ), and (2, Z). In a multilayer network, the set of node-layer
tuples (i.e., ‘state nodes’ that correspond to the same entity) in M is VM ⊆ V ×
L1 × · · · × Ld, and the set of multilayer edges is EM ⊆ VM × VM . The edge
((i, α), (j, β)) ∈ EM indicates that there is an edge from node i on layer α to node
j on layer β (and vice versa, if M is undirected). Each aspect of M represents
a type of layering: a type of social interaction, a point in time, and so on. For
example, a multirelational network that does not change in time has one aspect;
a multirelational network that has layers that encompass multiple time points has
two aspects; and so on. To consider weighted edges, one proceeds as in monolayer
networks by assigning a weight to each edge using a function w : EM −→ X, where
X = R≥0 if all weights are nonnegative real numbers. In Fig. S1, we show an
example of a multilayer network with one aspect.

1.1. Adjacency Structure. Each multilayer network with the same number of
nodes in each layer has an associated adjacency tensor2 A of order 2(d + 1). See
[Kivelä et al., 2014] for details. Analogous to the case of monolayer networks, each
unweighted (and directed3) edge in EM is associated with a 1 entry of A, and the
other entries are 0. To incorporate edge weights, one uses the values of the weights

1We draw on some exposition from [Porter, 2018] in our section on mathematical formalism.
2A tensor is a linear-algebraic object that generalizes a matrix. See [De Domenico et al.,

2013,Kivelä et al., 2014] for discussions of tensors in the context of multilayer networks.
3An undirected edge in EM is associated with two 1 entries of A.
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Figure S1. An example of a multilayer network with three lay-
ers. We label each layer using different colours for its state nodes
and its edges: black nodes and brown edges (three of which are
unidirectional) for layer 1, purple nodes and green edges for layer
2, and pink nodes and grey edges for layer 3. Each state node (i.e.,
node-layer tuple) has a corresponding physical node and layer, so
the tuple (A, 3) denotes physical node A on layer 3, the tuple (D, 1)
denotes physical node D on layer 1, and so on. We draw intralayer
edges using solid arcs and interlayer edges using broken arcs; an in-
terlayer edge is dashed (and magenta) if it connects corresponding
entities and dotted (and blue) if it connects distinct ones. We in-
clude arrowheads to represent unidirectional edges. [We drew this
network using Tikz-network, by Jürgen Hackl and available at
https://github.com/hackl/tikz-network), which allows one to
draw multilayer networks directly in a LATEX file.]

instead of 1. As discussed in [Kivelä et al., 2014], multilayer networks can have
different numbers of nodes in different layers. To ensure that the dimensions are
consistent in A, one adds empty state nodes when necessary. Edges attached to
such state nodes are ‘forbidden’ (these yield ‘structural zeros’ in A), and this needs
to be taken into account when doing calculations.

For convenience4, it is common to flatten A into a ‘supra-adjacency matrix’ AM ,
which is the adjacency matrix of the graph GM associated with M . Intralayer edges
(the solid arcs in Fig. S1) are on the diagonal blocks of a supra-adjacency matrix

4Several developments in multilayer network analysis, including particular choices for how

to generalize ideas from monolayer network analysis, have exploited the tensorial structure of

multilayer networks. Readers who wish to ignore this structure are free to start with supra-
adjacency matrices.
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AM =



0 1 0 1 0 ωA1,A2 0 0 0 0 ωA1,A3 0 0 0 0
0 0 1 0 0 0 ωB1,B2 0 0 0 0 ωB1,B3 0 0 ωB1,E3

0 0 0 1 0 0 0 ωC1,C2 0 0 0 0 ωC1,C3 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 ωD1,D3 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ωA2,A1 0 0 0 0 0 1 1 0 0 ωA2,A3 ωA2,B3 0 0 0
0 ωB2,B1 0 0 0 1 0 1 0 0 0 ωB2,B3 0 0 0
0 0 ωC2,C1 0 0 1 1 0 0 0 0 0 ωC2,C3 0 ωC2,E3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ωA3,A1 0 0 0 0 ωA3,A2 0 0 0 0 0 0 1 0 0
0 ωB3,B1 0 0 0 ωB3,A2 ωB3,B2 0 0 0 0 0 0 1 0
0 0 ωC3,C1 0 0 0 0 ωC3,C2 0 0 1 0 0 1 0
0 0 0 ωD3,D1 0 0 0 0 0 0 0 1 1 0 1
0 ωE3,B1 ωE3,C1 0 0 0 0 ωE3,C2 0 0 0 0 0 1 0



Figure S2. Supra-adjacency matrix corresponding to the multi-
layer network in Fig. S1. Entries in diagonal blocks correspond to
intralayer edges, whereas entries in off-diagonal blocks correspond
to interlayer edges. We follow the colouring scheme in Fig. S1:
entries that correspond to intralayer edges in layer 1 are in brown,
those in layer 2 are in green, and those in layer 3 are in grey. Ma-
genta entries correspond to interlayer edges between state nodes
that represent the same entity, and blue entries correspond to in-
terlayer edges between state nodes that represent distinct entities.
We use subscripts to identify the weights of the specific interlayer
edges; for example, ωA1,A2 denotes the weight of the edge from
state node (A, 1) to state node (A, 2), and ωA2,A1 denotes the
weight of the edge from (A, 2) to (A, 1). As in monolayer networks,
intralayer edges can also be weighted, but we do not indicate any
such weights in AM .

(see Fig. S2), and interlayer edges (the dashed magenta arcs and dotted blue arcs
in Fig. S1) are on the off-diagonal blocks. For this illustration, we suppose that the
intralayer edges are unweighted; these are the 1 entries (which we colour based on
layer) in AM . We show interlayer edges between state nodes that represent the same
entity in magenta, and we show interlayer edges between state nodes that represent
distinct entities in blue. We suppose that the interlayer edge from state node (i, α)
to (j, β) has weight ωiα,jβ , which we take to be a nonnegative real number (although
one can use negative values for antagonistic interlayer interactions).

1.2. Types of Multilayer Networks. Multilayer networks allow one to investi-
gate a diverse variety of complicated network architectures and to integrate different
types of data into one mathematical object. One can then use a common toolkit
to study these diverse scenarios.

Two key types of multilayer networks arise from (i) labeling edges or (ii) labeling
nodes. When one labels edges, one thinks of edges in different layers as representing
different types of interactions. This is the case for a multiplex network, a type of
multilayer network in which the only permitted types of interlayer edges are those
that connect replicates of the same entity in different layers. We show such edges,
which correspond to diagonal elements of off-diagonal blocks in a supra-adjacency
matrix, as dashed magenta arcs in Fig. S1 and as magenta matrix elements in
Fig. S2. A special case of a multiplex network is an edge-coloured multigraph,
which has multiple layers but does not have any interlayer edges. In this case, only
the diagonal blocks in a supra-adjacency matrix can have nonzero elements (such
that all ωiα,jβ = 0 in Fig. S2). By contrast, when one labels nodes, one can think
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of different layers as representing different subsystems (in interconnected networks
and ‘networks of networks’), and there can be interlayer edges with nonzero supra-
adjacency matrix elements in both the diagonal and off-diagonal entries of the off-
diagonal blocks. In this case, there are interlayer edges between different entities,
as we indicate using the dotted blue arcs in Fig. S1 and the blue matrix elements
in Fig. S2. To emphasize the fact that different layers in Fig. S1 can represent
different subsystems, we use different colours for the nodes from different layers in
this network diagram.

For further details on types of multilayer networks, see [Kivelä et al., 2014].

1.3. Weights of Interlayer Edges. An important idea is that interlayer edges are
fundamentally different from intralayer edges, and it is often less straightforward
to determine weights from data for interlayer edges than for intralayer ones. In the
context of the supra-adjacency matrix in Fig. S2, for most applications, it is easier
to determine weights that are associated with the 1 entries in the diagonal blocks
than to assign appropriate values to the weights ωiα,jβ . As in monolayer networks,
larger weights correspond to stronger interactions.

A conceptually easy situation is a multimodal transportation network, in which
one might determine interlayer edge weights based on how long it takes to change
modes of transportation (with larger weights for shorter times). Suppose, for ex-
ample, that entity A represents Oxford, entity B represents Cambridge, layer 1
represents coach transportation, and layer 2 represents train transportation. We
determine interlayer edge weights from the time it takes to change transporta-
tion modes, with larger weights for shorter times. If it takes longer to walk from
the coach station to the train station in Oxford than it does in Cambridge, then
ωA1,A2 > ωB1,B2.

A harder scenario to model is communication between people in a social net-
work. We will use ourselves—with nodes called Mason, Noa, Kelly, and Matt—to
provide an example. One possibility is to construe an interlayer edge that connects
an entity to itself as encoding a transition probability between different modes of
communication. Therefore, ωiα,jβ ∈ [0, 1] because it represents a probability. One
can also include interlayer edges between distinct entities (in blue in Fig. S2), as
Mason can send a message to Noa using one mode of communication (i.e., in one
layer), such as via an e-mail that he typed on his laptop, but she may read the
contents of that message using some other mode of communication (i.e., in another
layer), such as on a mobile phone. Noa may then subsequently text the message to
Kelly and Matt. Additionally, because the four of us have different usage patterns
for different modes of communication, we also have different transition probabili-
ties between layers, and our associated interlayer edge weights thus differ from each
other. For example, Mason is almost always on his computer and almost never
on his phone, so his transition probability from communicating via computer to
communicating via phone is small, whereas the probability of the reverse transition
is very large. By contrast, during proverbial work hours, Noa spends a similar
amount of time on her computer and her phone, and her transition probabilities
for changing between these two modes of communication are similar to each other.

For other applications, including in animal behaviour, interlayer edges can run
into significant conceptual difficulties, and researchers struggle with how to make
sense of them. There are dependencies across layers and interlayer edges can encode
such dependencies, but how does one determine meaningful values for the weights
of those edges? In some applications, it may be useful to think of interlayer edges
as transition probabilities, as in the above example involving humans. In others, it
may be useful to construe an interlayer edge as representing a dependency between
one layer (e.g., proximity associations) and a second layer (e.g., grooming interac-
tions, which require proximity to occur). A larger weight for such an edge encodes
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a stronger dependency, thereby entailing a stronger dependence of one layer on an-
other. Additionally, different individual animals can have different values for such
weights (as in the example above), corresponding to individual differences.

There are numerous possibilities for applying multilayer network analysis in an-
imal behaviour (and in other applications), because it is very flexible, but it can
also be very challenging to interpret the results of such analysis. As we have illus-
trated in this subsection, a key issue that requires careful thought is determining
the weights of interlayer edges (or whether to use such edges at all). In different
disciplines and for different systems and research questions, one can use interlayer
edges to represent qualitatively different things (e.g., communication ties, corre-
lations, or transition probabilities), and how to determine interlayer edge weights
depends on the application domain, the system of interest, and one’s particular
research question.

2. Eigenvector Versatility: An Example of a Multilayer Versatility
Measure

In this section, we illustrate the formalism of calculating a ‘versatility’ measure
[De Domenico et al., 2015] in a multilayer network to supplement our conceptual
discussion in the main text. For simplicity, we consider eigenvector versatility,
which is a generalization of eigenvector centrality from monolayer networks, but
one can also generalize other monolayer centrality measures (such as PageRank)
into associated versatility measures for multilayer networks.

To calculate eigenvector centralities in a monolayer network, one calculates the
leading eigenvector v1 (which is associated with the largest positive eigenvalue λ1) of
the equation Av = λv, where A is the network’s adjacency matrix. For this type of
centrality, we assume that the network associated to A is strongly connected (or just
that it is connected, for an undirected network), so that—by the Perron–Frobenius
theorem—the eigenvector v1 has strictly positive entries [Newman, 2018]. These
entries give the eigenvector centralities of the corresponding nodes in the network.

Calculating eigenvector versatility proceeds in a similar way. One first calculates
the leading eigenvector vM,1 of the equation AMvM = λvM . The eigenvector vM,1

gives multilayer eigenvector centralities for each state node (i.e., for each node in
each layer). Importantly, we need to use the whole multilayer structure to calculate
the multilayer eigenvector centrality for each state node. For each entity, one then
aggregates the centrality values over all layers to determine its eigenvector versa-
tility. The article [De Domenico et al., 2015] used a maximum-entropy principle
for their choice of aggregation, but other ways of weighting different layers are also
possible [Kivelä et al., 2014].

3. Similarity of Layers: An Example Measure

In this section, we present one example measurement of similarity of layers in
a multilayer network. As we suggested in the main text, such calculations can
be helpful for exploring overlaps of individuals and/or social interactions across
layers, including for discerning task specialists and generalists. For simplicity, we
consider the special case of multiplex networks. See [Kao and Porter, 2018] and
several references therein for a discussion of several types of similarity measures
and comparisons between them.

One way to quantify the similarity of two layers is to count the number of
intralayer edges that occur in both layers. There is an overlapping edge between
nodes i and j in layers α and β if and only if there is an edge between nodes i

and j in both α and β. That is, θ(Aαij) = 1 and θ(Aβij) = 1, where Aαij is the

intralayer adjacency element between entities i and j on layer α (and Aβij is defined

analogously), and θ(x) = 1 if x > 0 and θ(x) = 0 otherwise.
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Usually, one wants to be a bit more sophisticated than using a raw count of
overlapping edges, and there are many possible ways to proceed. One example is
‘local overlap’ [Cellai et al., 2013]

oαβi =
∑
j

θ(wαij)θ(w
β
ij) ,

which counts the number of overlapping edges that are attached to node i in both

layer α and layer β. In an undirected multiplex network, the local overlap oαβi
quantifies the similarity between the connection patterns of node i in layer α and
node i in layer β, although it does not take into account that the intralayer degrees
of a state node contributes to the amount of overlap that involves it. One way to
do this is with ‘local similarity’ [Kao and Porter, 2018]

(1) φαβi =
oαβi

kαi + kβi − o
αβ
i

∈ [0, 1] ,

where kαi =
∑
j θ(w

α
ij) is the degree of node i in layer α (and kβi is defined analo-

gously). Local similarity φαβi calculates the number of overlapping edges that are
attached to node i in layers α and β as a proportion of the number of unique edges
that are attached to node i in the two layers.
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