SUPPORTING INFORMATION

Parachlamydia acanthamoebae Campylobacter jejuni	0 LDPNL5				
Wolinella succinogenes	FERWT				
Marichromatium purpuratum	PACVRCHGPGGVGAGAVFPPLAGQPYSYLLAQLQAWGTGRRHGEPMALMGAVAGRLDADE				
Sideroxydans lithotrophicus		0			
Pseudomonas stutzeri		0			
Allochromatium vinosum		0			
Psychrobacter arcticus	SDNTE	5			
Parachlamydia acanthamoebae	SSN	3			
Campylobacter jejuni Welipella succinegenes	EKEKTKSATGIDLPTAKWNLPKALNED	30			
Marichromatium purpuratum	ORALAAYFATRPLAVADPADDLPDPSPPPATASVSTPAMTVAGANAVVPEHLGAV	235			
Thiomonas intermedia	ADAPMAP-PKSEI	12			
${\it Sideroxy} dans \ lithotrophicus$	ASET	4			
Pseudomonas stutzeri	AEIKMDDQSQLTQ	13			
Psychrobacter arcticus	TKAVERVEEAAALARVKDLEARAEALKSNMPAANDMTATAG	46			
Parachlamydia acanthamoebae	GMSSSNDTQEWRTTLLDPEMAPENIKPLVMQGFRILFDTKKHAPQYAGDE	53			
Campylobacter jejuni	GTIDETKMPKNSEYSKMVILGNKILNETSKYVGPQAKDPKKRFAGNN	77			
Wolinella succinogenes	QYALPKFEGDVFWDTINAKPVVPDSIYGEFVQYGYELFVNTQAVIGPEVADPNMRYSGNN	95			
Marichromatium purpuratum	PAGRAEAAS-RFTPPSRDALPEGPLGEMVRLGARLFRHTNTDPRSAPHVGND	286			
Sideroxydans lithotrophicus		53			
Pseudomonas stutzeri	KAGKGAGES-YFQPPQEKDLPANAYGELVQQGRAIFVDTQKYAAEYVGNG	62			
Allochromatium vinosum	EEPPTV-ALTVPAAALLPDGALGESIVRGRRYLSDTPAQLPDFVGNG	46			
Psychrobacter arcticus	GTDTASGKP-TIKMPDESTIPDDEFGAAVRRGLQISNHTYKELPNNVGNQ	95			
Parachlamydia acanthamoebae	ISCTNCHFNCGNTFGGENNGISLVGVTKKYPRAILD-NPHYTLEERINACFTKSLNG	109			
Campylobacter jejuni	LSCSSCHANGGSVQNQSGFVGIWARFPQYNARGDKVITLADRINGCFERSMNG	130			
Wolinella succinogenes Marichromatium purpuratum	LSCNSCHLGAGIAKIAAPLVDNHANFPQIRNRENSLGIMAARVNGCMQRSMNG	342			
Thiomonas intermedia	LSCVNCHTDAGRMAGSAPLWAAYVSYPAYRGKNKKVNTFEERLQGCFKFSQNG	113			
Sideroxydans lithotrophicus	LNCVNCHLASGRKENSSPLWAAYVRYPAYRAKNNKVNTYEERIQGCFKYSLNG	106			
Pseudomonas stutzeri	MNCTNCHLEQGRKANSAPLWGAYPMYPAYRKKNDKVNSYAERVQGCFQFSMNG	115			
Allochromatium vinosum	LACRHCHPGRDGEVGTEANAAPFVGVVGRFPQYSARHGRLITLEQRIGDCFERSLNG	103			
rsychiobacter arcticus	LNCISCALGNGSEATAAFWNNIFSVIFNISKKIGKINIIQEKINGCFEKSLNG	140			
Parachlamydia acanthamoebae	KPVPLKSKEMKAMIAYLEWISKGVSNQAPWLGLKKLRSHAIPNAEKGNAL	159			
Campylobacter jejuni	KRMPSDTPEMKAMLTYMQWLSQGVPVGA-KIEGQGLKKIDFISRAADPKKGKAI	183			
Wolinella succinogenes	YPLPAEGKEMKAFLAYIHWLGQGIPVGA-KIEGRSLKTVDRKMVQQNAADVKNGAEV	204			
Thiomonas intermedia	KAPPLGSKTLVALESYSYWLSKGLPVDE-KVAGRGYPNLPEPOOAPDYVRGOKV	166			
Sideroxydans lithotrophicus	KAPAVDSPEMVALVTYSYWLATGAPVGA-KLKGAGYPEVPKPGLIPDANRGKTV	159			
Pseudomonas stutzeri	TPPAADSHVINALTAYSYWLSTGAPTGQ-ELPGRAYPEVPQPQGGFDIAKGKQI	168			
Allochromatium vinosum	RALALDHPALIDMLAYMSWLSQGVPVGA-VVAGHGIPTLTLE-REPDGVHGEAL	155			
Psychrobacter arcticus	KALDLNSDDMNAMVSIMSWLSQDMPFGV-SPEGSGFVKVDKI-LEPNIDNGKKL	200			
Parachlamydia acanthamoebae	YQQHCAACHGKDGEGQLRPDNLKYPPLWGN-HSFNQAAGMNDLPTLAAFIYDNM	212			
Wolinella succinogenes	YARDCASCHGAEGEGLRRESKDGKPAGYEFPPLWGSDDTYNTGAGMYRTLKAADFIKSTM	264			
Marichromatium purpuratum	YAEHCALCHGAEGEGLL-VDGEVVFPPLWGP-RSYNWGAGMHRVDTAAAFIAANM	452			
Thiomonas intermedia	YEAKCILCHAANGEGQY-VNGETVFPPLWGP-KSFNWGAGMGSYKNAAKFIYANM	219			
Sideroxydans lithotrophicus	FVENCQVCHGSNGEGKK-VDGKYIFPPLWGS-ESFNWGAGMHRINTAAAFIKANM	212			
Allochromatium vinosum	YOARCLACHGADGSGTLDADGRYLFPPLWGR-DSFNWGAGMHRINIAAAFIKESM	209			
Psychrobacter arcticus	FAEKCSVCHGATGEGQYNDDGTYVYPAIAGD-KSFNDGAGMARTYTAASFIKGKM	254			
Parachlamydia acanthamoebae	PYQEP-RLTVEEVLDIAAYITSQPRPIEIRTP	243			
Campylobacter jejuni	PQGAP-DLSLEDAYDVAAYMNSQARPIKANRDKDFPDRKVKPLDMDVGPYDD	291			
Wolinella succinogenes	PKGAP-TLSDKDAYDVAAFINDYSHYRTVKLNRQNDFVDPKVRVPDHDQPGPYGP	318			
maiichromacium purpuratum Thiomonas intermedia	FILDIVKLIFQEAWDVAAIINAHERPODPRWDG-SVERIAARFHASP-FDLYGE PYGMSYSLSPOEAWDVAYFMDAOERPODPRWDG-SVAATRAKFHDSK-FSLVGT	204 271			
Sideroxydans lithotrophicus	PLSKGGTLTDQEAWDVATFVMSHERPQDPRFKG-NVAQTKKEYHDENCRYGE	263			
Pseudomonas stutzeri	PLGKGGSLSDADAWHVAAYMNSHERPQDPRLIEGSVEKTRLKYHANDGVNLYGQ	275			
Allochromatium vinosum Psychrobacter arcticus	PLGADDSLSDEEAWDVAGFVLTHPRPLFQEPTGDPFGQGGSLSDQEAVDIASYFTHLPRPIKANKDKDWPNGDAPKDVRR	243 300			
Parachlamudiatheme i	0.4.0				
campylobacter jejuni	243 SFSTTOHRYGPYTNMIKK 309				
Wolinella succinogenes	EGSYIFPDEGKTQMDYKVGPYKGIIKQKPAAK 350				
Marichromatium purpuratum	PLGVDGAVLGQGVAKD 520				
Thiomonas intermedia	KVNGKLLGDIGAPKPR 287				
Sideroxydans lithotrophicus Pseudomonas stutzori	1 287				
Allochromatium vinosum	243				

Psychrobacter arcticus ----- 300

Figure S1. Sequence alignment for TsdAs from *Parachlamydia acanthamoebae*, *Campylobacter jejuni*, *Wolinella succinogenes*, *Allochromatium vinosum*, *Marichromatium purpuratum*, *Thiomonas intermedia*, *Sideroxydans lithotrophicus* and *Pseudomonas stutzeri*. Heme binding motifs including proximal His ligand are indicated in blue with the distal Cys ligand to Heme 1 in red and M(K) ligand to Heme 2 in brown.

Figure S2. Representative cyclic voltammetry of a TsdA protein adsorbed on IO-ITO. Voltammogram (continuous line) is for *Cj*TsdA C138M in 50 mM HEPES, 50 mM NaCl, pH 7, 4 °C measured at 10 mV s⁻¹. Inset: the protein (Faradaic) response obtained by subtraction of a baseline (dashed line) from the measured current.

Figure S3. Scan-rate dependence of the cyclic voltammetry for *Cj*TsdA and Heme 1 variants adsorbed on IO-ITO electrodes.

(**Right**) Representative baseline subtracted cyclic voltammograms for the indicated proteins recorded at 5 (grey line, shaded area), 10, 50 and 100 (black line) mV s⁻¹. Data recorded in 50 mM HEPES, 50 mM NaCl, pH 7 at 4 °C.

(Left) Scan rate dependence of voltammetric features.

<u>Upper part of panels.</u> Black: total moles of electrons (Q_{tot}) giving rise to the oxidative (circles) and reductive (triangles) peaks normalized to those at 10 mV s⁻¹ (black). Red: ratio of mol. electrons in the low potential peak (Q_{hi}) to mol. electrons in the high potential peak (Q_{lo}) for oxidative (circles) and reductive (triangles) peaks.

<u>Lower part of panels.</u> Red: peak potentials (E_p) for oxidative (circles) and reductive (triangles) peaks at low (blue) and high (red) potential. Heterogeneous rate constants (k_o / s^{-1}) were obtained from fits to the data using Jellyfit v2.1 available from (<u>https://www.fbs.leeds.ac.uk/jeukengroup/freeware/Jellyfit.php</u>). k_0 values used for low/high E_m peaks were 1.06/1.48 s⁻¹ (*Cj* WT), 0.78/0.67 s⁻¹ (*Cj* C138M) and

 $0.87/1.38 \text{ s}^{-1}$ (*Cj* C138H). *E*_m was equal to the average of the corresponding *E*_p values. Examples of similar analyses can be found in Jeuken, L.J.C., McEvoy, J.P. & Armstrong, F.A. (2002) J. Phys. Chem. B 106 2304-2313.

Figure S4. Scan-rate dependence of cyclic voltammetry for AvTsdA and CjTsdA N254K adsorbed on IO-ITO electrodes.

(**Right**) Representative baseline subtracted cyclic voltammograms for the indicated proteins recorded at 5 (grey line, shaded area), 10, 50 and 100 (black line) mV s⁻¹. Data recorded in 50 mM HEPES, 50 mM NaCl, pH 7 at 4 $^{\circ}$ C.

(Left) Scan rate dependence of voltammetric features.

<u>Upper part of panels.</u> Black: total moles of electrons (Q_{tot}) giving rise to the oxidative (circles) and reductive (triangles) peaks normalized to those 10 mV s⁻¹ (black). Red: ratio of mol. electrons in the high potential peak (Q_{hi}) to mol. electrons in the low potential peak (Q_{ho}) for oxidative (circles) and reductive (triangles) peaks.

<u>Lower part of panels.</u> Red: peak potentials (E_p) for oxidative (circles) and reductive (triangles) peaks at low (blue) and high (red) potential. Heterogeneous rate constants (k_o / s^{-1}) were obtained from fits to the data using Jellyfit v2.1 available from (<u>https://www.fbs.leeds.ac.uk/jeukengroup/freeware/Jellyfit.php</u>). k_0 values used for low/high E_m peaks were 0.67/0.72 s⁻¹ (Av WT) and 1.32/1.22 s⁻¹ (Cj N254K). E_m was equal to the average of the corresponding E_p values. Examples of similar analyses can be found in Jeuken, L.J.C., McEvoy, J.P. & Armstrong, F.A. (2002) J. Phys. Chem. B 106 2304-2313.

λ / nm ($\Delta \epsilon / M^{-1} cm^{-1} T^{-1}$)			Heme 1	Heme 2		
		His/Cys ⁻	His/His	His/Met	His/Lys	His/Met
AvTsdA (407/208)*	ox				1505 (1.6)	
	asc	1240 (0.42)				
<i>Cj</i> TsdA (415/190)	ox	1215				1825 (0.74)
	asc	1225 (0.50)				
<i>Cj</i> TsdA C138M (413/210)	ox			1735 [†] (0.51)		1825 [‡] (0.74)
	asc					
<i>Cj</i> TsdA C138H (411/230)	ox		1480			1820 (0.82)
	asc		1480 (1.03)			
<i>Cj</i> TsdA N254K (408/200)	ox	1250			1525 nm (0.75)	1825 (0.47)
	asc	1250 (0.41)				

Table S1. Peak wavelengths (λ) and intensities ($\Delta \epsilon$) for low-spin Fe(III) charge-transfer transitions in nIR MCD. ox = oxidized form, asc = ascorbate reduced form.

* The Soret absorption peak wavelength and extinction coefficients $(nm/mM^{-1}cm^{-1})$ are shown in brackets for each species.

† by subtraction.

 \ddagger assumed to be the same as *Cj*TsdA.

Table S2.	$E_{\rm m}$ values	derived from	modelling of	f voltammograms,	see Methods for	details.
			<u> </u>	<u> </u>		

	Her	me 1	Heme 2			
AvTsdA	His/Cys ⁻	-181 mV	His/Lys	-129 mV	His/Met	+266 mV
<i>Cj</i> TsdA	His/Cys ⁻	-186 mV			His/Met	+172 mV
CjTsdA C138M	His/Met	+94 mV			His/Met	+174 mV
<i>Cj</i> TsdA C138H	His/His	-100 mV			His/Met	+160 mV
<i>Cj</i> TsdA N254K	His/Cys ⁻	-115 mV	His/Lys	-171 mV	His/Met	+203 mV

Table S3. Moles of electrons transferred (*Q*) in the baseline-subtracted and modelled peak areas for cyclic voltammetry of adsorbed TsdA proteins. Bolded values ($\pm \sigma$) are average of three scans performed at 10 mV s⁻¹ in 50 mM HEPES, 50 mM NaCl, pH 7, 4 °C with the exception of *Cj*TsdA

N254K scan 1. Italicized values are for the modelled contributions shown in Fig 5 and 8 with grey values assigned to Heme 1 and blue values assigned to Heme 2. Ox = oxidized, red = reduced, lo = low potential, hi = high potential.

	Low Pote (mo	ential Peak bl e ⁻)	High Potential Peak (pmol e ⁻)		Total (pmol e⁻)	
Enzyme	Q ^{ox} _{lo}	$Q^{ m red}_{ m lo}$	$Q_{ m hi}^{ m ox}$	$oldsymbol{Q}_{ ext{ hi}}^{ ext{red}}$	Q _{tot} ^{ox}	$Q_{ m tot}^{ m red}$
<i>Cj</i> TsdA	41 (± 10)	52 (± 10)	166 (± 10)	135 (± 21)	207 (± 10)	187 (± 21)
	31	41	145	124	176	165
AvTsdA	176 (± 10)	269 (± 21)	93 (± 10)	21 (± 10)	269 (± 10)	300 (± 21)
	114, <mark>31</mark>	135, <mark>83</mark>	93	31	238	249
CjTsdA C138M			373 (± 21)	352 (± 10)	373 (± 21)	352 (± 10)
			176, <mark>176</mark>	166 , 145	352	311
CjTsdA C138H	155 (± 10)	124 (± 10)	207 (± 10)	238 (± 21)	373 (± 10)	352 (± 21)
	135	104	218	218	353	322
CiTsdA N254K	52	145	165	83	218	228
scan 1	21 , 41	62, 73	124	52	187	187
	52 (± 10)	31 (± 10)	155 (± 10)	135 (± 21)	207 (± 10)	166 (± 10)
steady-state	52	41	124	104	176	145