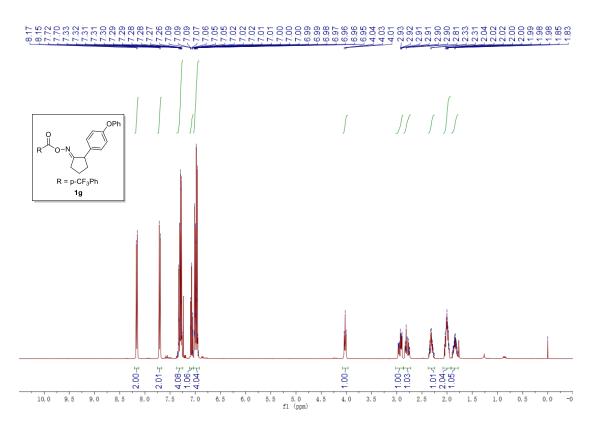
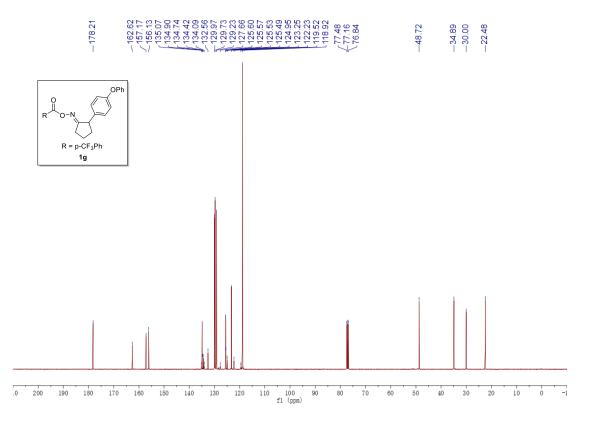
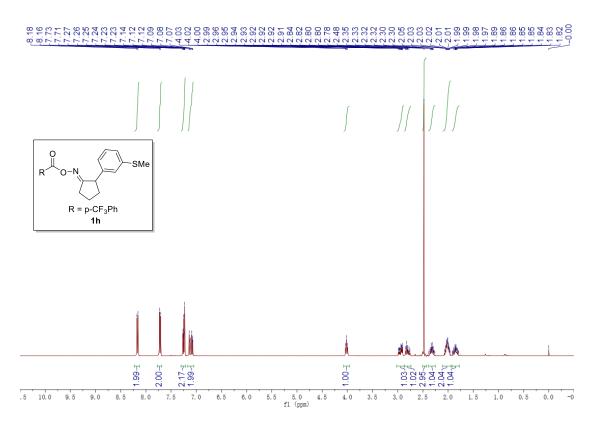

Enantioselective cyanation via radical-mediated C-C single bond cleavage for

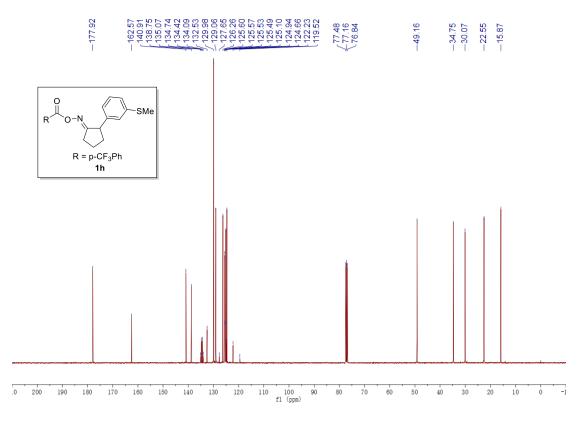
synthesis of chiral dinitriles

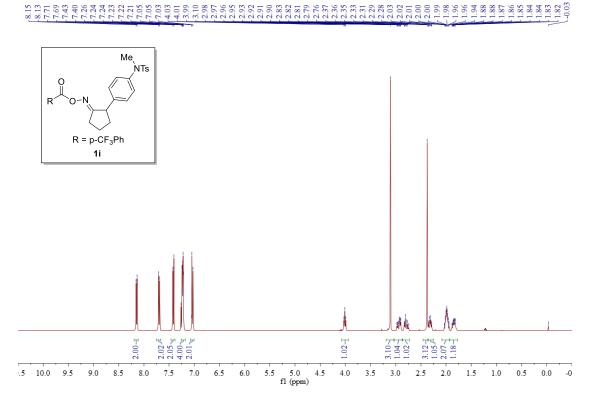

Wang *et al*.

Supplementary Figures



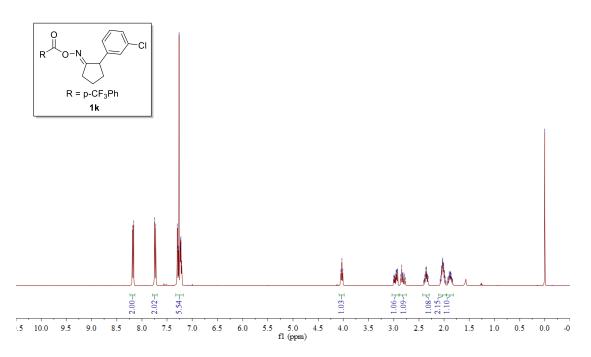

Supplementary Figure 2. ¹³C NMR of 1f


Supplementary Figure 3. ^{1}H NMR of 1g

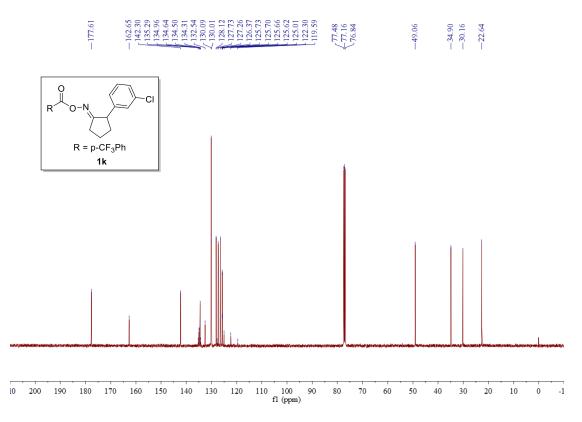

Supplementary Figure 4. ¹³C NMR of **1g**


Supplementary Figure 5. ¹H NMR of 1h

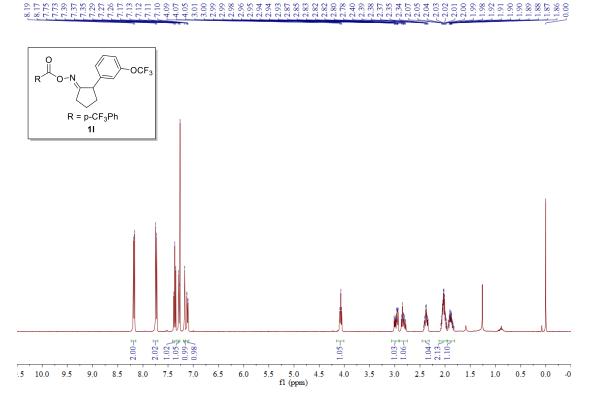
Supplementary Figure 6. ¹³C NMR of **1h**

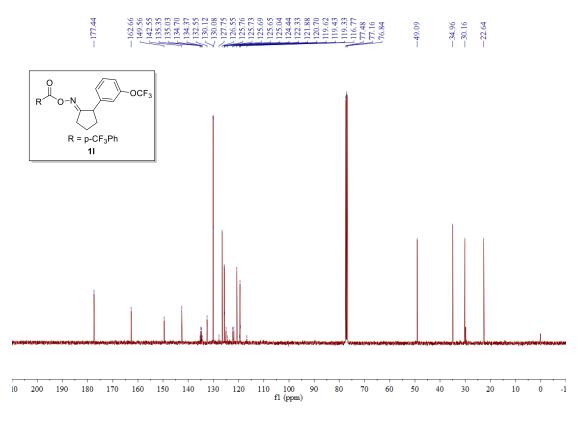


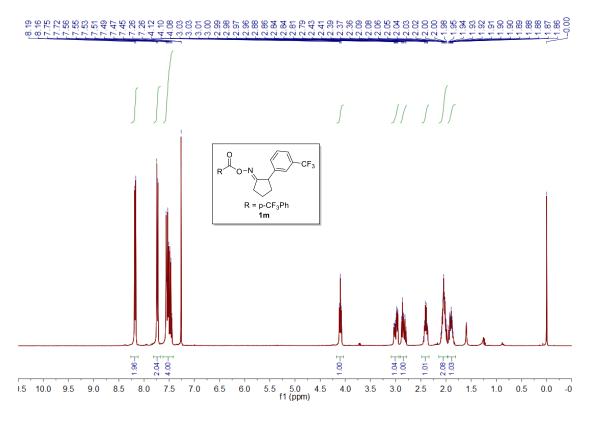
Supplementary Figure 7. ¹H NMR of 1i

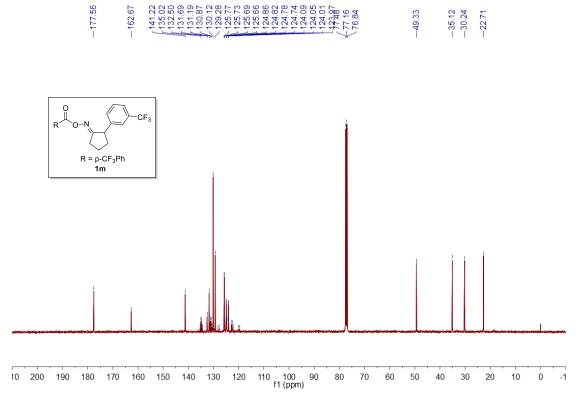


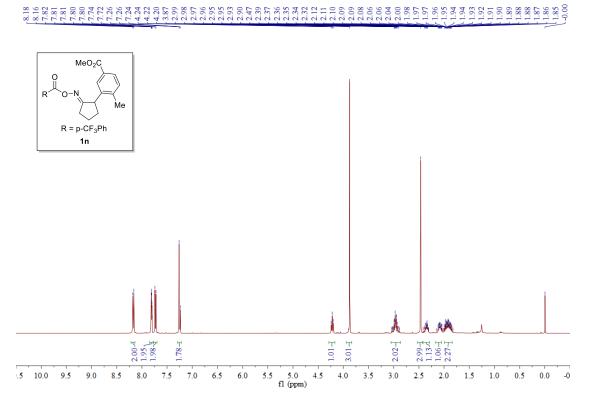
Supplementary Figure 8. ¹³C NMR of 1i

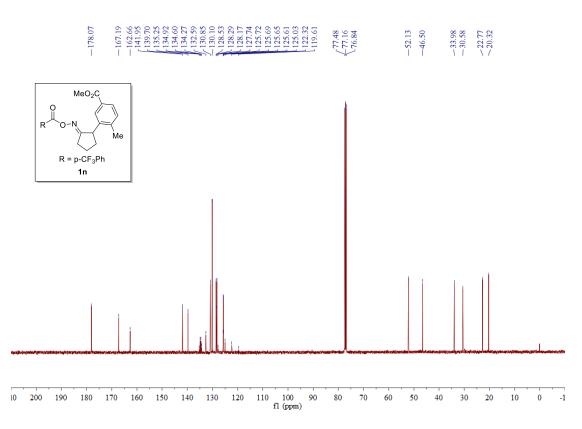


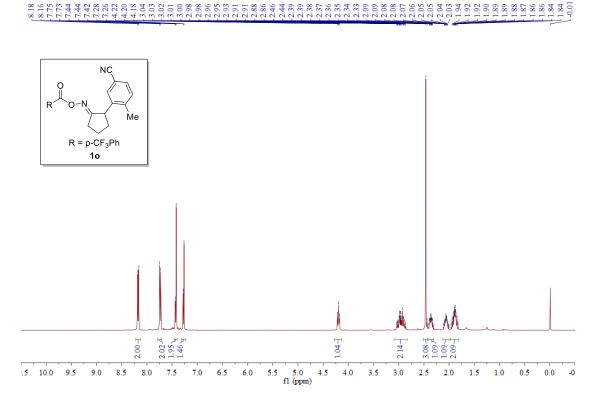

Supplementary Figure 9. 1 H NMR of 1k

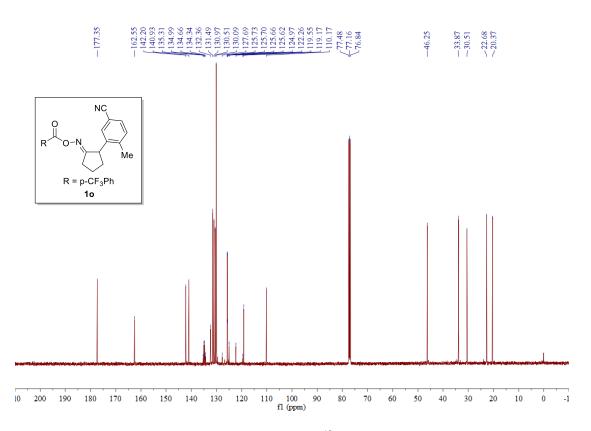

Supplementary Figure 10. ¹³C NMR of 1k

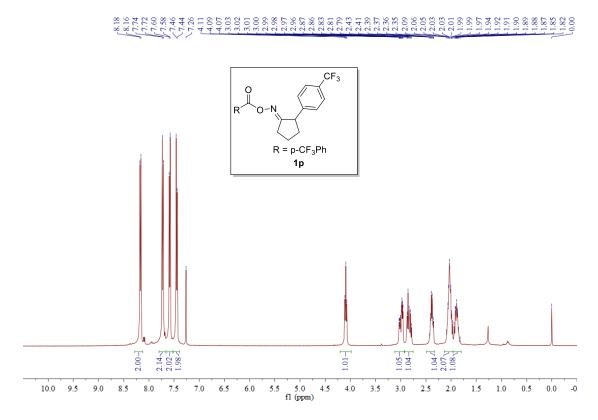

Supplementary Figure 11. ¹H NMR of **11**


Supplementary Figure 12. ¹³C NMR of 11

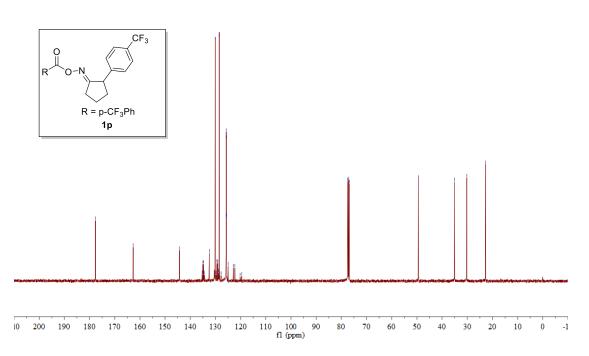

Supplementary Figure 13. ¹H NMR of 1m


Supplementary Figure 14. ¹³C NMR of **1m**

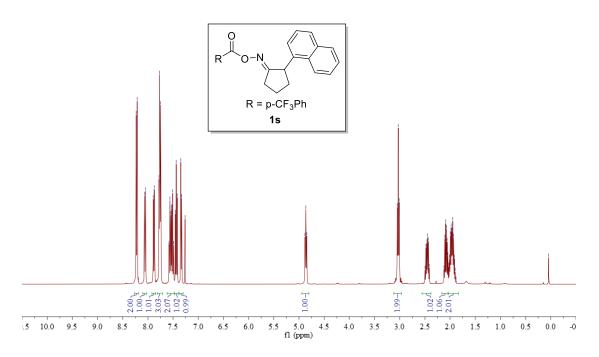

Supplementary Figure 15. ¹H NMR of 1n

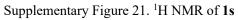

Supplementary Figure 16. ¹³C NMR of **1n**

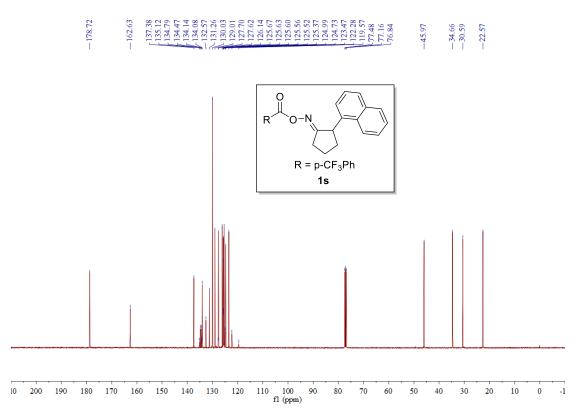
Supplementary Figure 17. ¹H NMR of 10



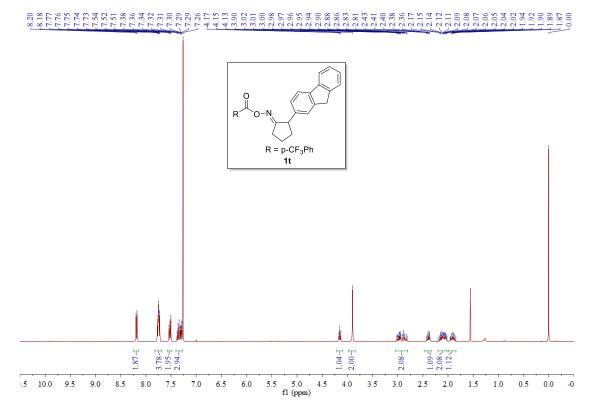
Supplementary Figure 18. ¹³C NMR of **10**

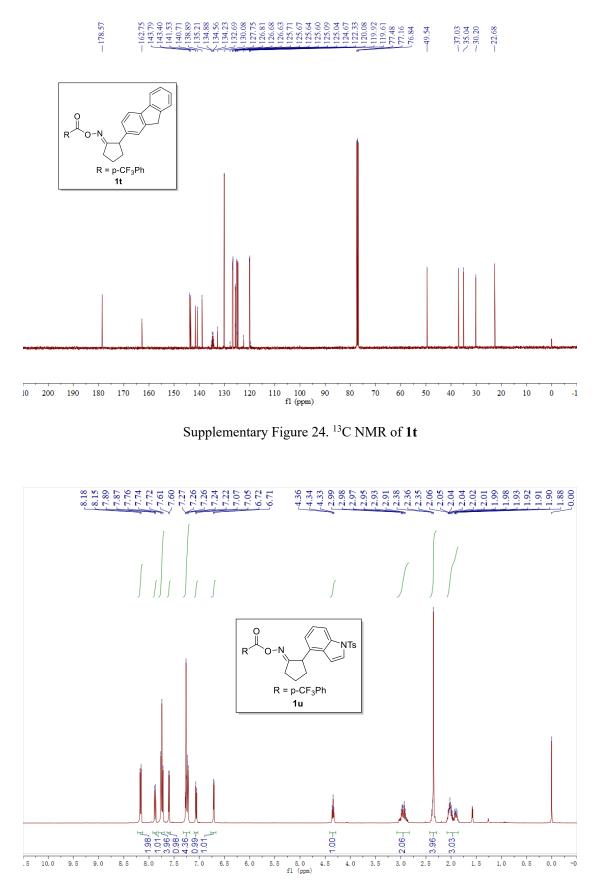

Supplementary Figure 19. ¹H NMR of **1p**

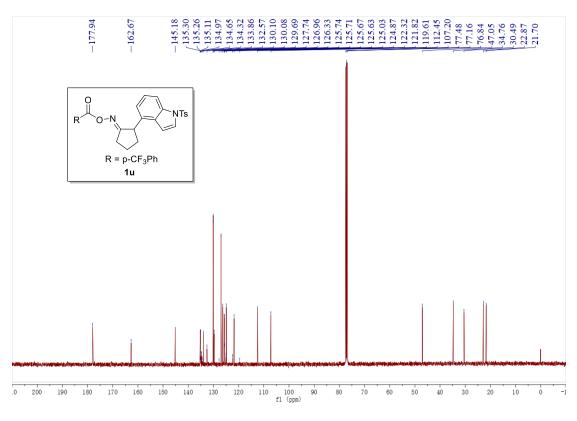




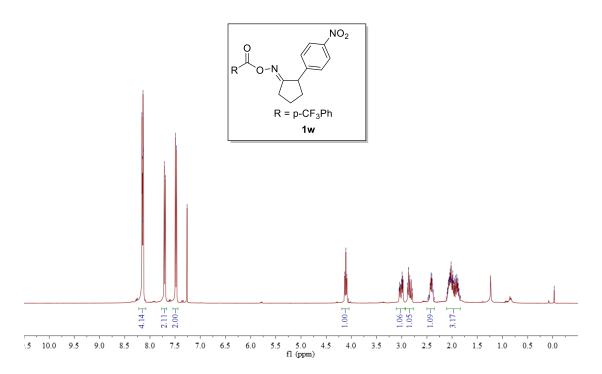
Supplementary Figure 20. ¹³C NMR of **1p**



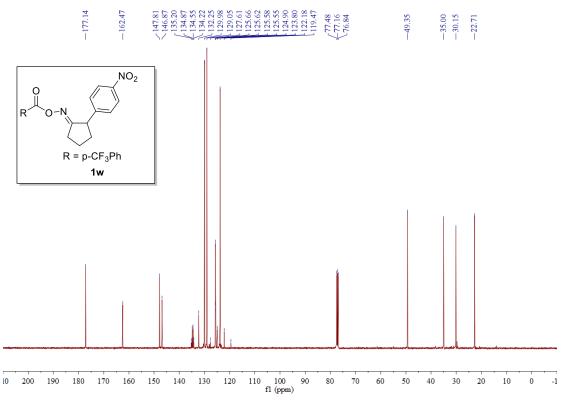



Supplementary Figure 22. ¹³C NMR of 1s

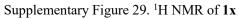
Supplementary Figure 23. ¹H NMR of **1t**



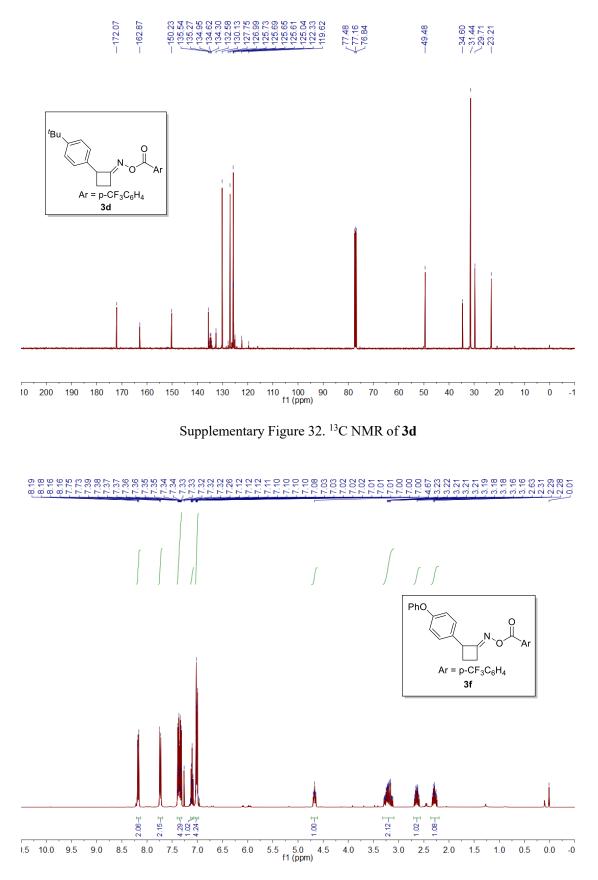
Supplementary Figure 25. ¹H NMR of 1u

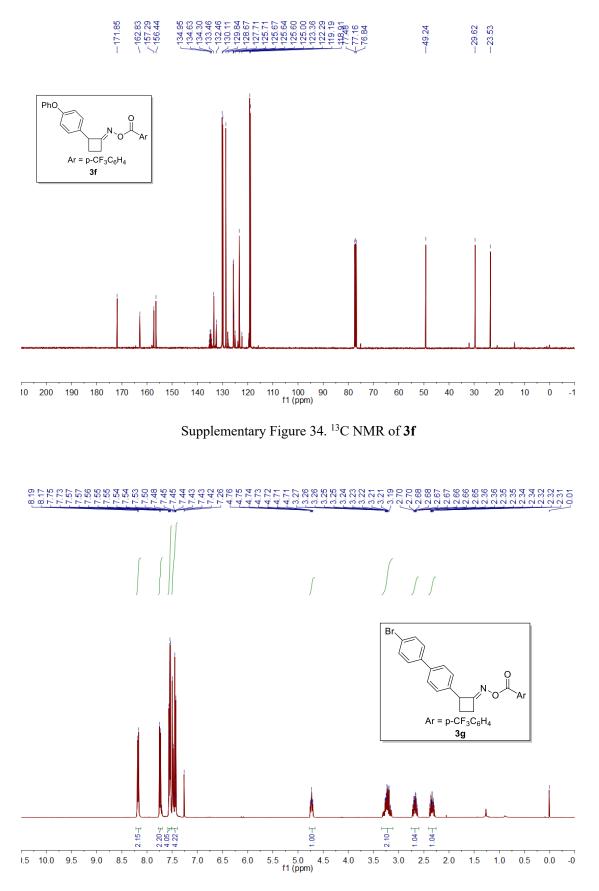


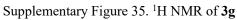
Supplementary Figure 26. ¹³C NMR of **1u**

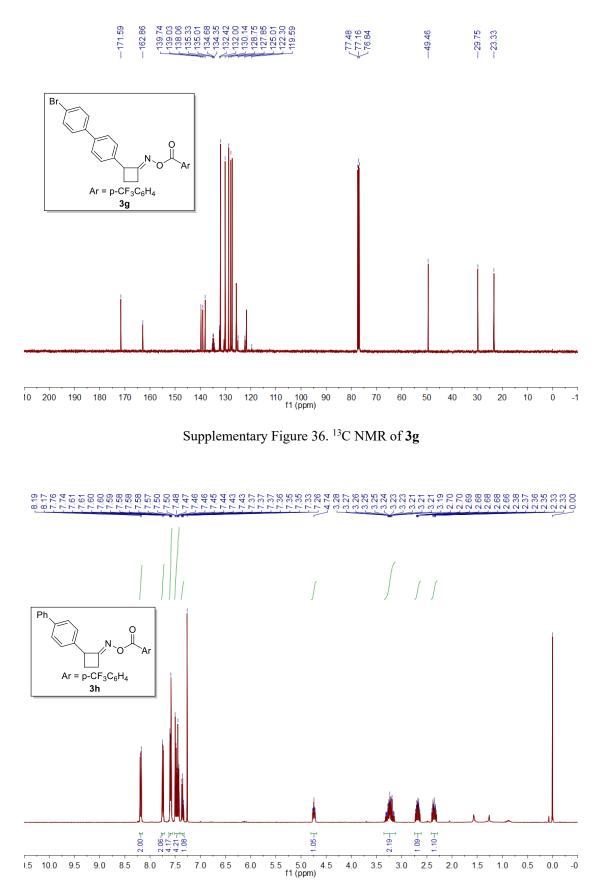

Supplementary Figure 27. ¹H NMR of 1w

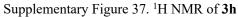
Supplementary Figure 28. ¹³C NMR of **1w**

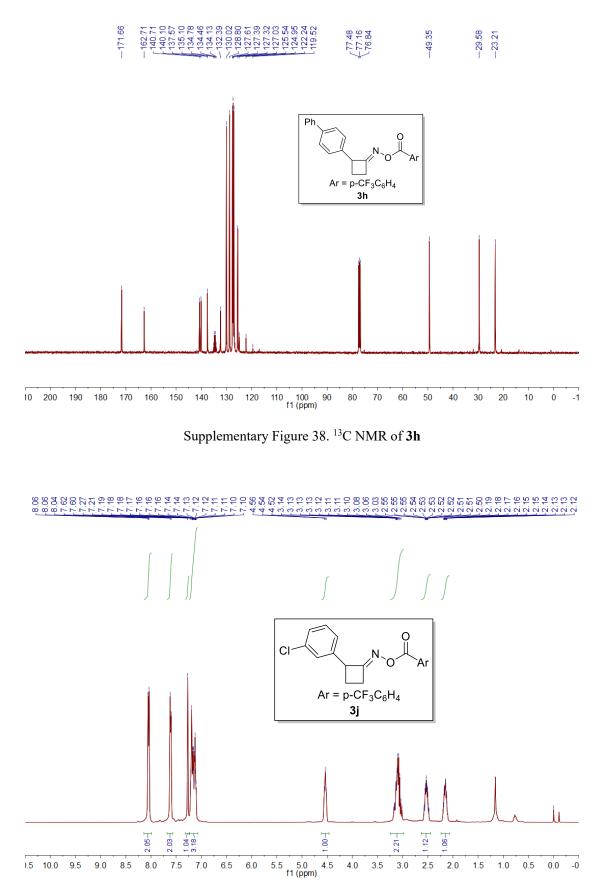

$\begin{array}{c} 8.8.1\\ 8.21\\ 7.7.7\\ 7.7.3\\ 7.7.7\\ 7.7.3\\ 7.7.7\\ 7.7.3\\ 7.7.7\\ 7.7.3\\ 7.7.7\\ 7.7.2\\ 7.7.7\\ 7.7$

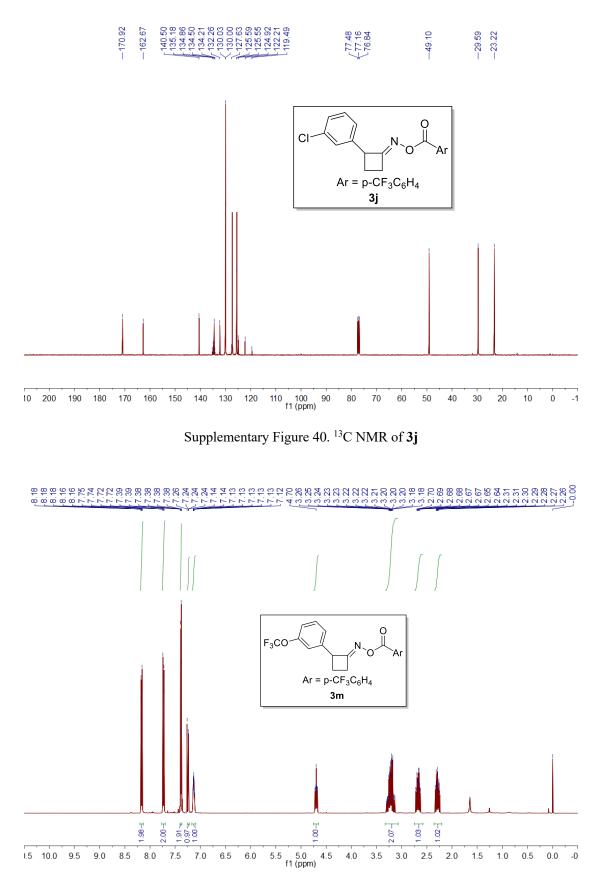


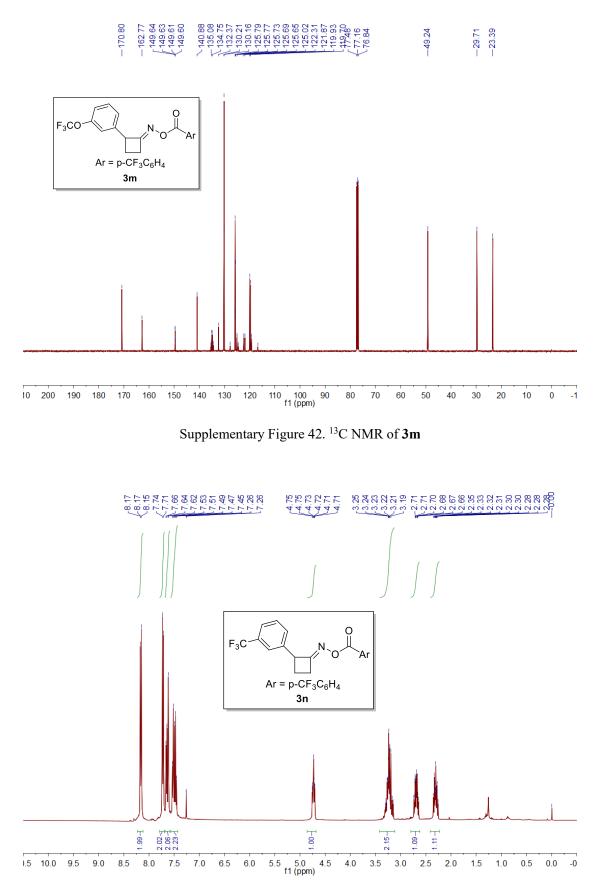


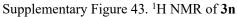

Supplementary Figure 31. ¹H NMR of **3d**

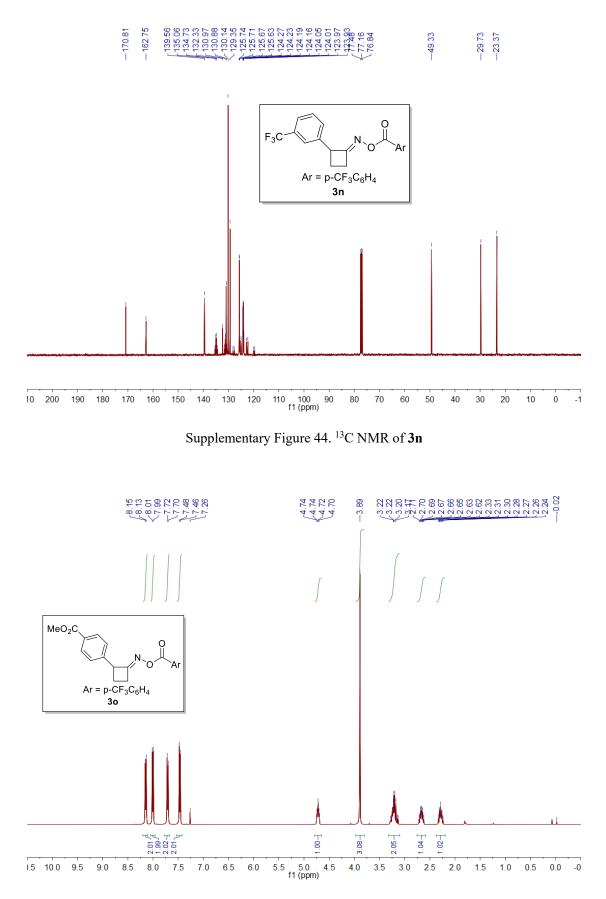


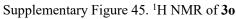

Supplementary Figure 33. ¹H NMR of **3f**

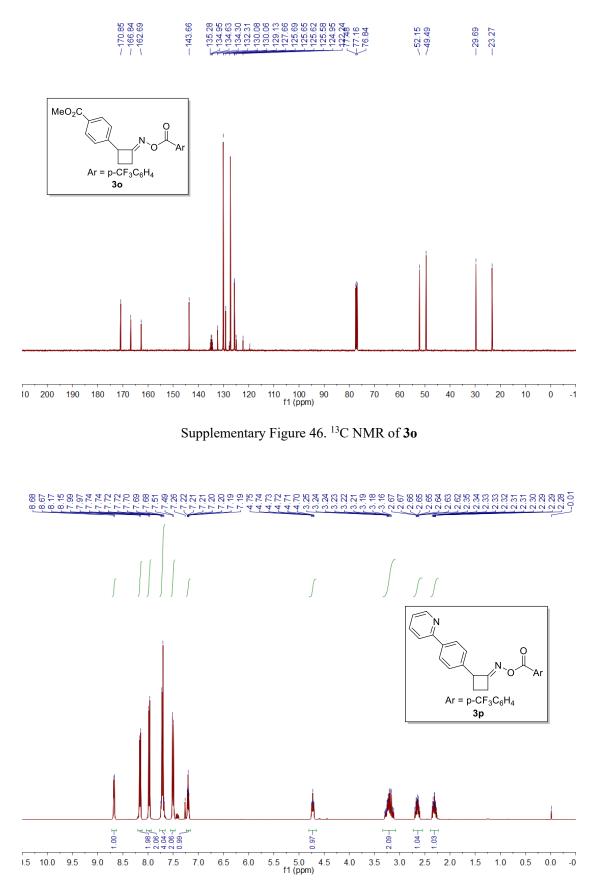


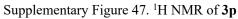


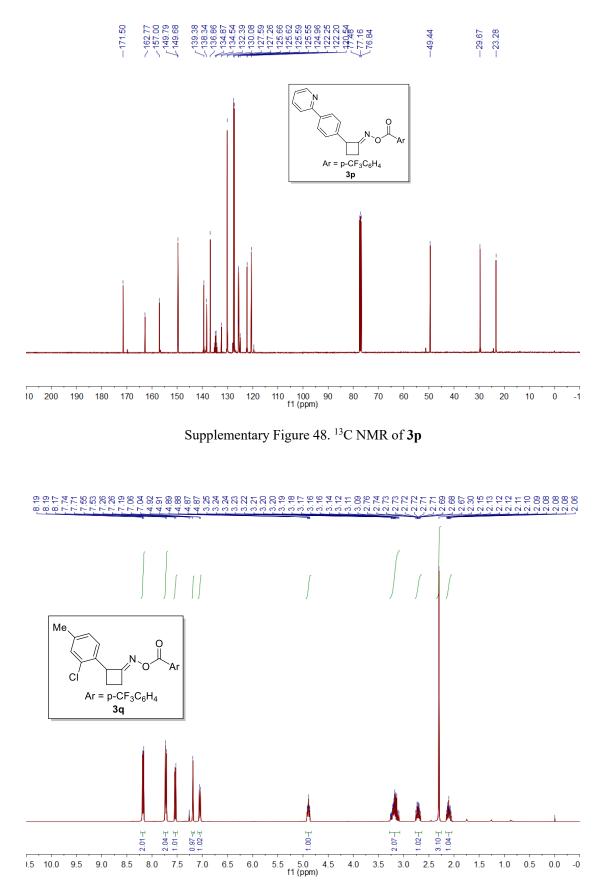


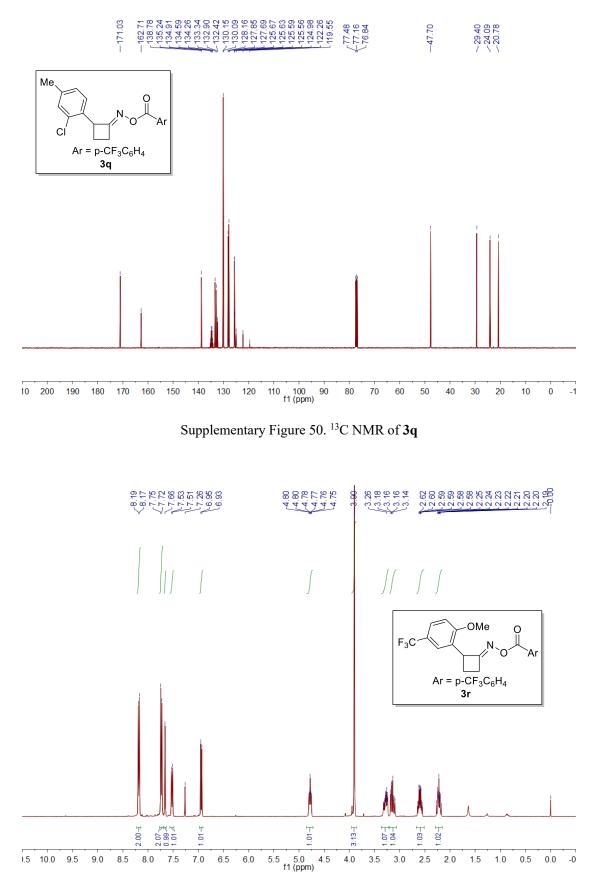

Supplementary Figure 39. ¹H NMR of **3j**

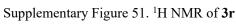


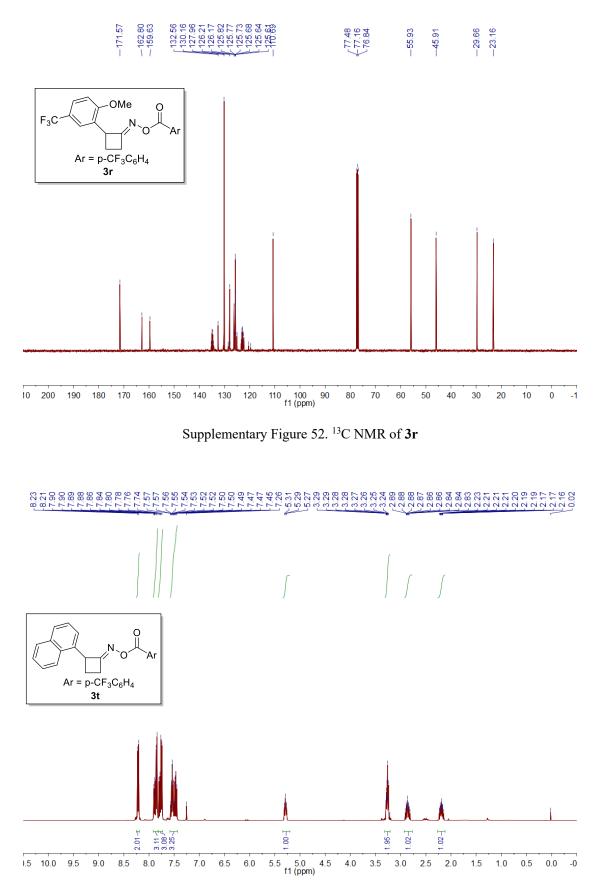

Supplementary Figure 41. ¹H NMR of **3m**

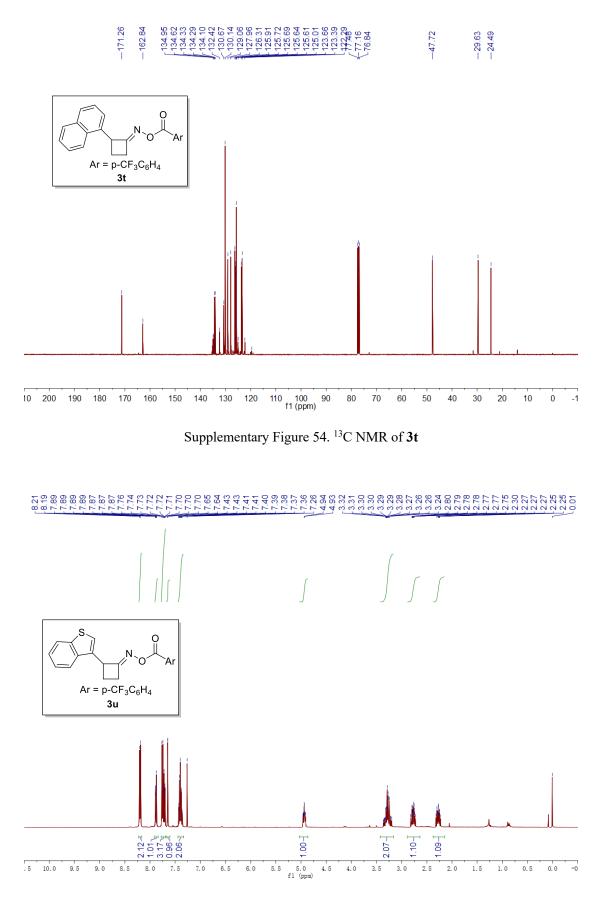


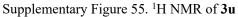


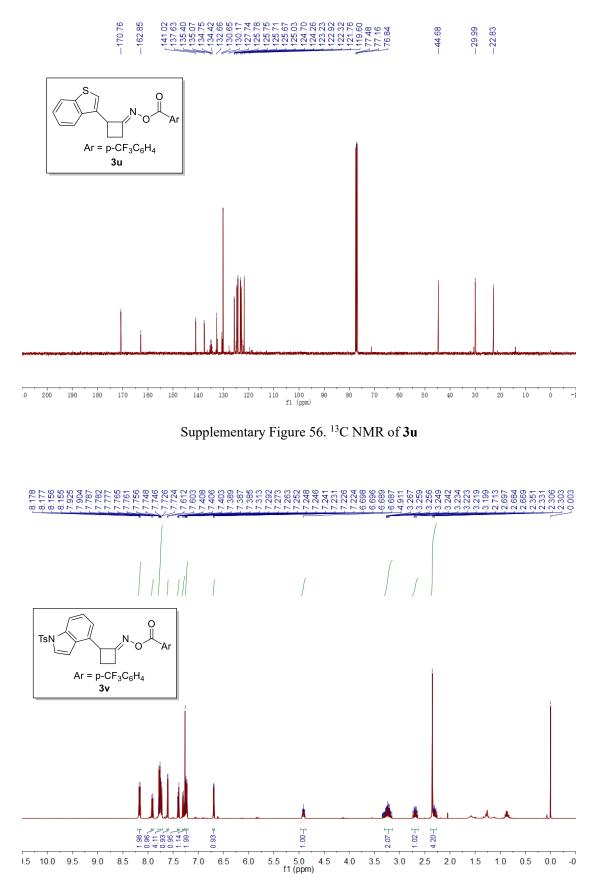


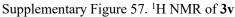


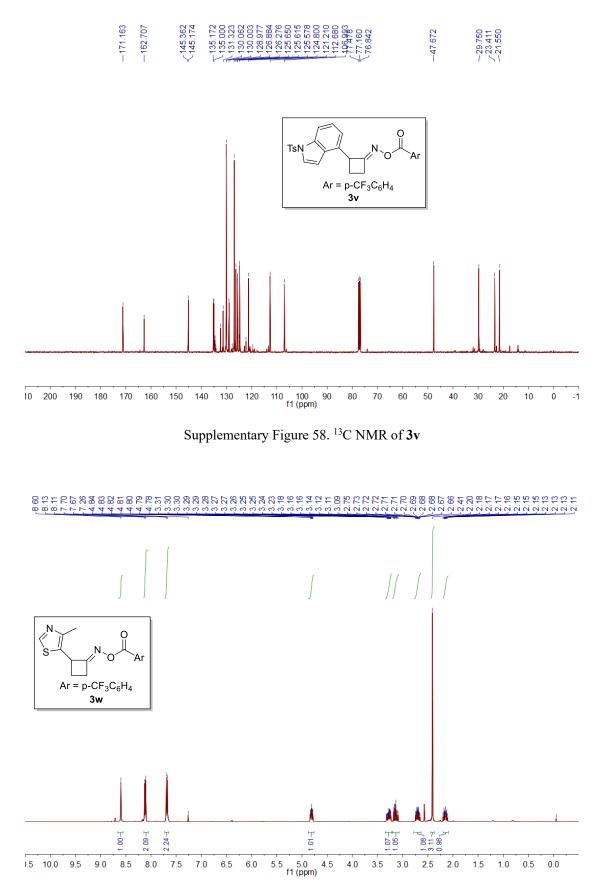


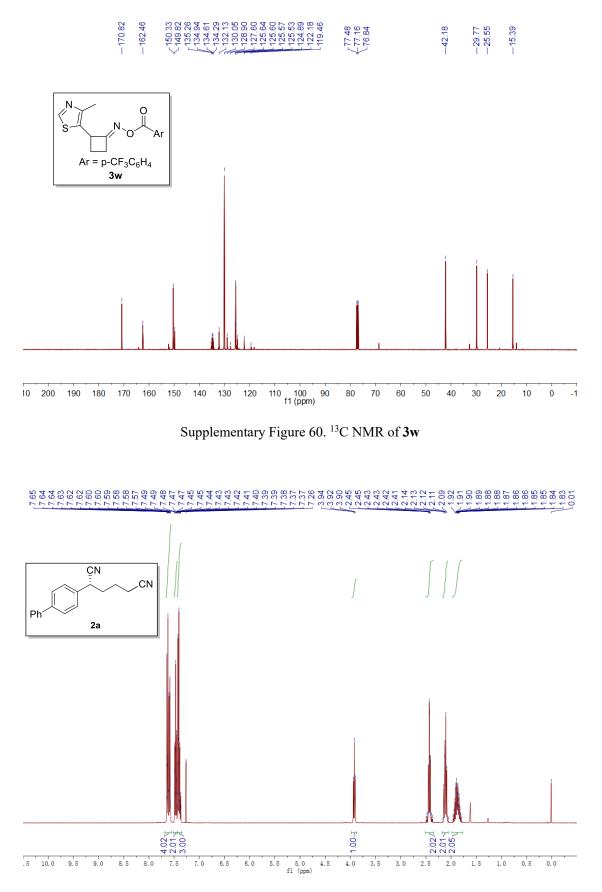


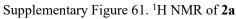


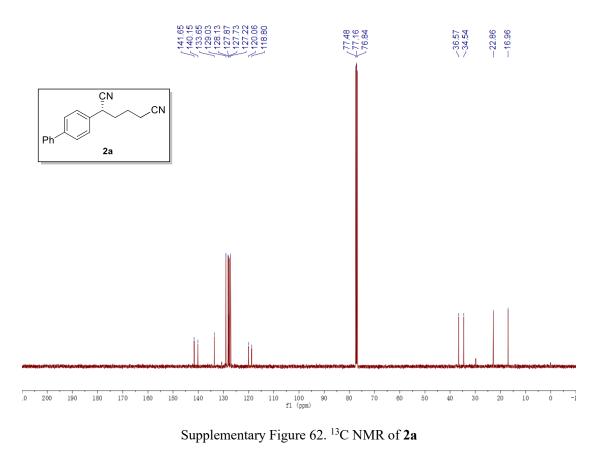


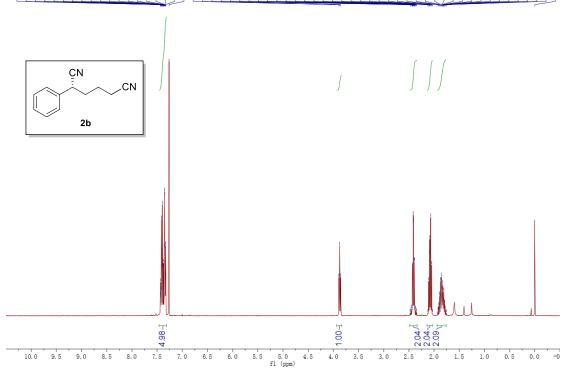


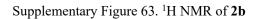


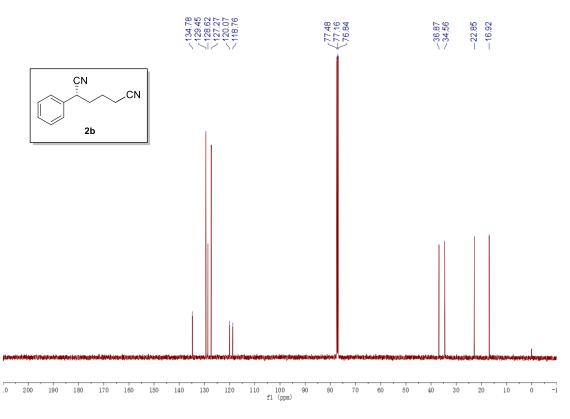


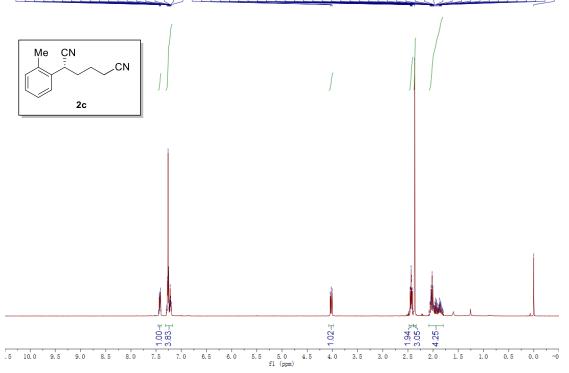


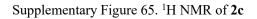


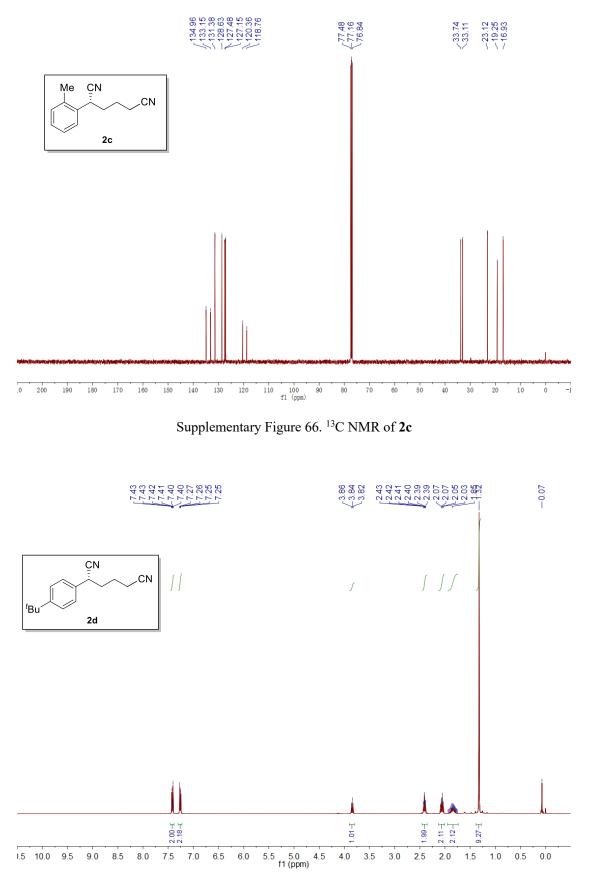

Supplementary Figure 59. ¹H NMR of 3w

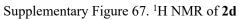


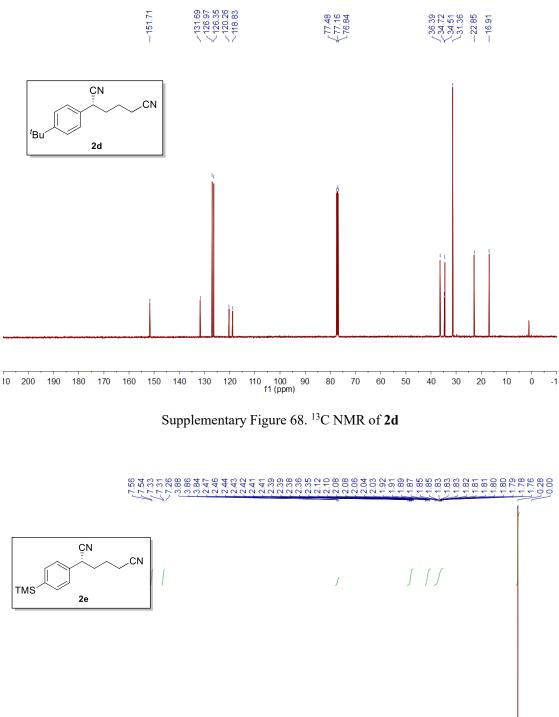


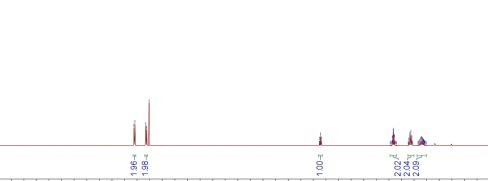


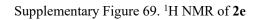




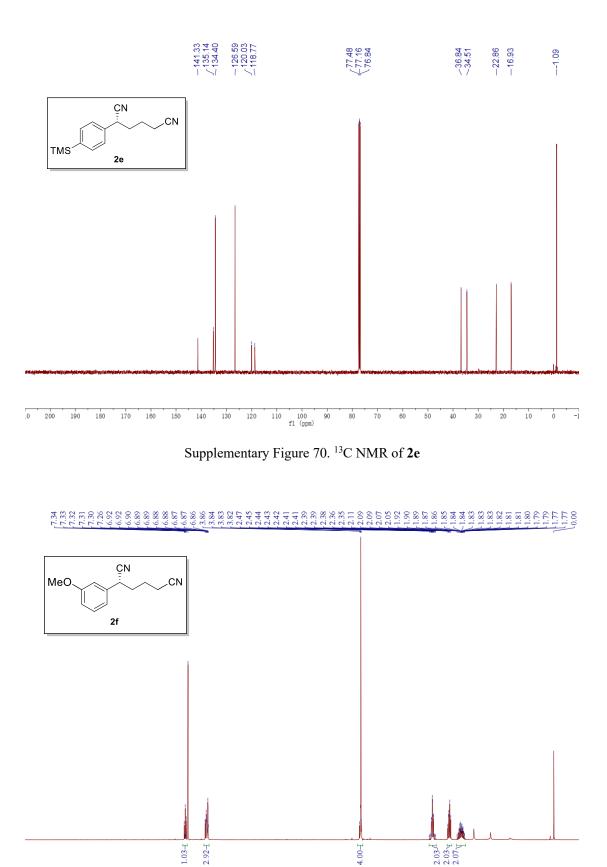

Supplementary Figure 64. ¹³C NMR of **2b**

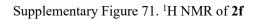




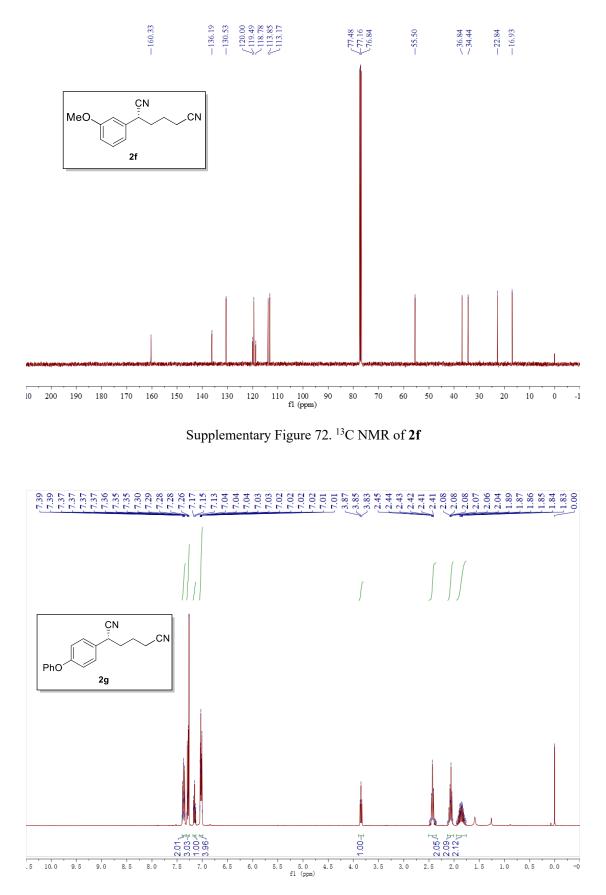


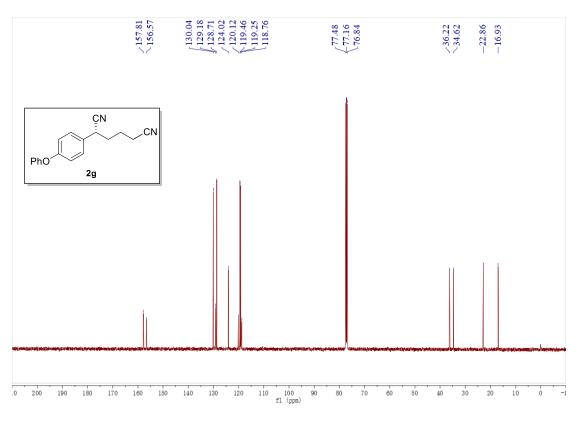
6.0 5.5

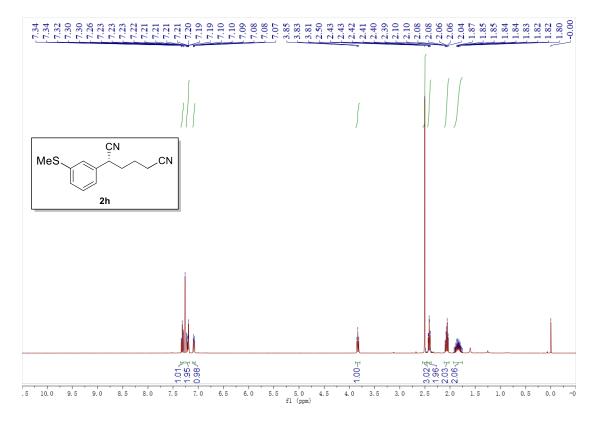

.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5

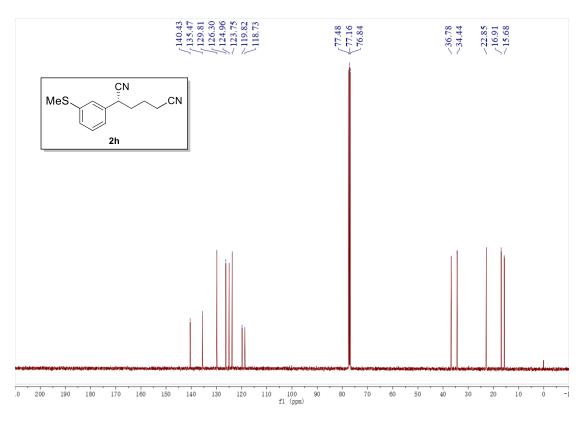

5.0 4.5 fl (ppm)

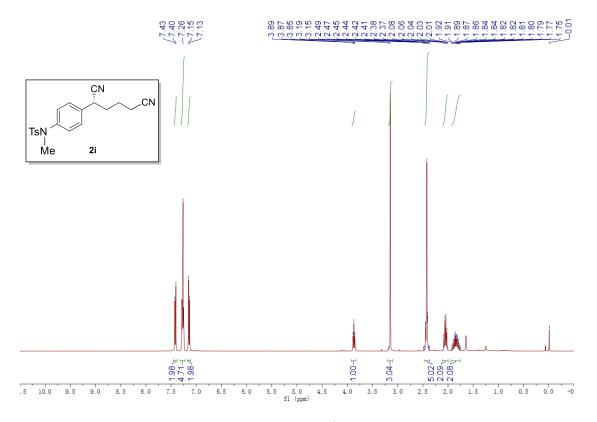
4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

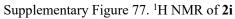

9.04-1

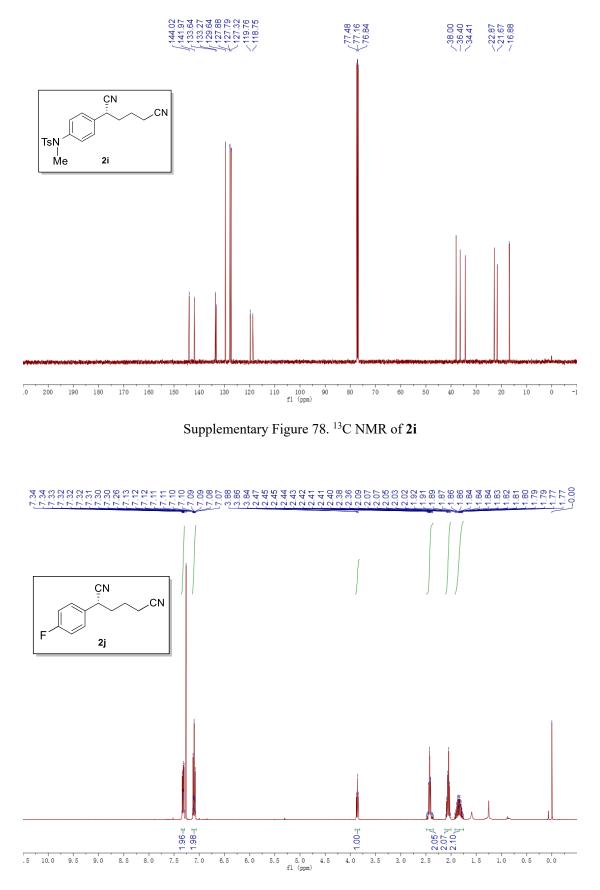

5.5 5.0 4.5 fl (ppm) 2.5 7.5 7.0 4.0 3.5 3.0 2.0 9.5 9.0 8.5 8.0 6.5 6.0 1.5 1.0 0.5 0.0 -0

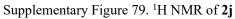

.5 10.0

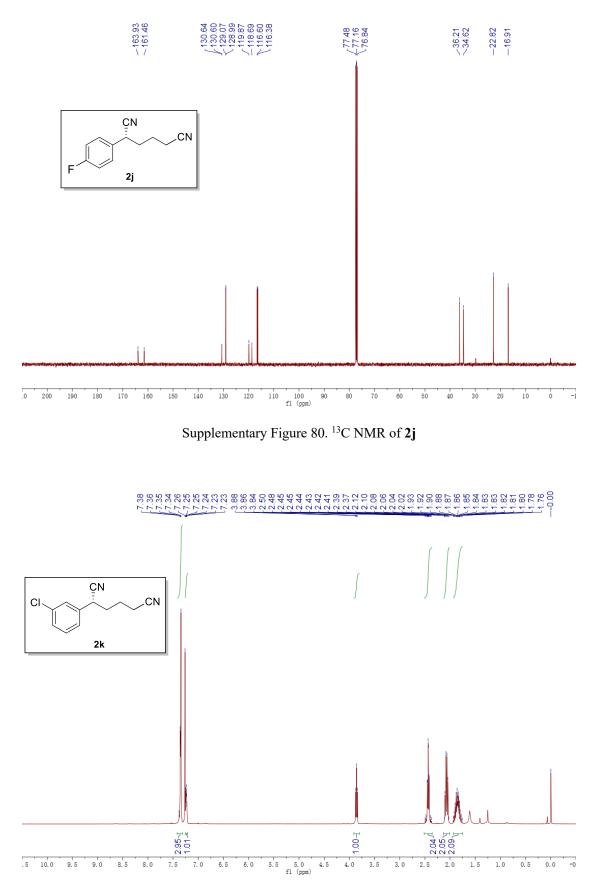

Supplementary Figure 73. ¹H NMR of 2g

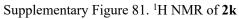

Supplementary Figure 74. ¹³C NMR of **2g**

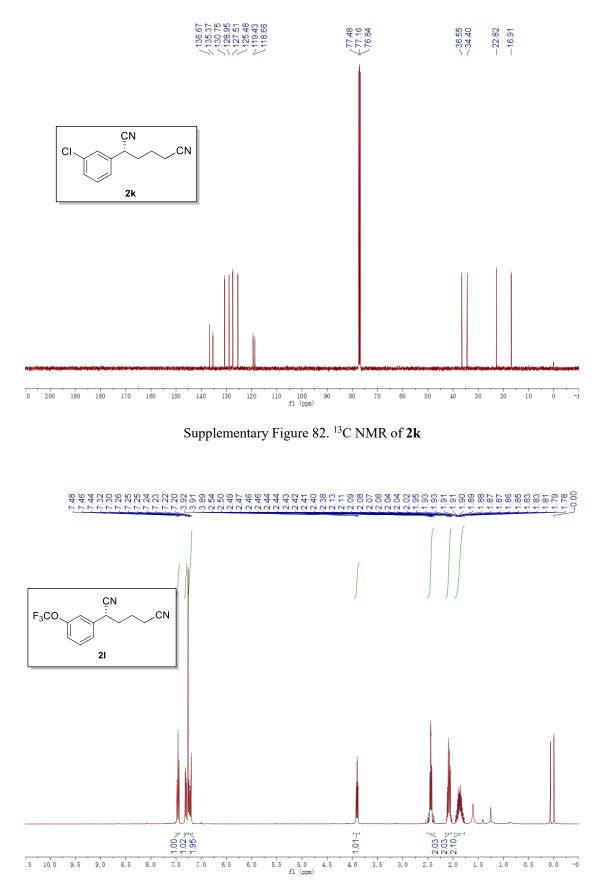


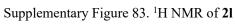

Supplementary Figure 75. ¹H NMR of **2h**

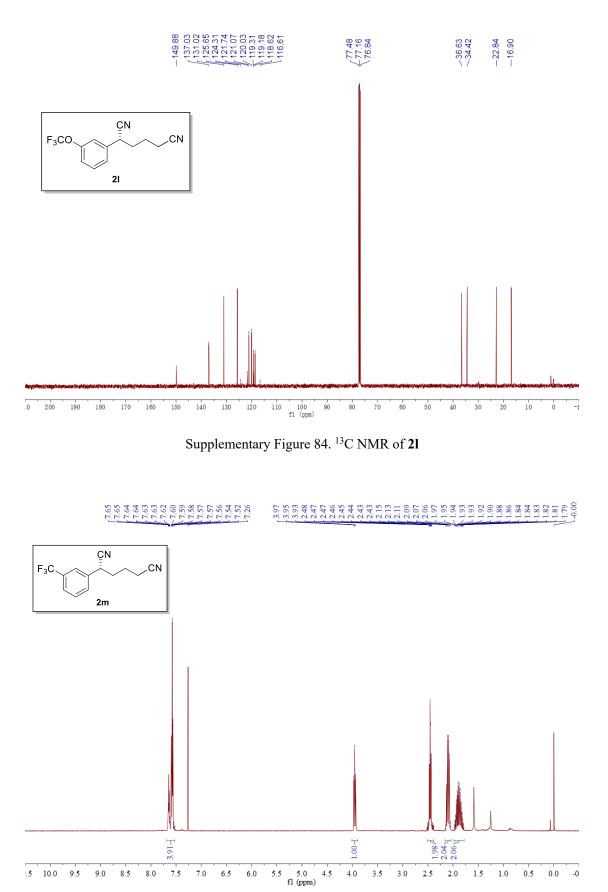


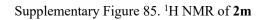

Supplementary Figure 76. ¹³C NMR of **2h**

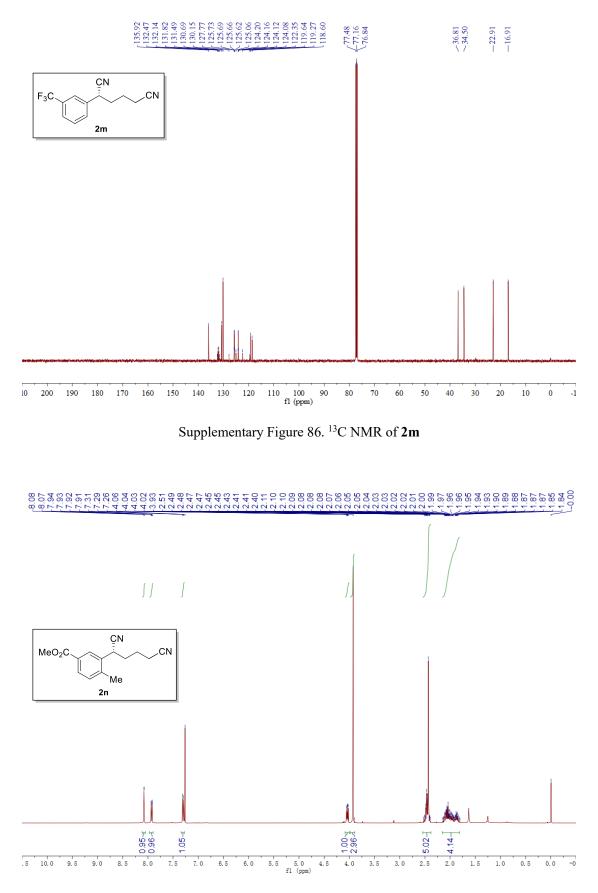


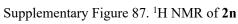


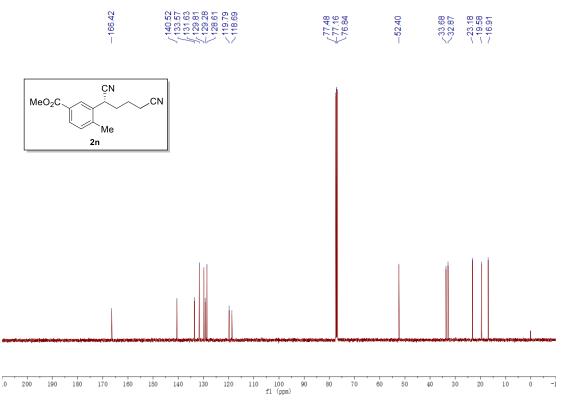


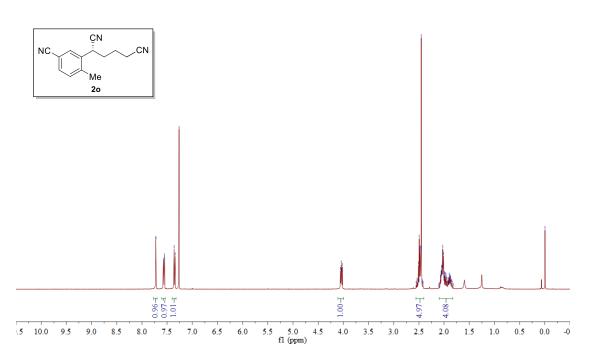


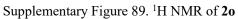


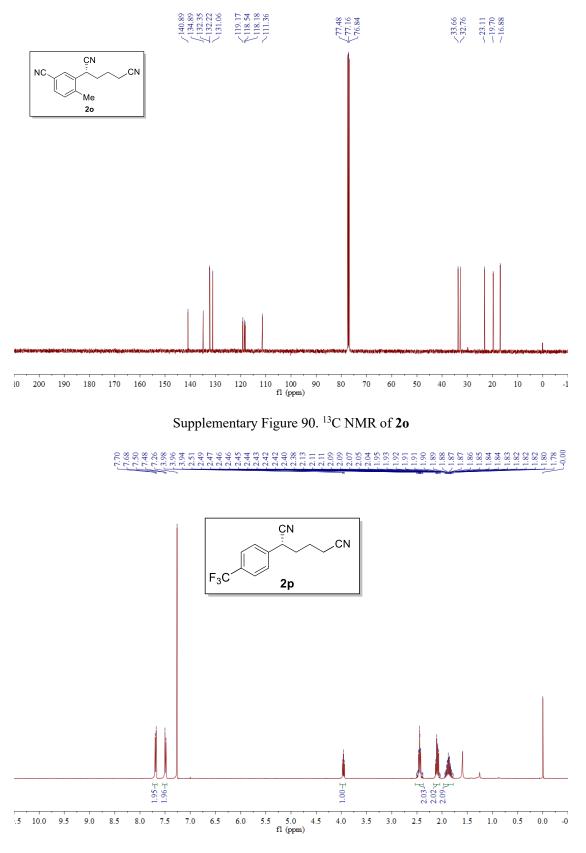




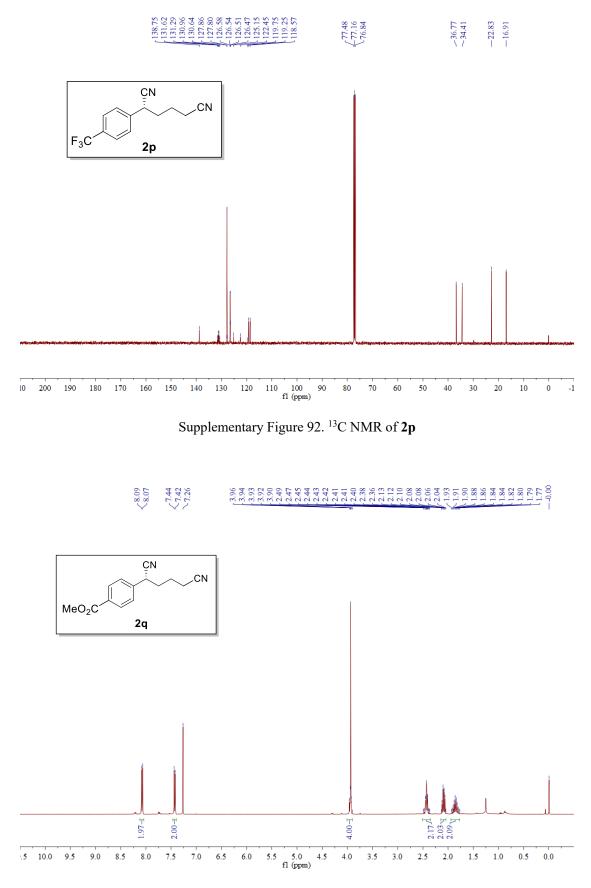


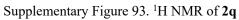


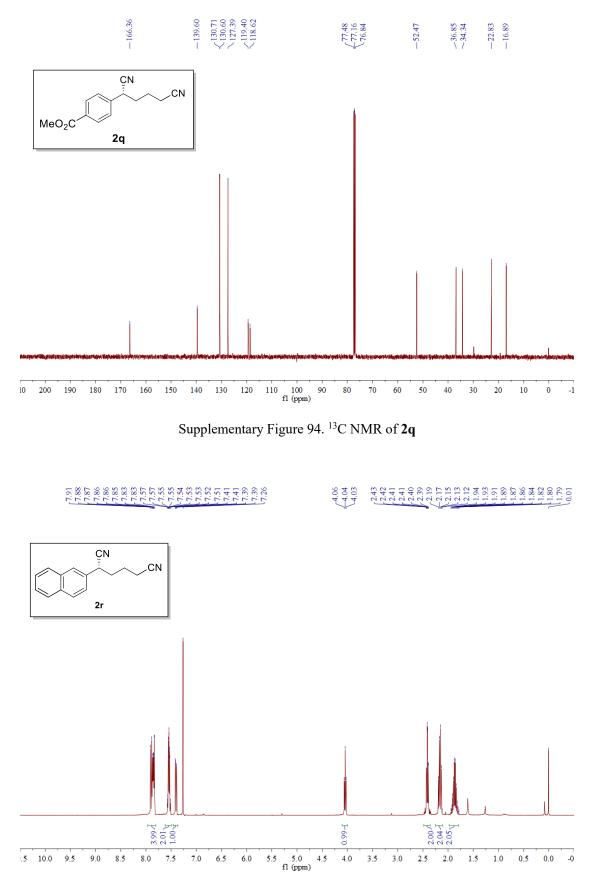


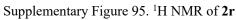


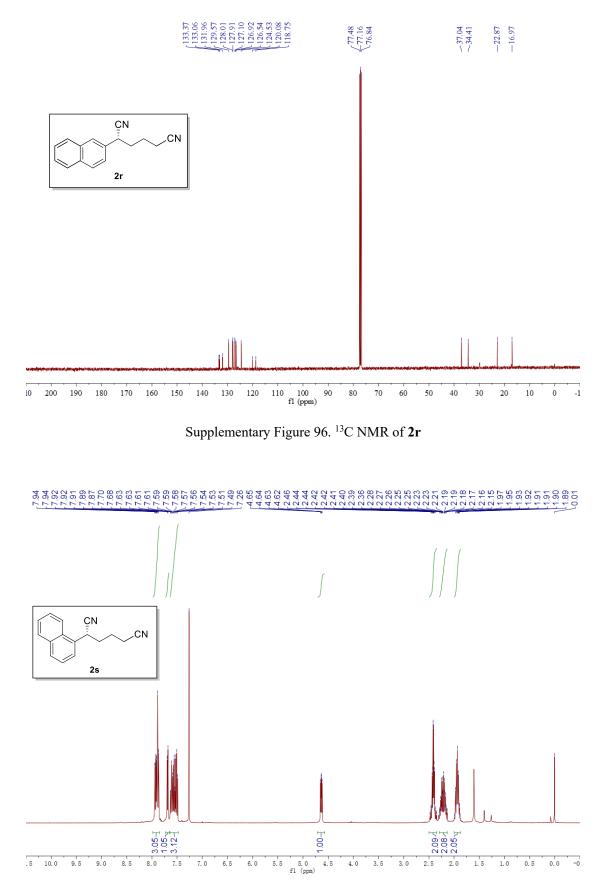
Supplementary Figure 88. ¹³C NMR of **2n**

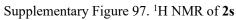

$\begin{array}{c} 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.5\\ 7.$

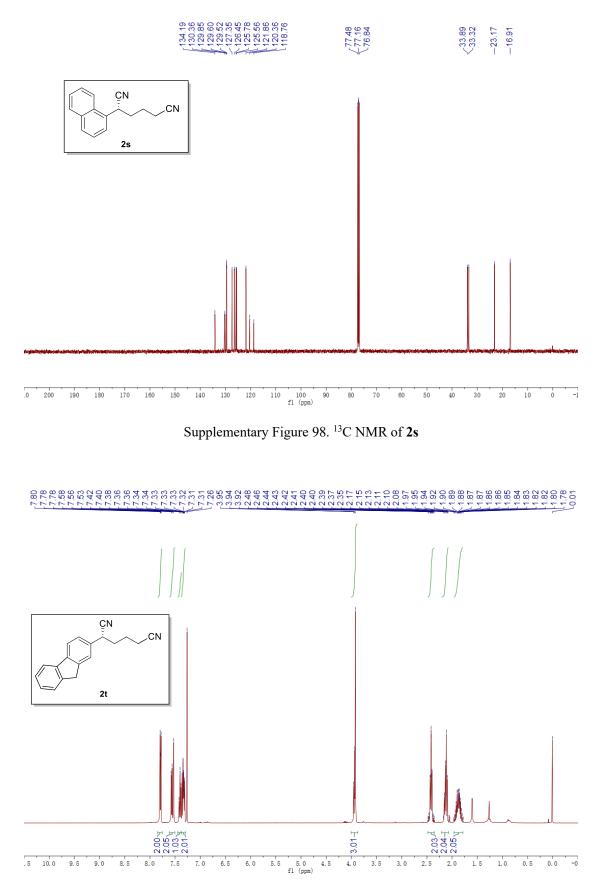


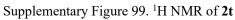


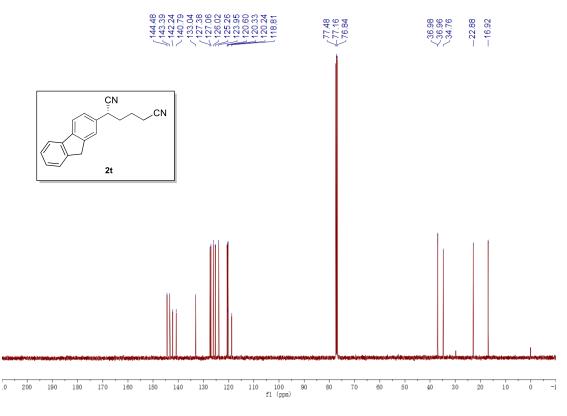


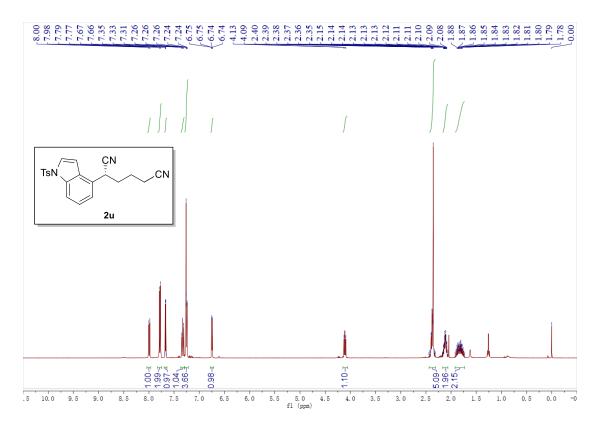

Supplementary Figure 91. ¹H NMR of **2p**

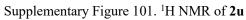


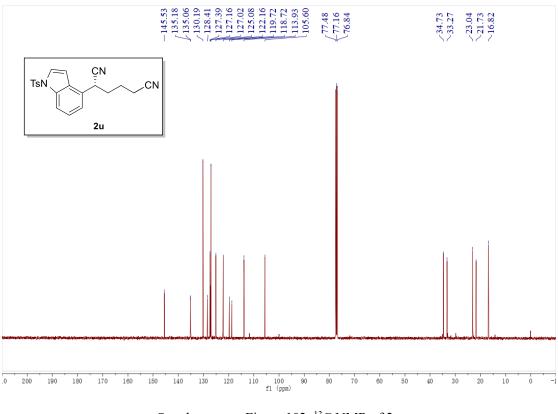


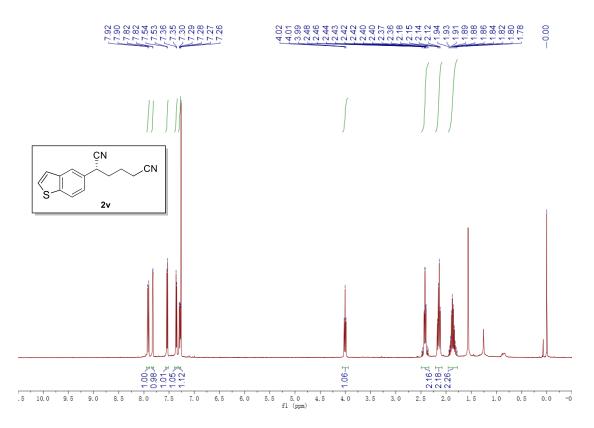


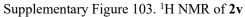


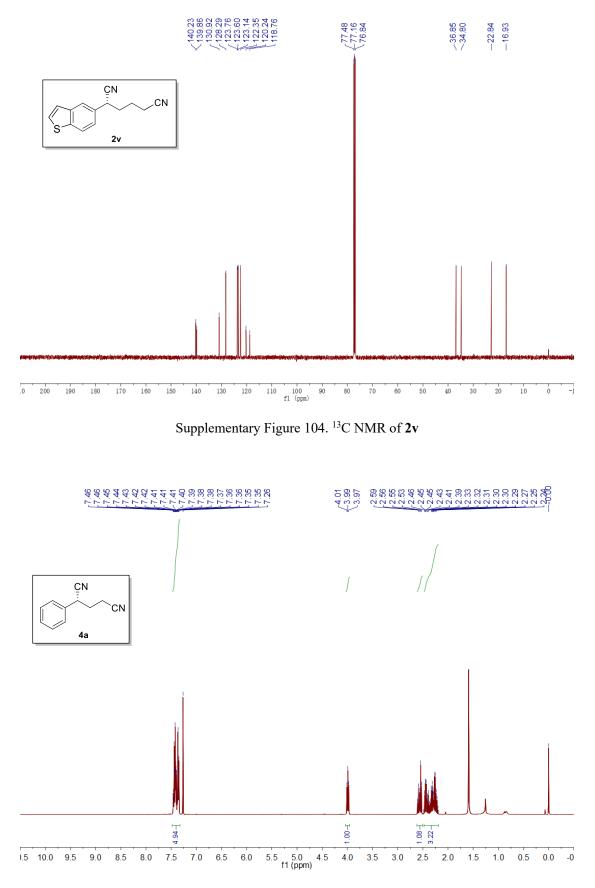


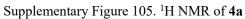


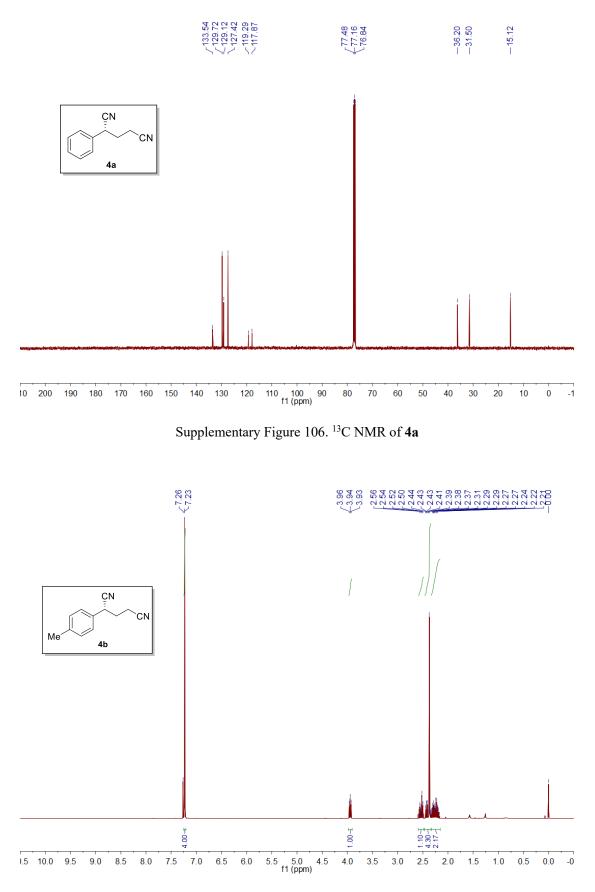


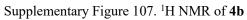

Supplementary Figure 100. ¹³C NMR of **2t**

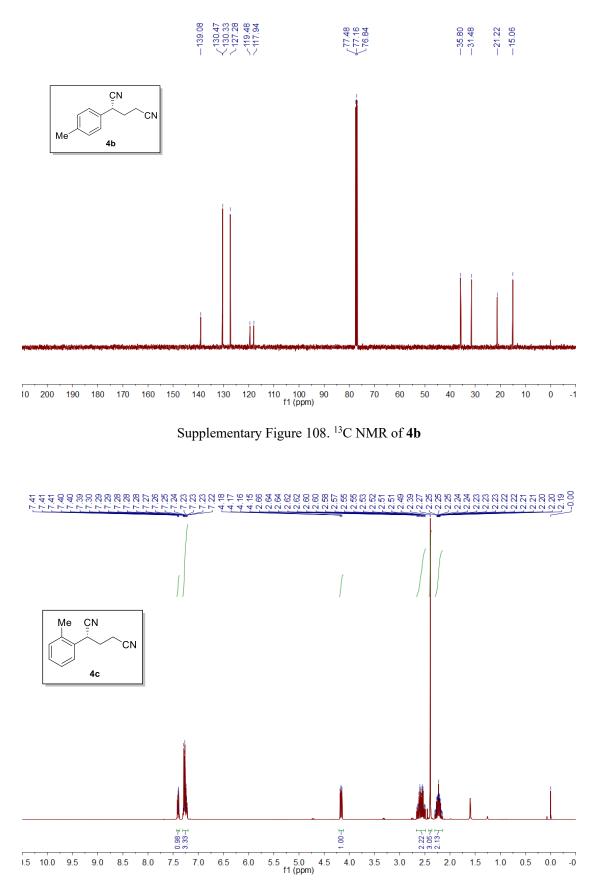


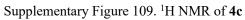


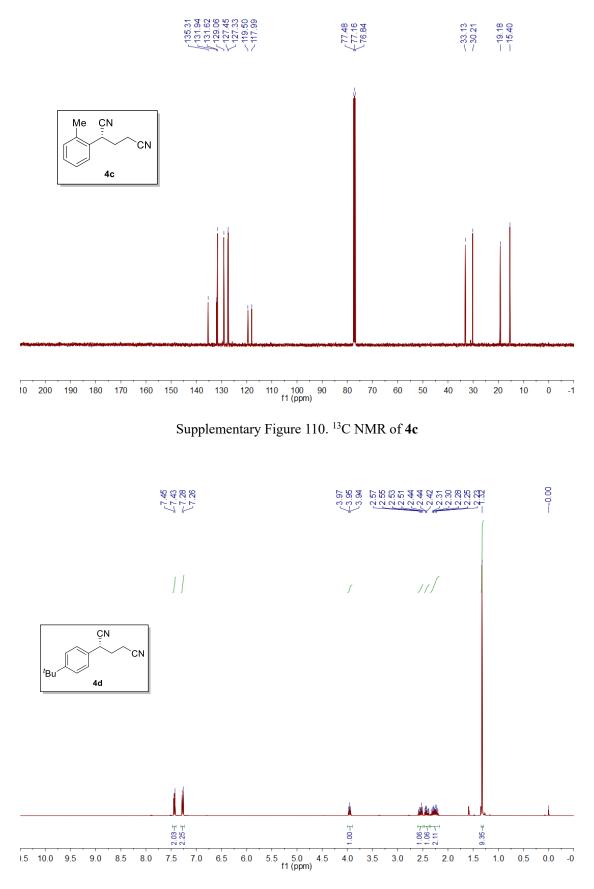


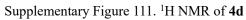

Supplementary Figure 102. ¹³C NMR of **2u**

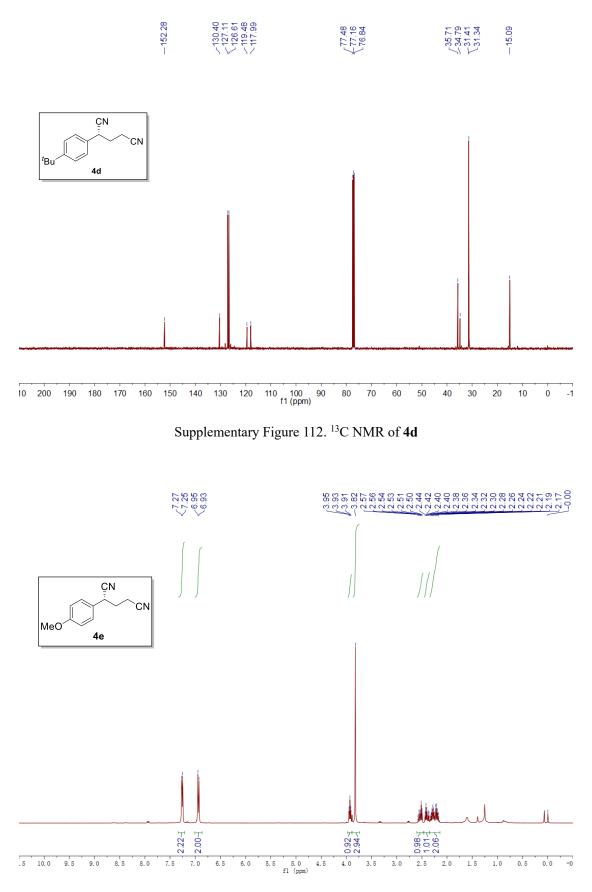


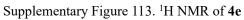


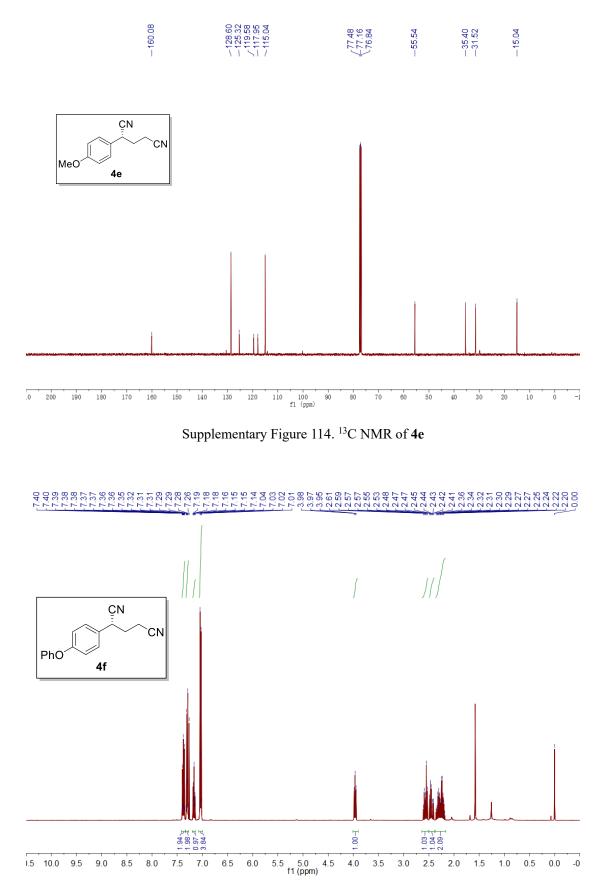


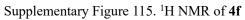


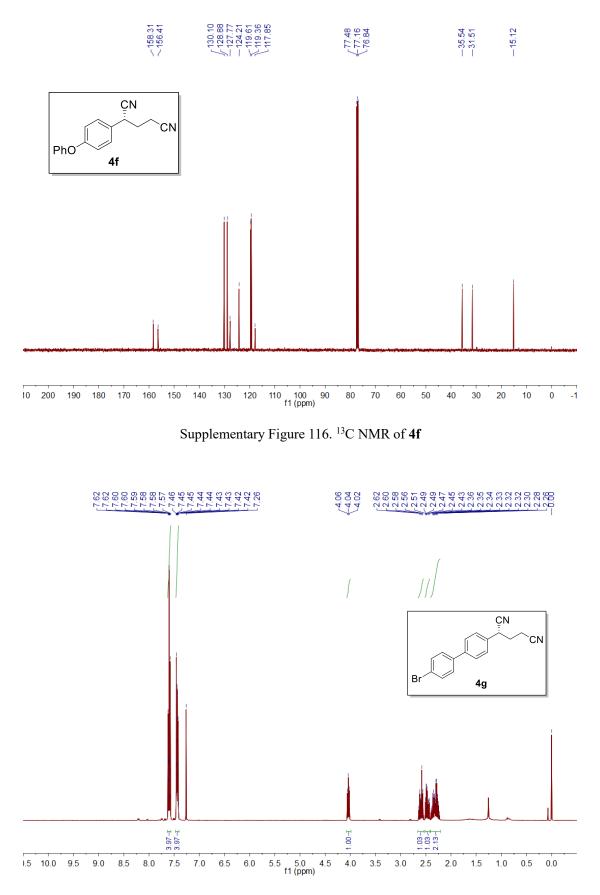


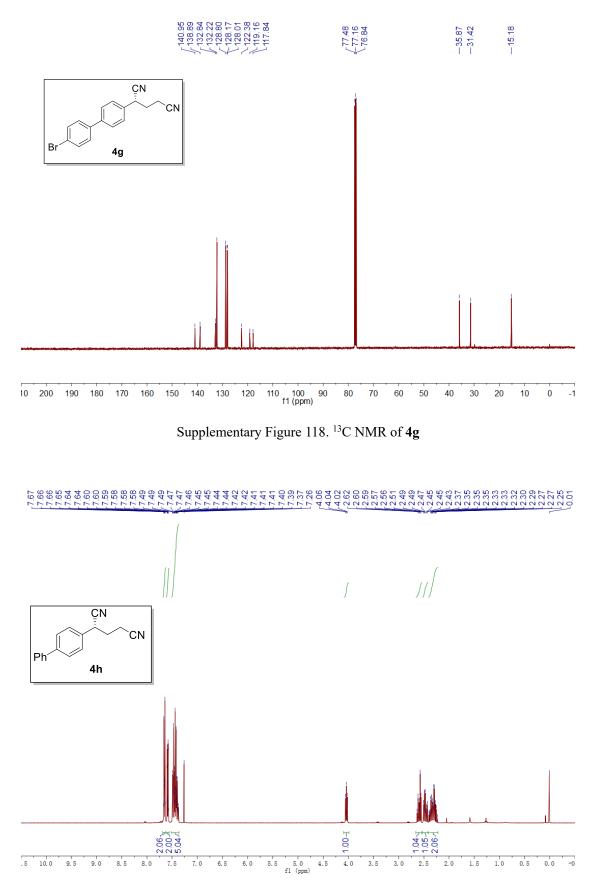


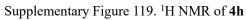


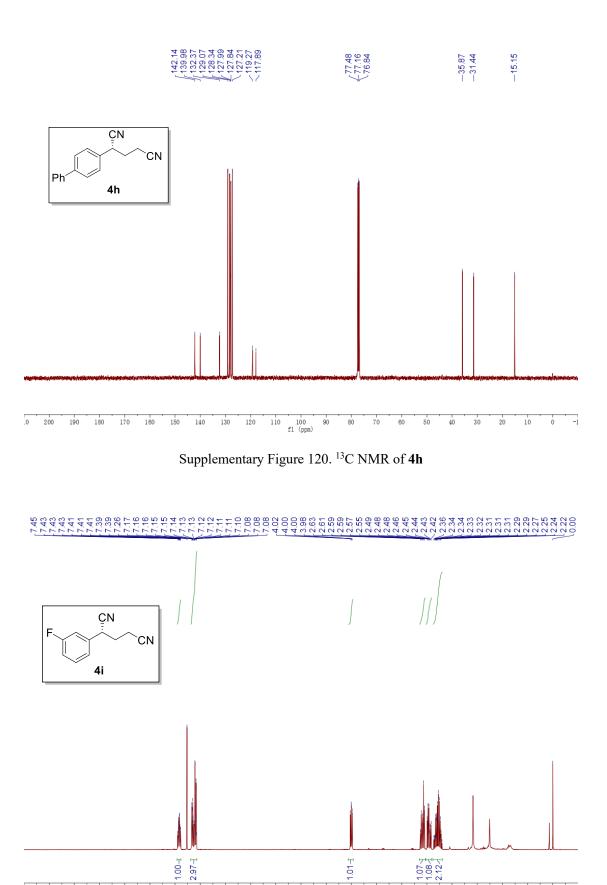


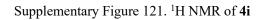


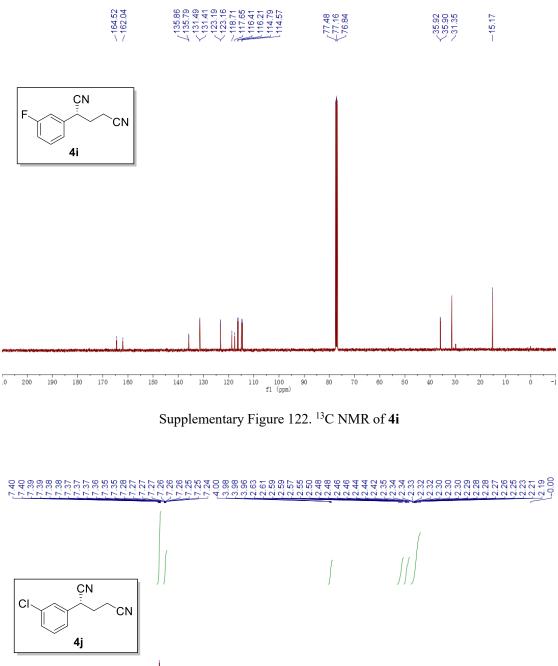


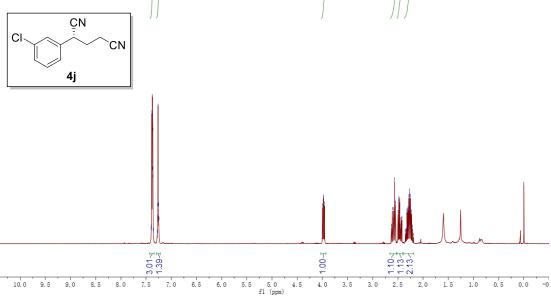


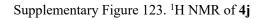


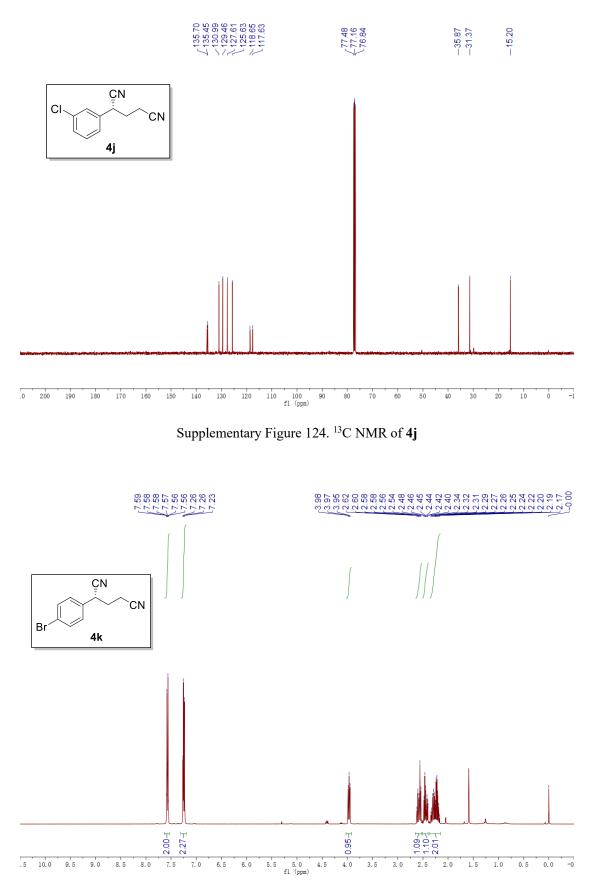


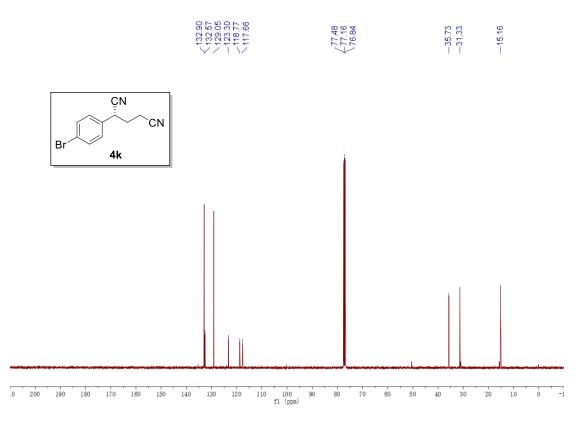

Supplementary Figure 117. ¹H NMR of 4g

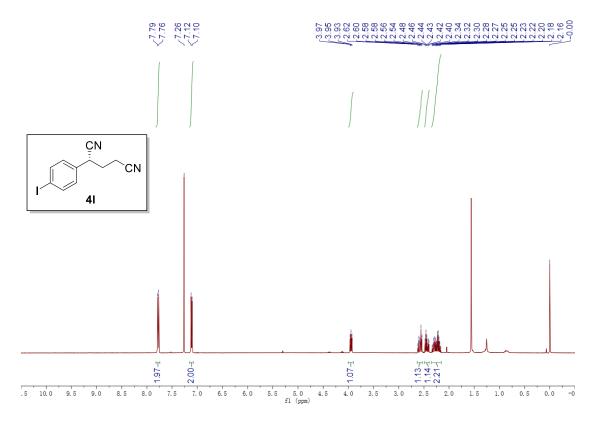


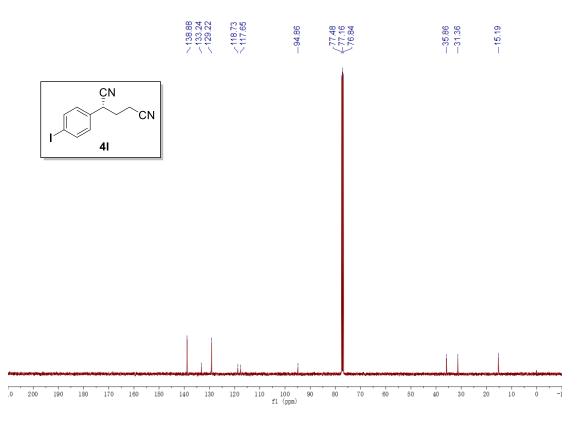


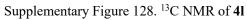


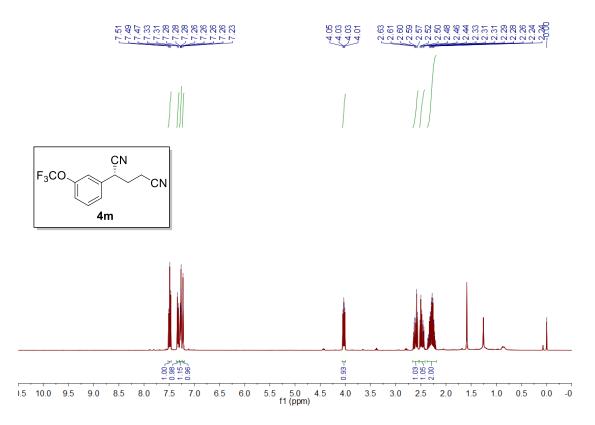

100^H 4.0 .5 10.0 5.5 5.0 4.5 fl (ppm) 3. 0 0.0 9.5 9.0 8.5 8.0 7. 0 6.5 6. 0 3.5 2.5 2.0 1.5 1.0 0.5

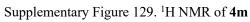


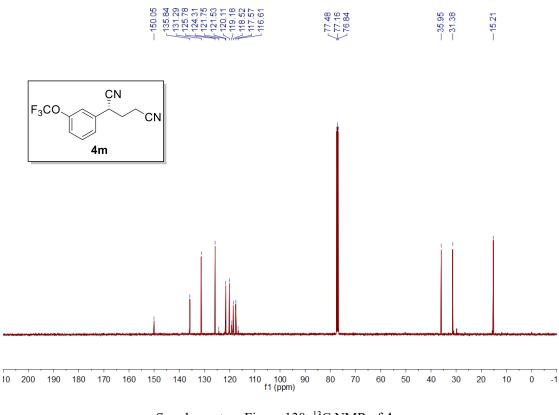


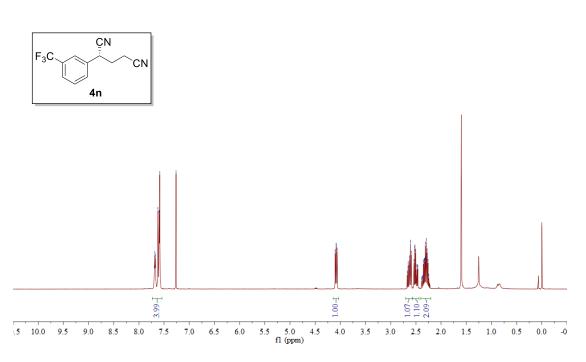


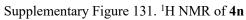


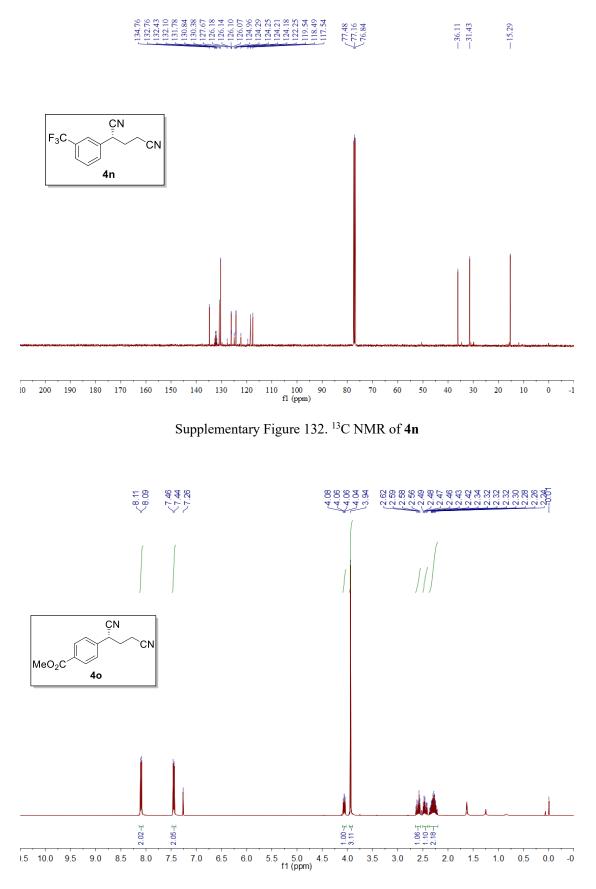

Supplementary Figure 126. ¹³C NMR of 4k

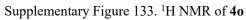


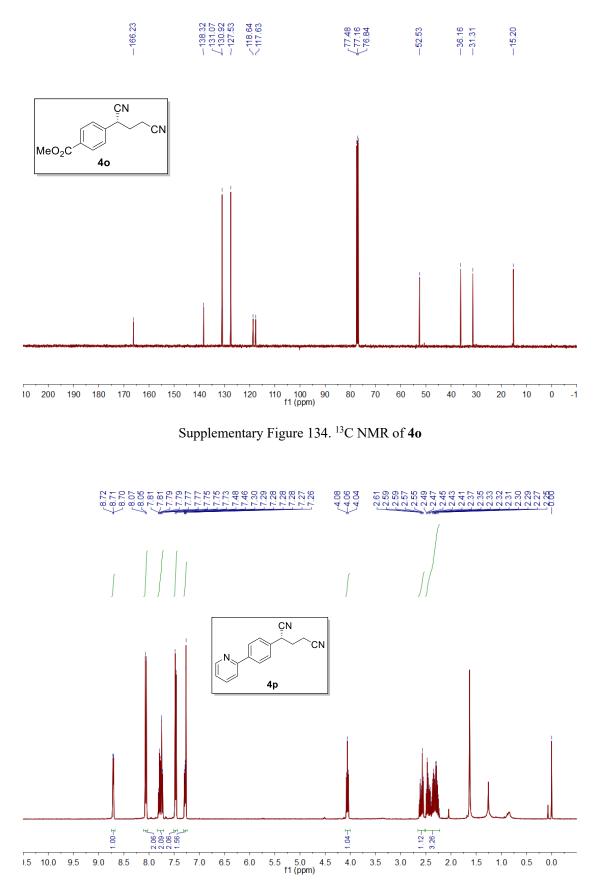

Supplementary Figure 127. ¹H NMR of 4l

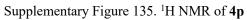


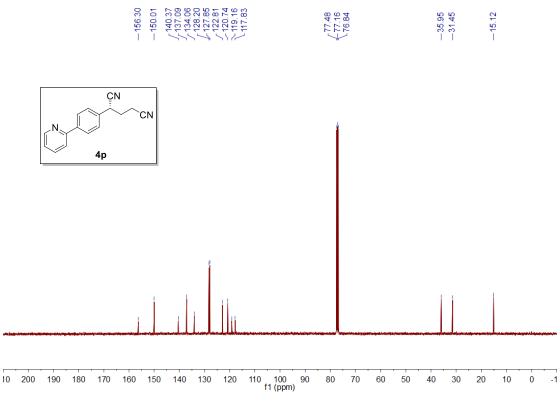


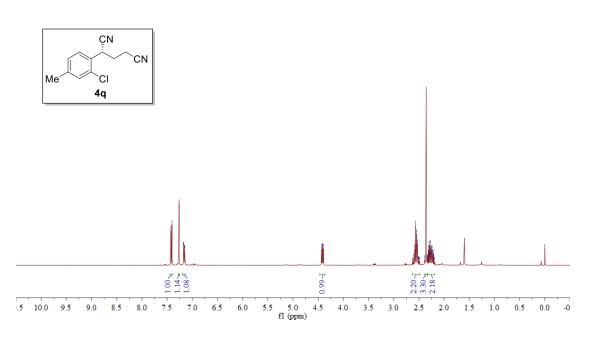


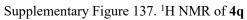

Supplementary Figure 130. ¹³C NMR of 4m

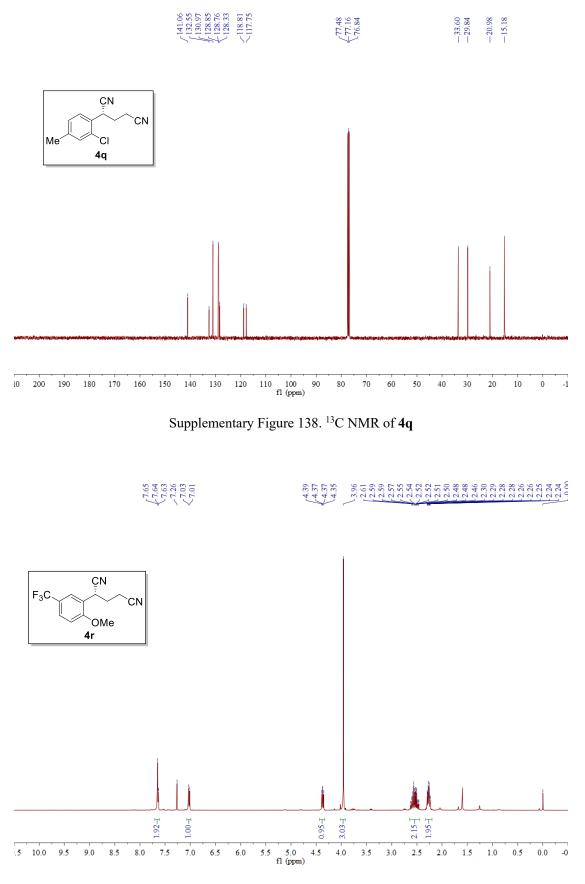


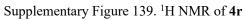


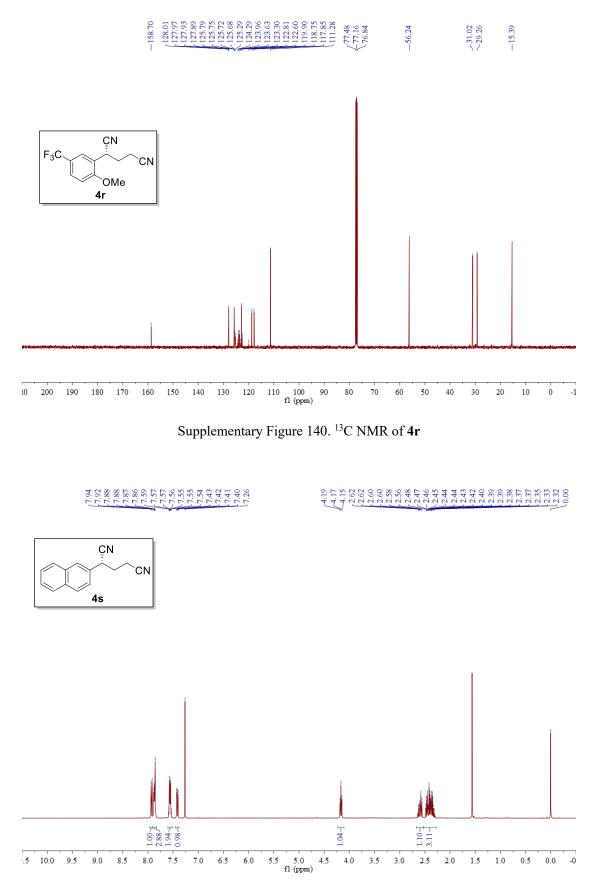


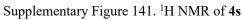


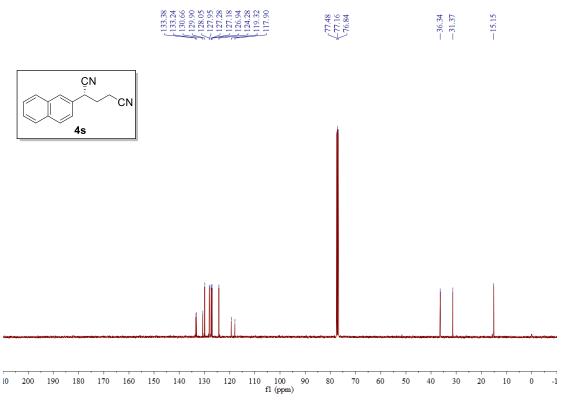


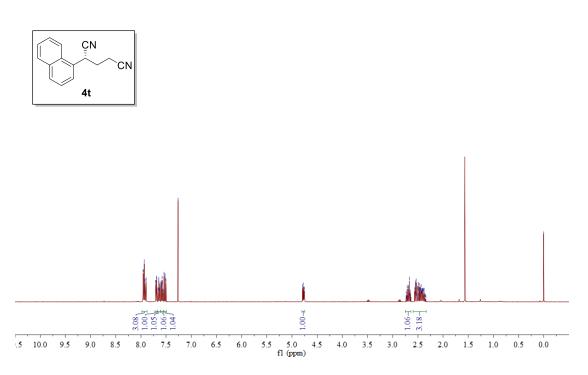


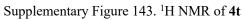

Supplementary Figure 136. ¹³C NMR of **4p**

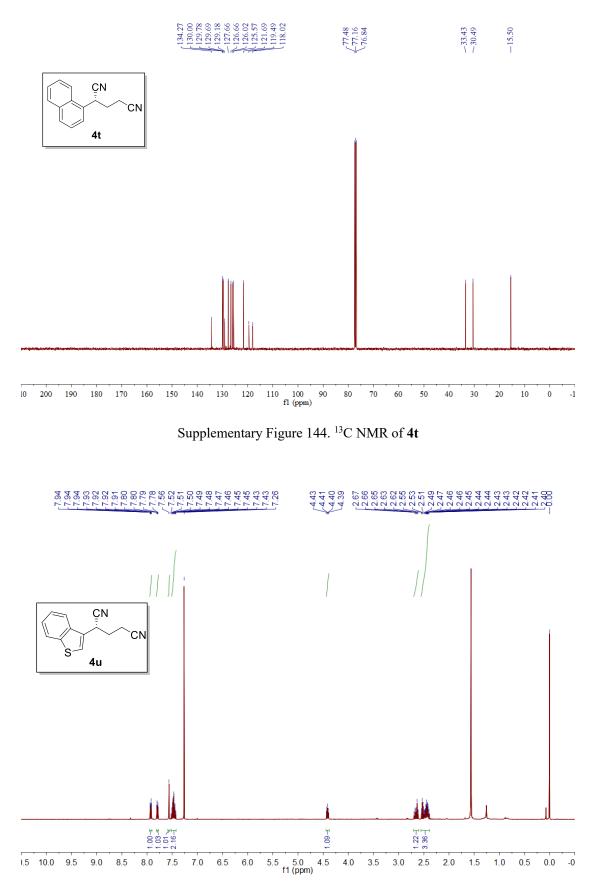


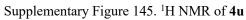


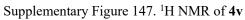


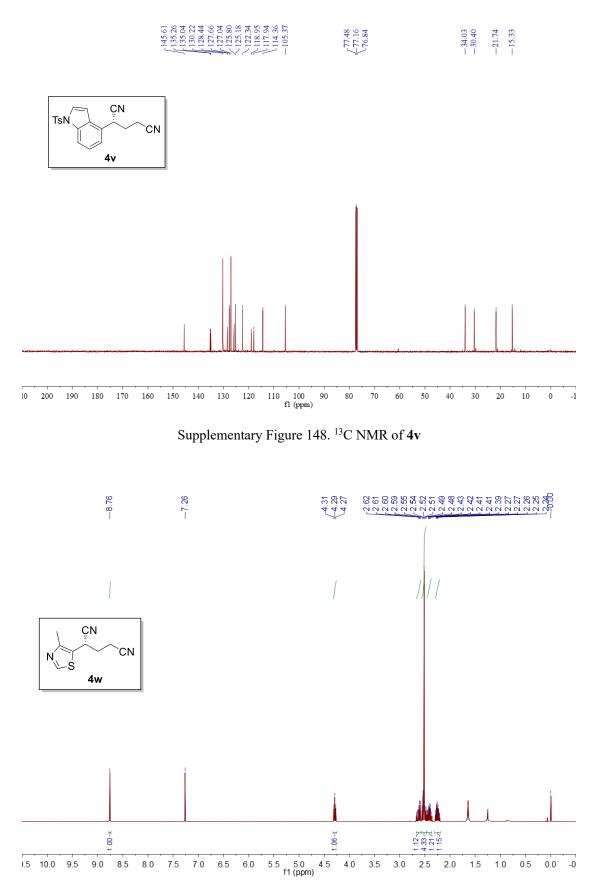


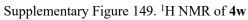


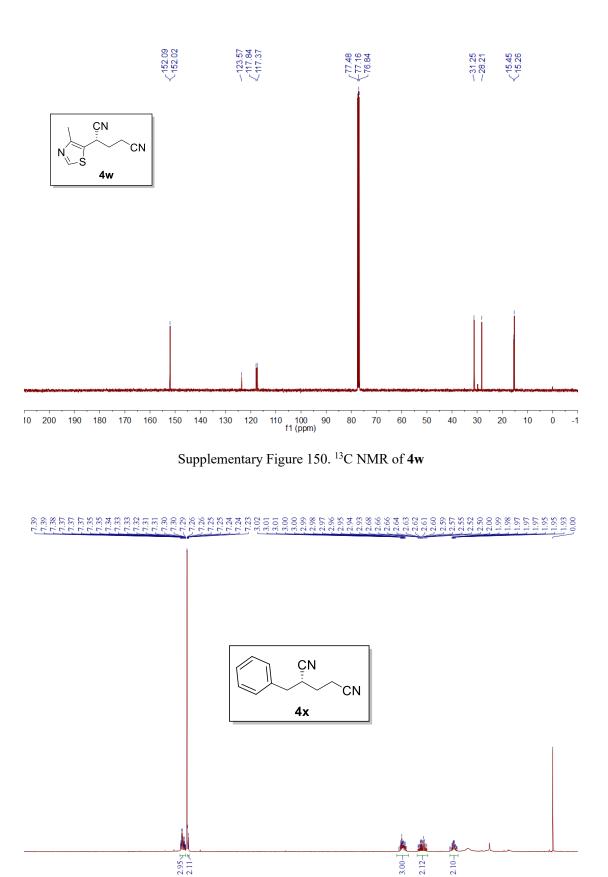


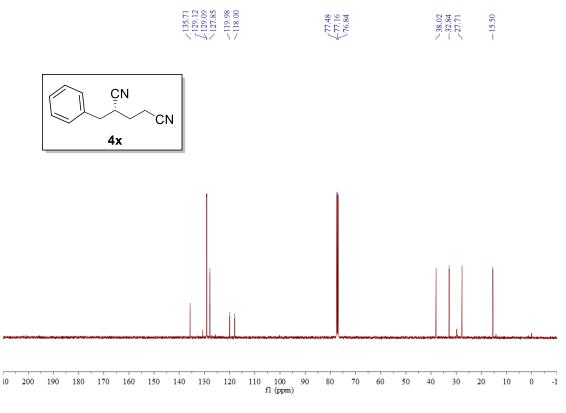

Supplementary Figure 142. ¹³C NMR of **4s**



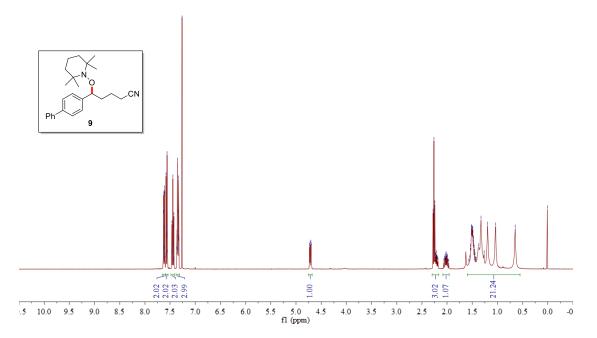




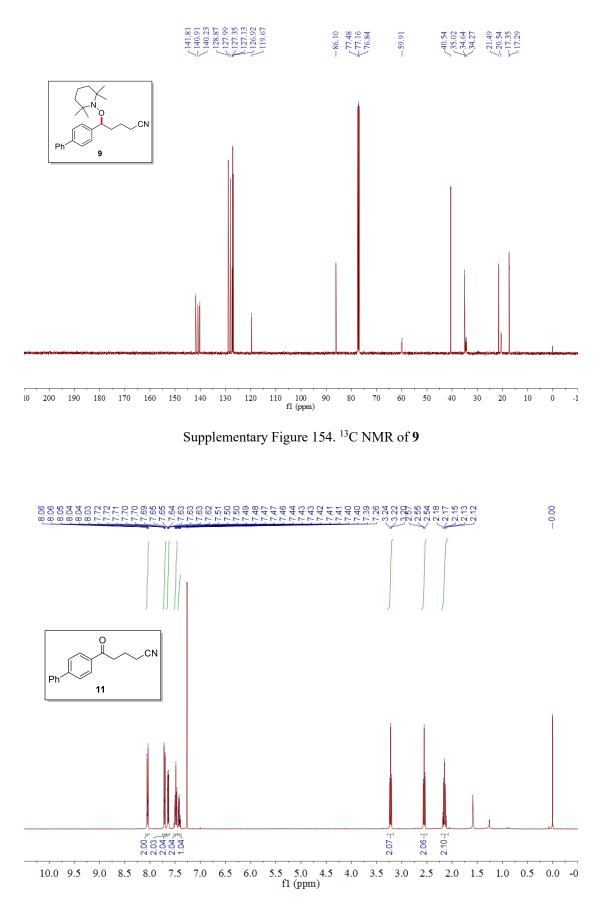




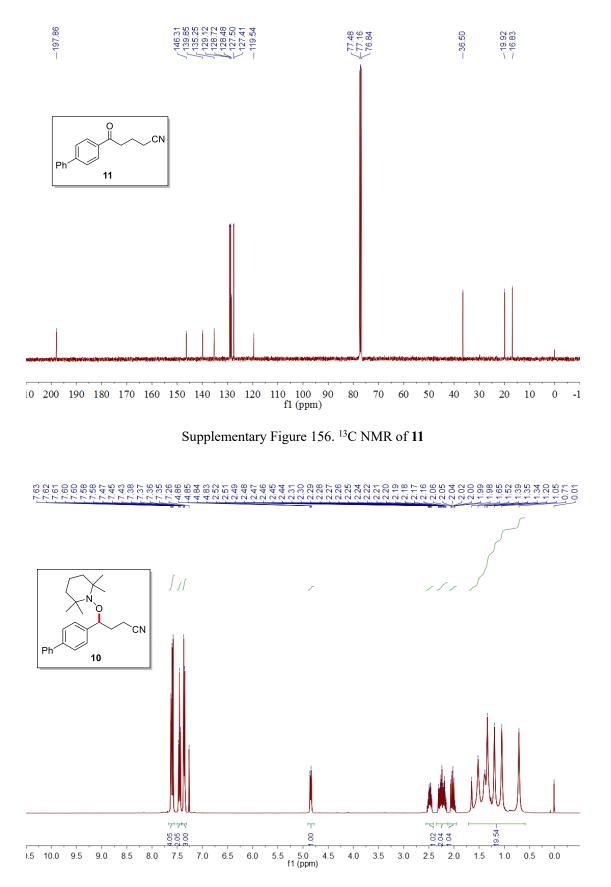
7.5 5.5 5.0 4.5 fl (ppm) 3.0 2.5 2.0 4.0 3.5 1.5 0.5 9.5 9.0 8.5 8.0 7.0 6.5 6.0 1.0 0.0 -0

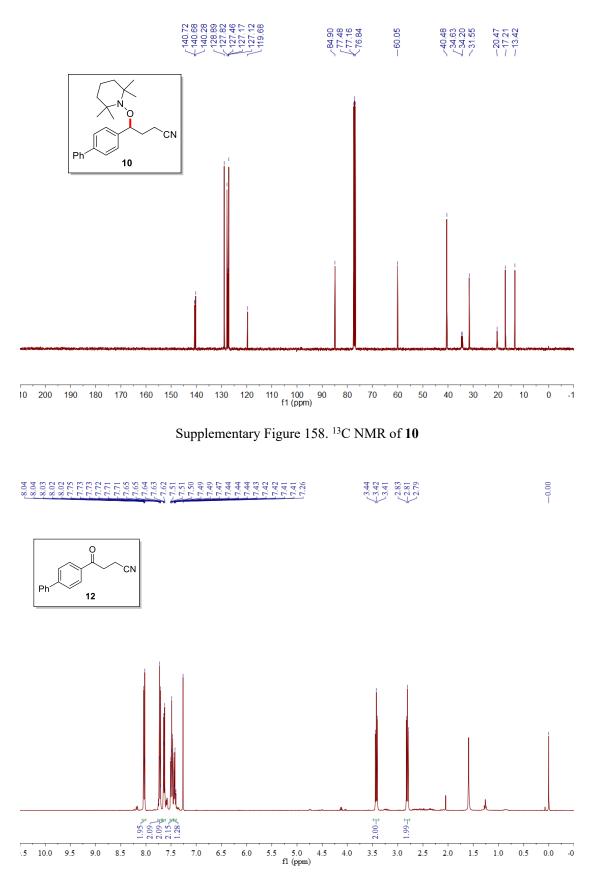

Supplementary Figure 151. ¹H NMR of 4x

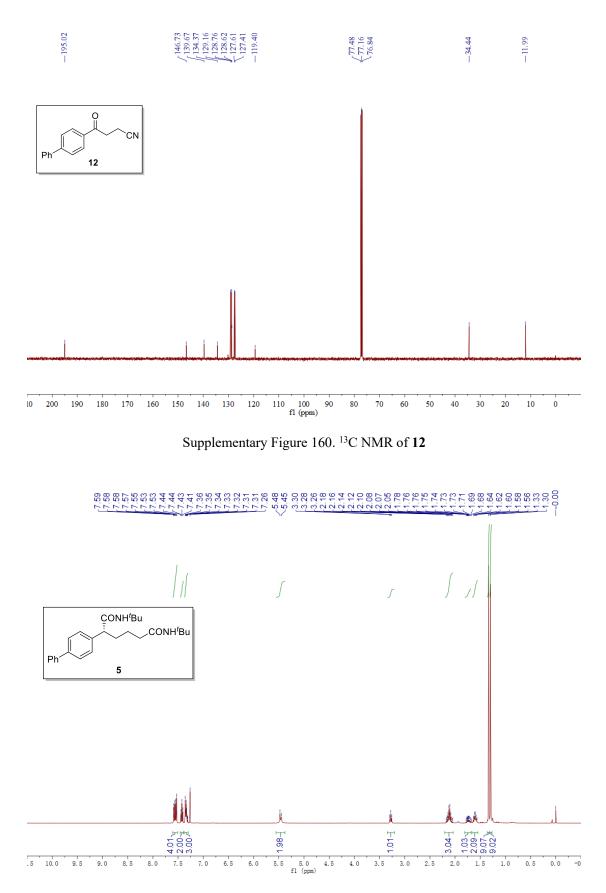
.5 10.0

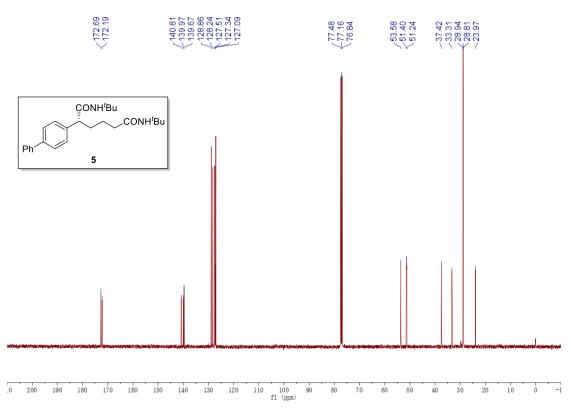


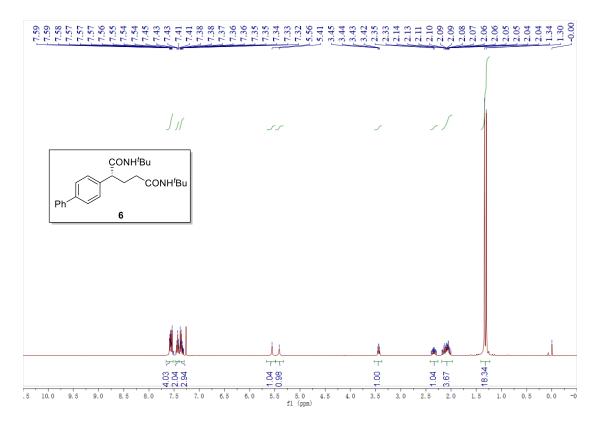
Supplementary Figure 152. ¹³C NMR of 4x

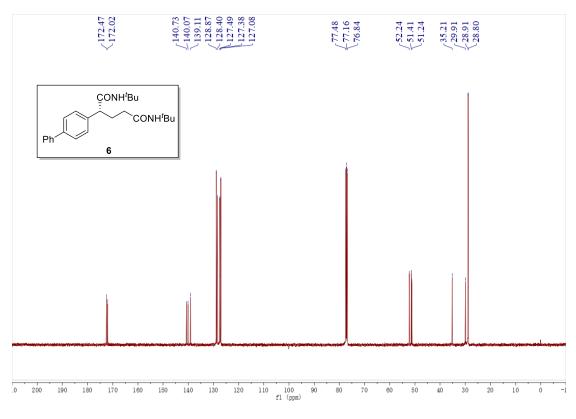



Supplementary Figure 153. ¹H NMR of 9

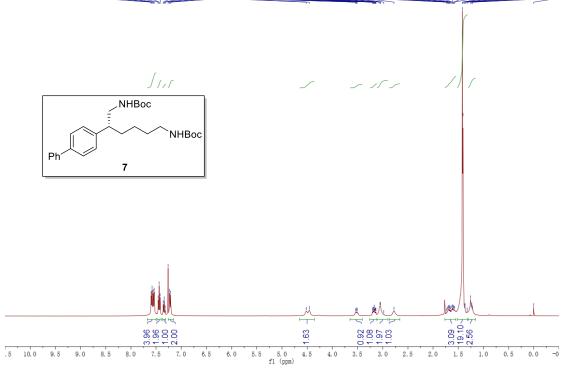

Supplementary Figure 155. ¹H NMR of 11


Supplementary Figure 157. ¹H NMR of **10**

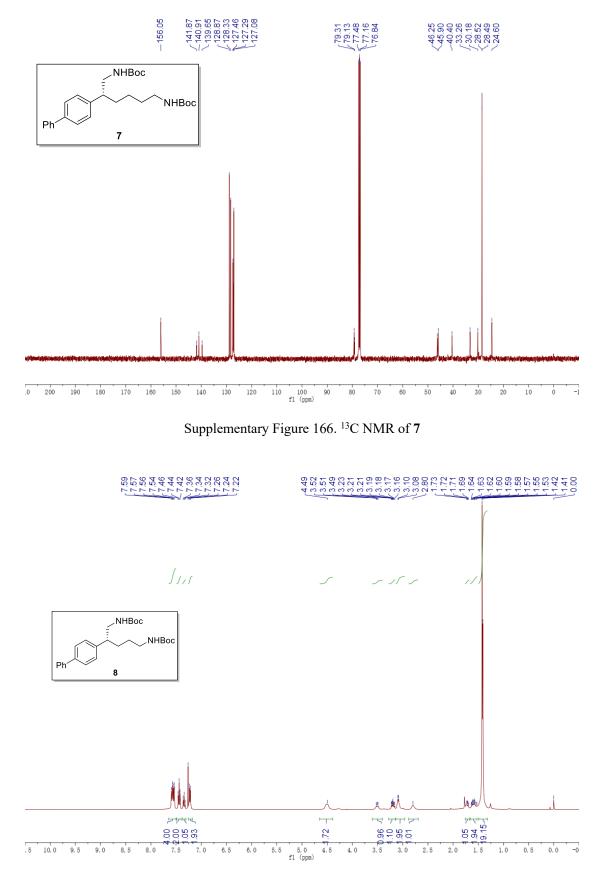

Supplementary Figure 159. ¹H NMR of **12**


Supplementary Figure 161. ¹H NMR of **5**

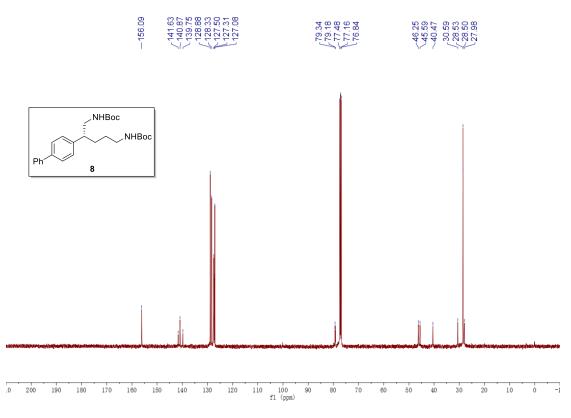
Supplementary Figure 162. ¹³C NMR of **5**

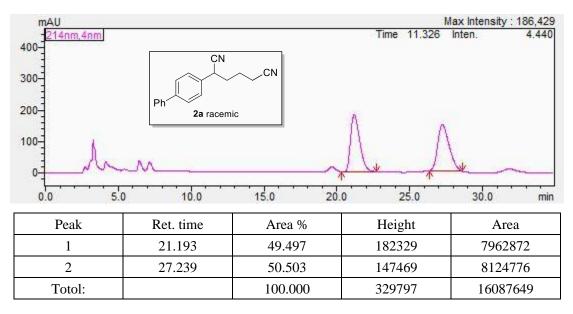


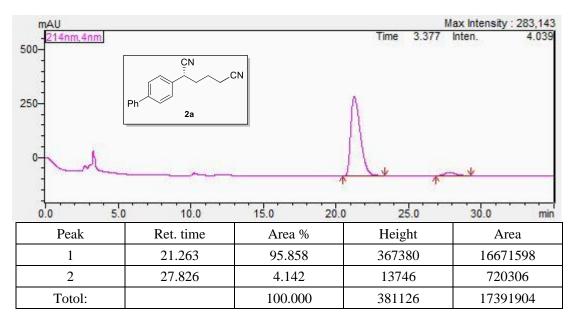
Supplementary Figure 163. ¹H NMR of 6

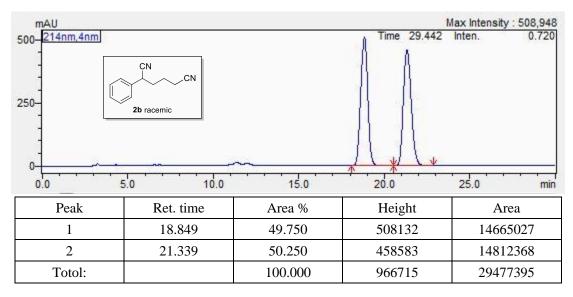


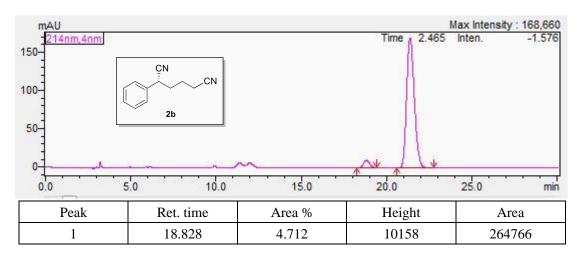
Supplementary Figure 164. ¹³C NMR of 6



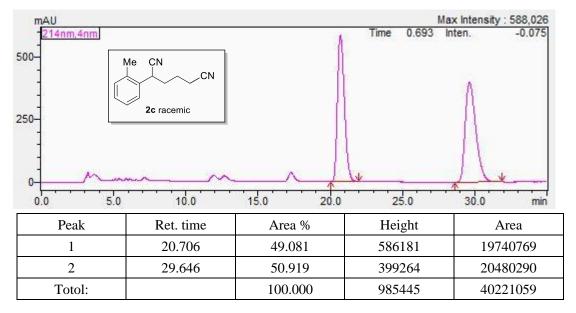

Supplementary Figure 165. ¹H NMR of 7


Supplementary Figure 167. ¹H NMR of 8

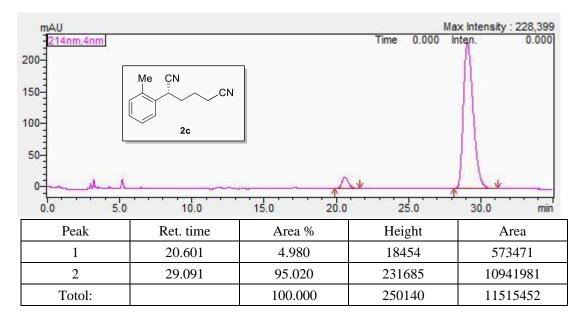

Supplementary Figure 168. ¹³C NMR of 8


Supplementary Figure 169. HPLC data of rac-2a

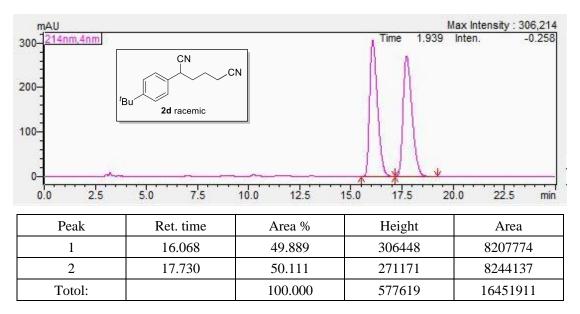
Supplementary Figure 170. HPLC data of 2a

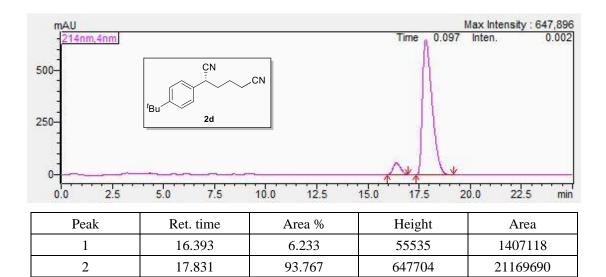


Supplementary Figure 171. HPLC data of rac-2b



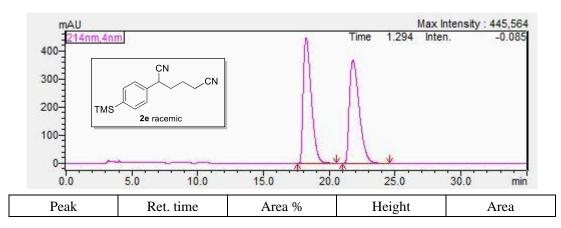
2	21.376	95.288	170088	5354716
Totol:		100.000	180246	5619482


Supplementary Figure 172. HPLC data of 2b	
--	--


Supplementary Figure 173. HPLC data of rac-2c

Supplementary Figure 174. HPLC data of 2c

Supplementary Figure 175. HPLC data of rac-2d

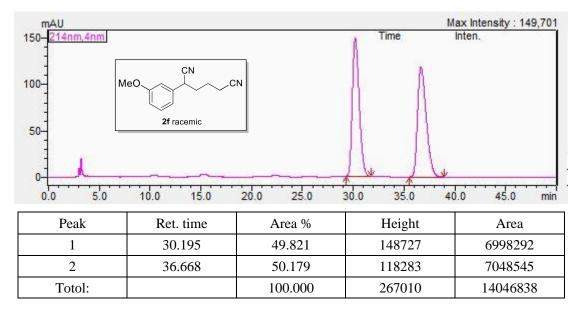

Supplementary Figure 176. HPLC data of 2d

100.000

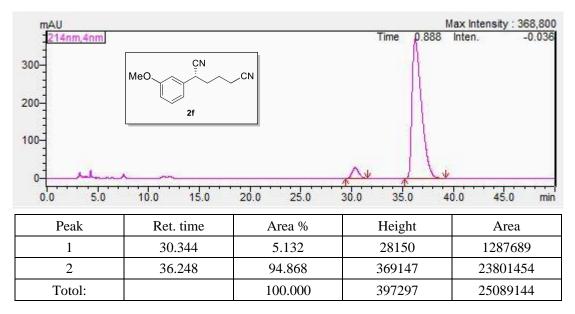
703240

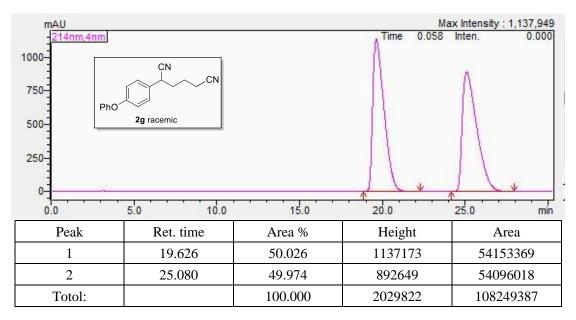
22576809

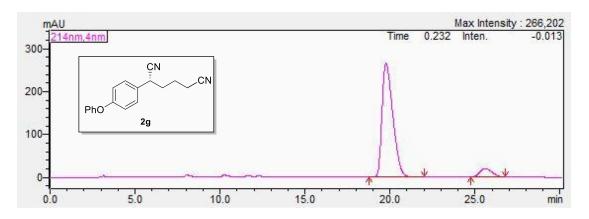
Totol:



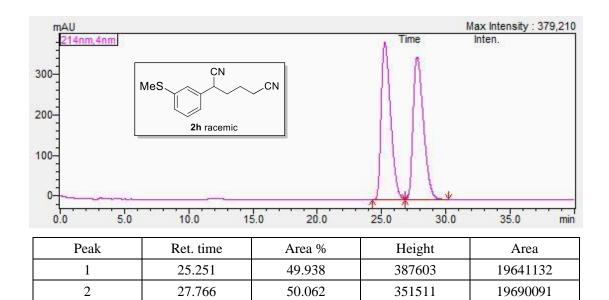
1	18.237	49.938	445578	18926413
2	21.794	50.062	369114	18973695
Totol:		100.000	814692	37900108


Supplementary Figure 177. HPLC data of rac-2e


Supplementary Figure 178. HPLC data of 2e


Supplementary Figure 179. HPLC data of rac-2f

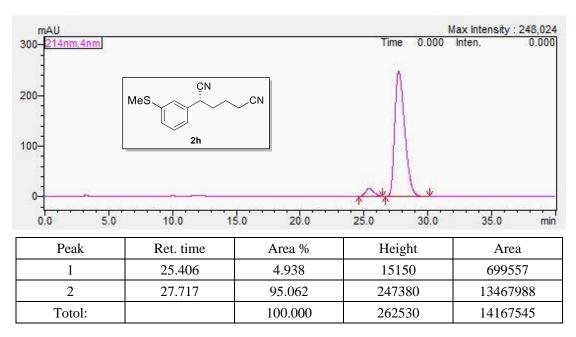
Supplementary Figure 180. HPLC data of 2f



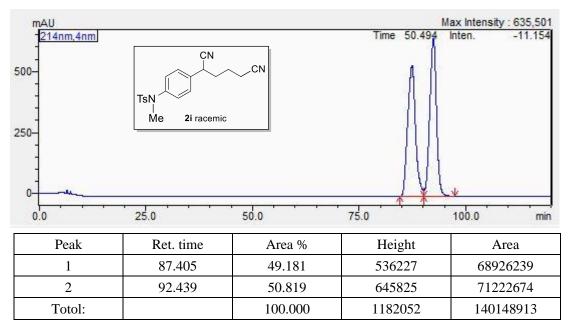
Supplementary Figure 181. HPLC data of rac-2g

Peak	Ret. time	Area %	Height	Area
1	19.768	92.113	266013	11788503
2	25.611	7.887	19922	1009358
Totol:		100.000	285935	12797861

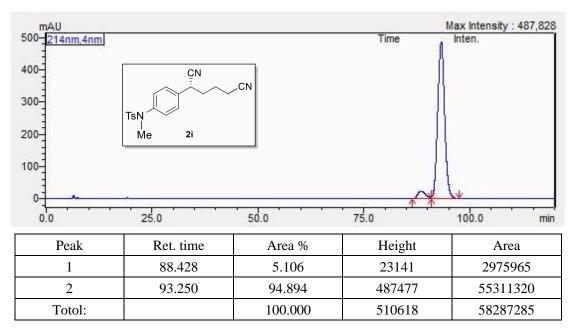
Supplementary Figure 182. HPLC data of 2g


Supplementary Figure 183. HPLC data of rac-2h

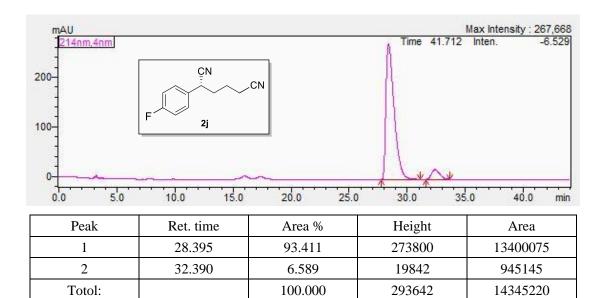
100.000

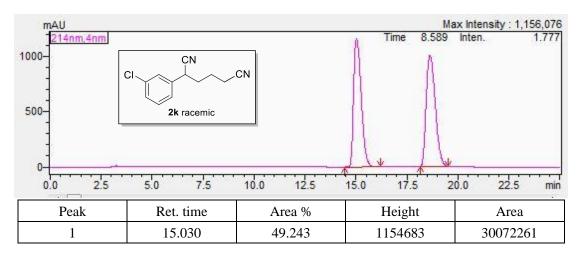

739114

39331223


Totol:

Supplementary Figure 184. HPLC data of 2h

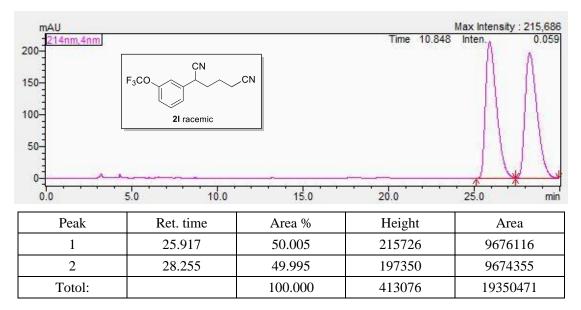

Supplementary Figure 185. HPLC data of rac-2i


Supplementary Figure 186. HPLC data of 2i

mAU				Max Intensity : 488,969
500 214nm,4nm			Time 7.061	Inten. 0.937
400-	CN		4 1	
300		CN		
200-	F 2j racemic			
1	2j laceniic			
100-				
0		\sim		
0.0 5.0	10.0 1 <mark>5.</mark> 0	20.0 25.	0 30.0 35	.0 40.0 min
Peak	Ret. time	Area %	Height	Area
1	28.209	49.830	488000	25533343
2	31.903	50.170	468146	25707213
Totol:		100.000	956146	51240556

Supplementary Figure 187. HPLC data of rac-2j

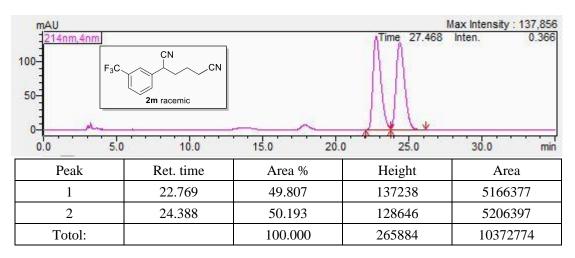
Supplementary Figure 188. HPLC data of 2j

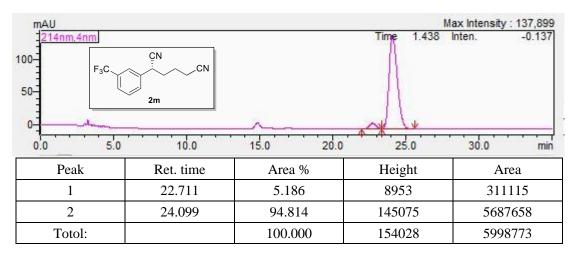


2	18.631	50.757	1001967	30996533
Totol:		100.000	2156651	61068795

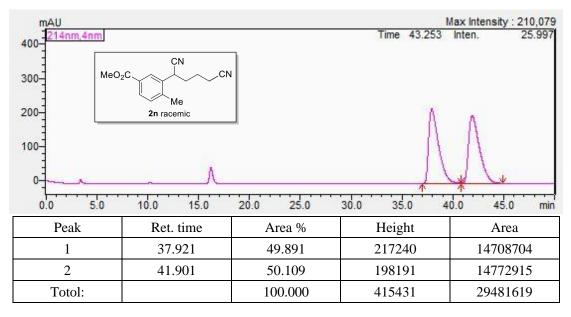
mAU			M	lax Intensity : 419,350
400 214nm,4nm			Time	Inten.
	CN		1	
300-			11	
1		×		
200-			11	
1	2k			
100-				
			~* /\.	ψ
• •••••• •••			<u> </u>	
0.0 2.5	5.0 7.5	10.0 12.5	15.0 17.5 20).0 22.5 min
Peak	Ret. time	Area %	Height	Area
1				
<u> </u>	15.199	4.582	25682	588358
2	18.672	95.418	418529	12253502
Totol:		100.000	444211	12841860

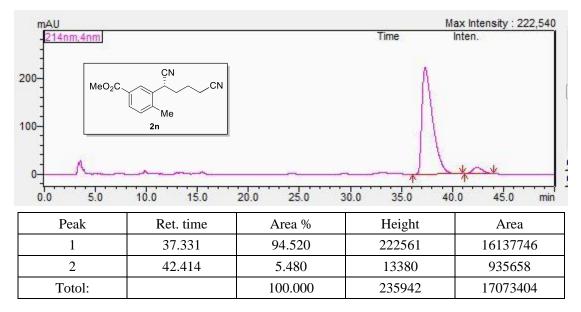
Supplementary Figure 189. HPLC data of rac-2k

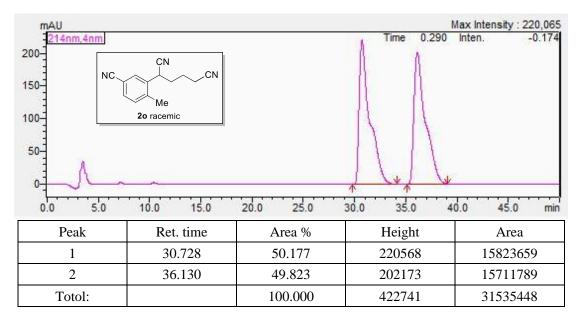

Supplementary Figure 190. HPLC data of 2k

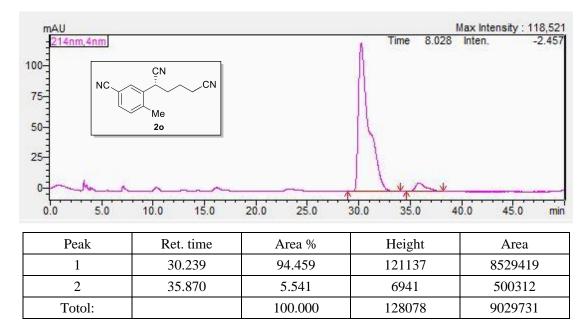

Supplementary Figure 191. HPLC data of rac-21

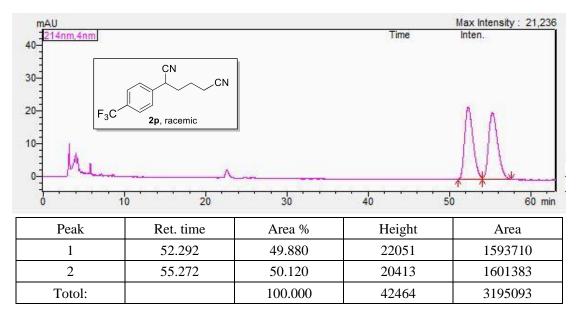
mAU 214nm.4nm 400 300 200	F ₃ CO 21	CN	1 Time 27.033	fax Intensity : 528,094 Inten. 0.956
0.0	5.0 10.0	15.0	20.0	25.0 min
Peak	Ret. time	Area %	Height	Area
1	26.144	4.952	34865	1461850
2	28.107	95.048	527220	28056044
Totol:		100.000	562085	29517894

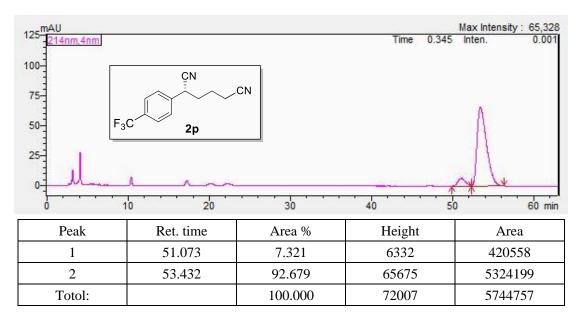

Supplementary Figure 192. HPLC data of 21

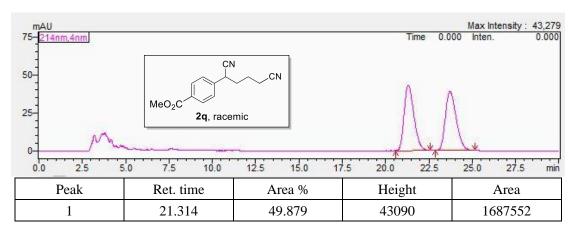

Supplementary Figure 193. HPLC data of rac-2m


Supplementary Figure 194. HPLC data of 2m

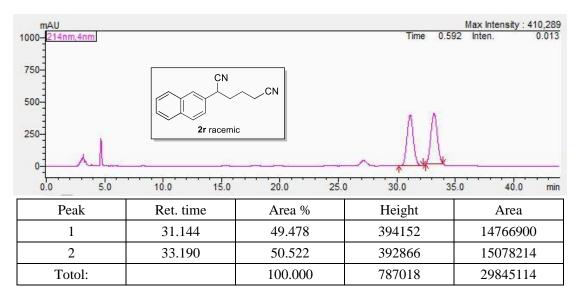

Supplementary Figure 195. HPLC data of rac-2n

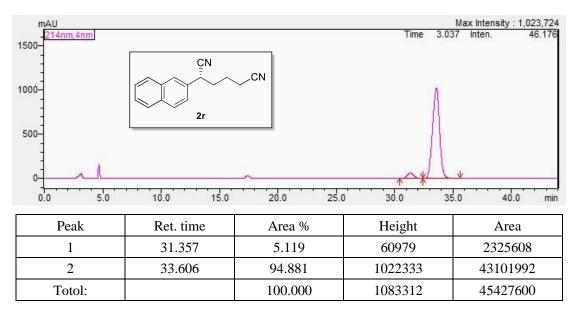

Supplementary Figure 196. HPLC data of 2n


Supplementary Figure 197. HPLC data of rac-20

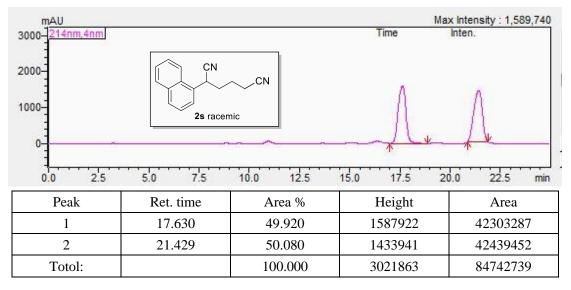

Supplementary Figure 198. HPLC data of 20

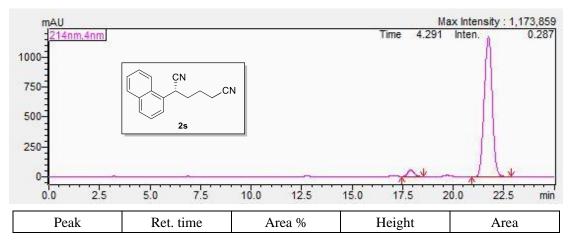
Supplementary Figure 199. HPLC data of rac-2p


Supplementary Figure 200. HPLC data of 2p

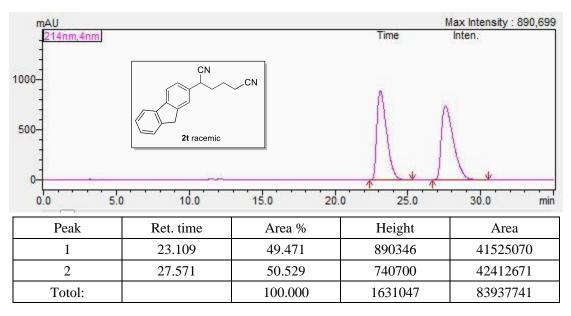

2	23.719	50.121	38950	1695773
Totol:		100.000	82040	3383326

mAU 30- <mark>214nm,4nm</mark>			Time 0.1	Max Intensity : 15,594 149 Inten0.011
	MeO ₂ C 2q	 12.5 15.0 1	7.5 20.0 22.5	25.0 27.5 min
Peak	Ret. time	Area %	Height	Area
1	21.474	88.187	15690	615179
2	23.997	11.813	2002	82407
Totol:		100.000	17692	697585

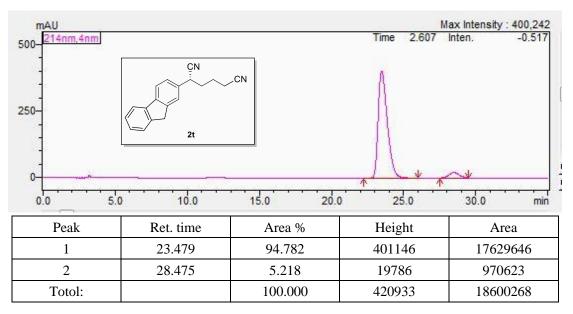

Supplementary Figure 202. HPLC data of 2q


Supplementary Figure 203. HPLC data of rac-2r

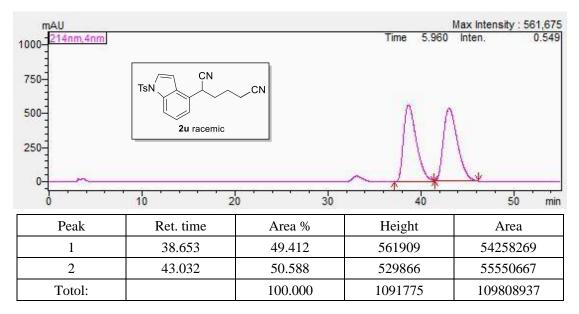
Supplementary Figure 204. HPLC data of 2r

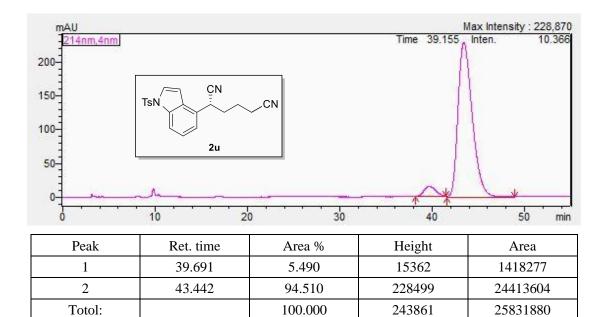


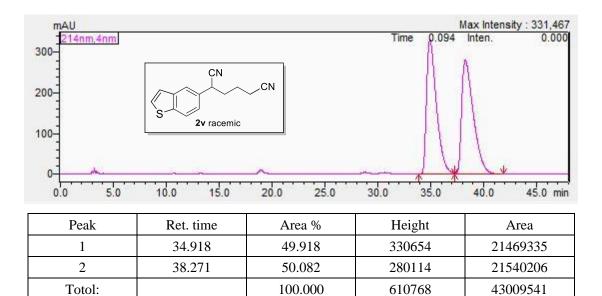
Supplementary Figure 205. HPLC data of rac-2s

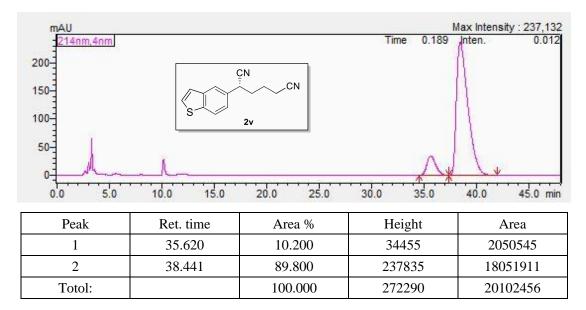


1	17.893	3.429	55504	1150657
2	21.748	96.571	1173178	32410824
Totol:		100.000	1228682	33561482

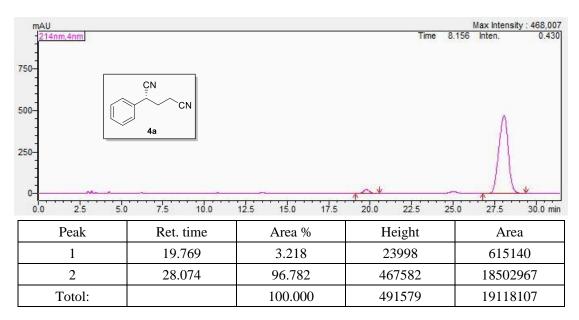

Supplementary Figure 206. HPLC data of 2s

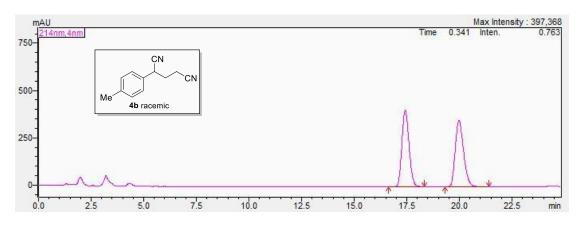

Supplementary Figure 207. HPLC data of rac-2t


Supplementary Figure 208. HPLC data of 2t

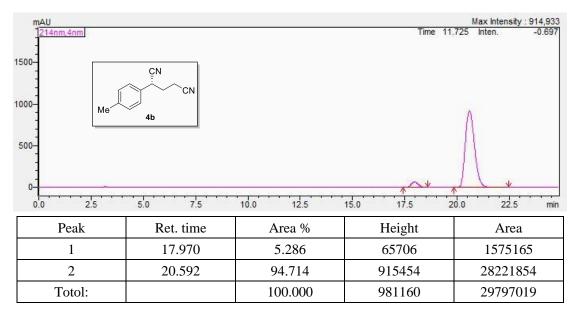

Supplementary Figure 209. HPLC data of rac-2u


Supplementary Figure 210. HPLC data of 2u

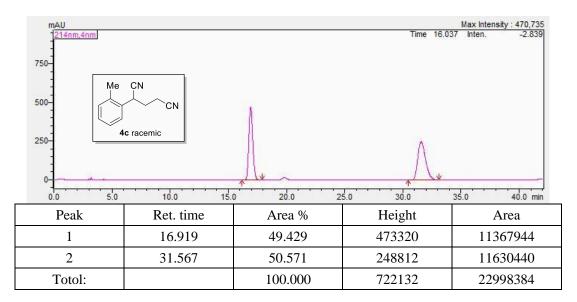

Supplementary Figure 211. HPLC data of rac-2v


Supplementary Figure 212. HPLC data of 2v

Supplementary Figure 213. HPLC data of rac-4a

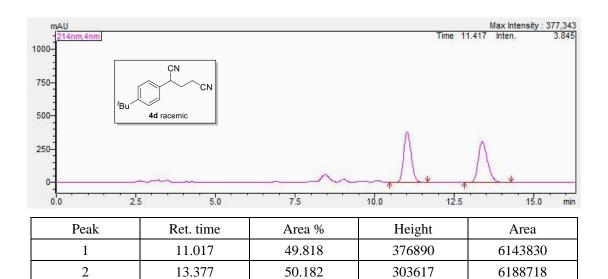


Supplementary Figure 214. HPLC data of 4a



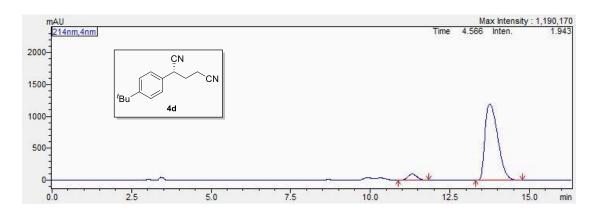
Peak	Ret. time	Area %	Height	Area
1	17.428	49.776	405705	9525417
2	19.982	50.224	348130	9611207
Totol:		100.000	753835	19136624


Supplementary Figure 215. HPLC data of rac-4b


Supplementary Figure 216. HPLC data of 4b

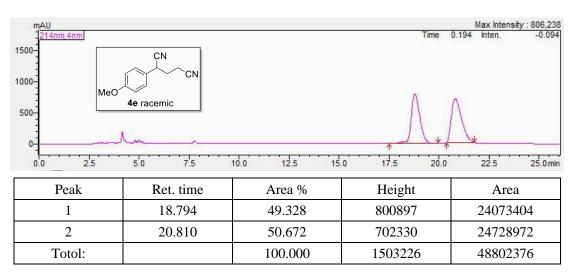
Supplementary Figure 217. HPLC data of rac-4c

Supplementary Figure 218. HPLC data of 4c

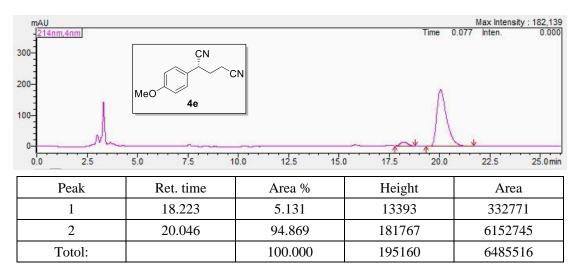

Supplementary Figure 219. HPLC data of rac-4d

100.000

680507

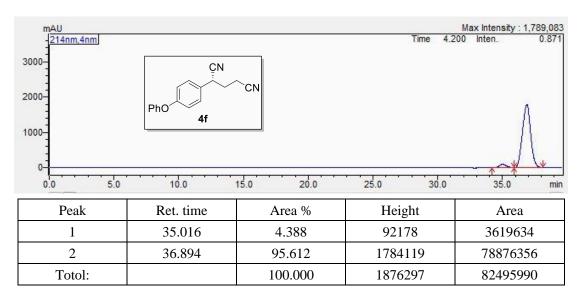

12332548

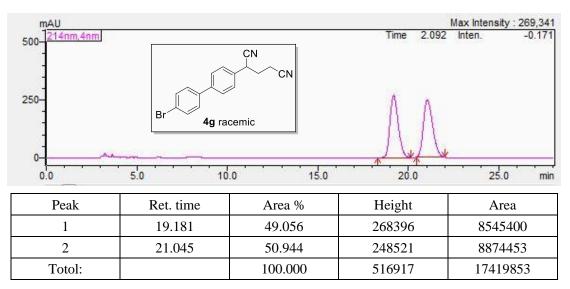
Totol:

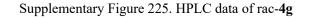


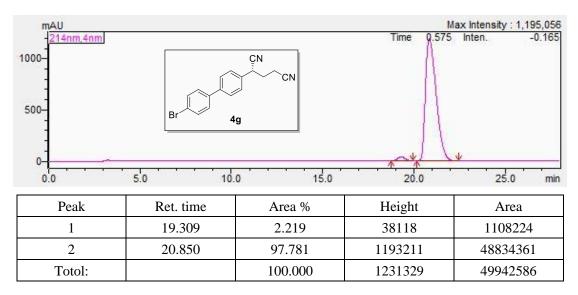
Peak	Ret. time	Area %	Height	Area
1	11.314	5.472	96692	1928361
2	13.752	94.528	1189249	33312362
Totol:		100.000	1285941	35240723

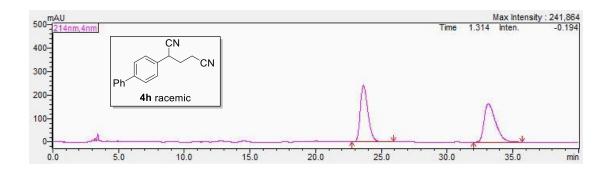
Supplementary Figure 220. HPLC data of 4d

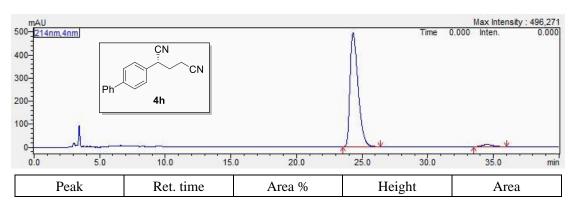

Supplementary Figure 221. HPLC data of rac-4e


Supplementary Figure 222. HPLC data of 4e

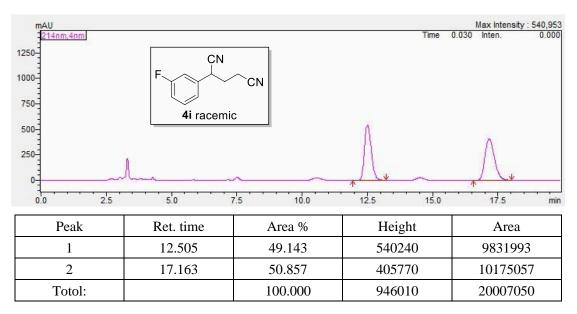

mAU				Max Intensity : 558,756
2 <u>14nm,4nm</u> 1000-		CN	Time 12	2.797 Inten2.573
750-		CN		-a -a1
500	PhO			
250-	4f racer			
0.0 5	0 10.0	15.0 20.0	25.0 30.0	35.0 min
Peak	Ret. time	Area %	Height	Area
1	34.985	50.131	553878	23348401
2	36.931	49.869	552318	23226652
Totol:		100.000	1106197	46575053


Supplementary Figure 223. HPLC data of rac-4f

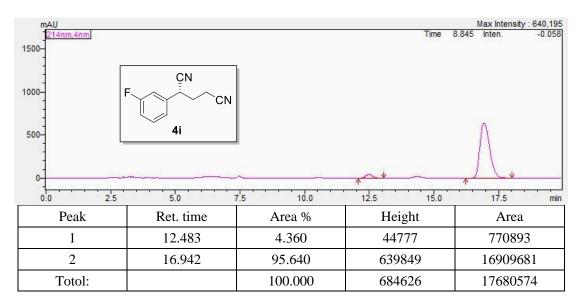

Supplementary Figure 224. HPLC data of 4f



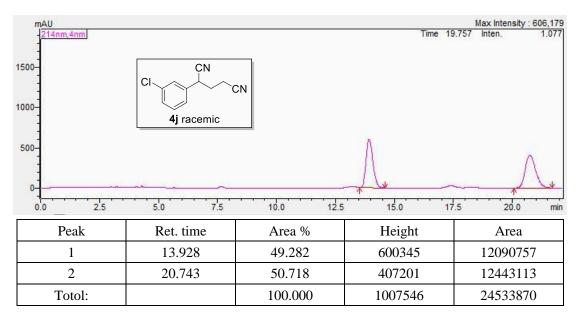
Supplementary Figure 226. HPLC data of 4g

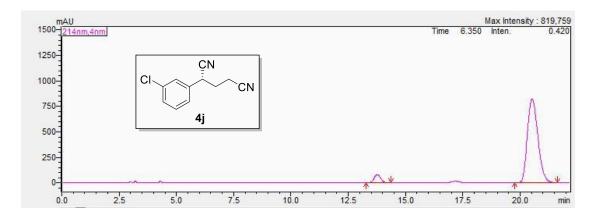

Peak	Ret. time	Area %	Height	Area
1	23.629	49.996	241600	9824775
2	33.134	50.004	164087	9826156
Totol:		100.000	405687	19650931

Supplementary Figure 227. HPLC data of rac-4h

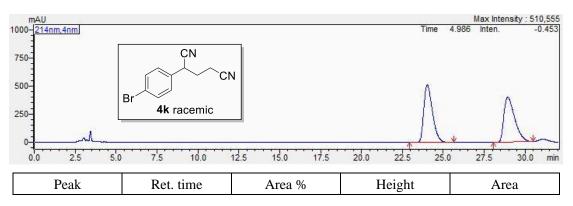


1	24.306	97.709	493055	21018489
2	34.523	2.291	8674	492805
Totol:		100.000	501730	21511295

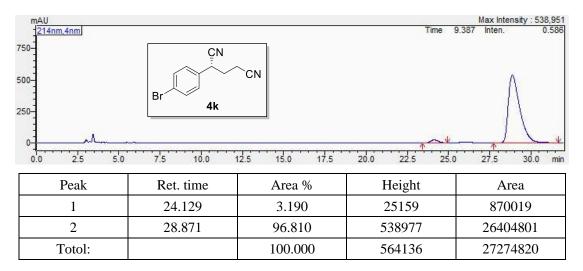

Supplementary Figure 228. HPLC data of 4h


Supplementary Figure 229. HPLC data of rac-4i

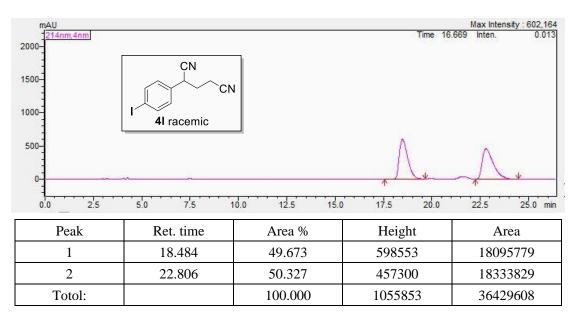
Supplementary Figure 230. HPLC data of 4i



Supplementary Figure 231. HPLC data of rac-4j


Peak	Ret. time	Area %	Height	Area
1	13.762	5.493	79956	1531043
2	20.523	94.507	819054	26343527
Totol:		100.000	899010	27874570

Supplementary Figure 232. HPLC data of 4j



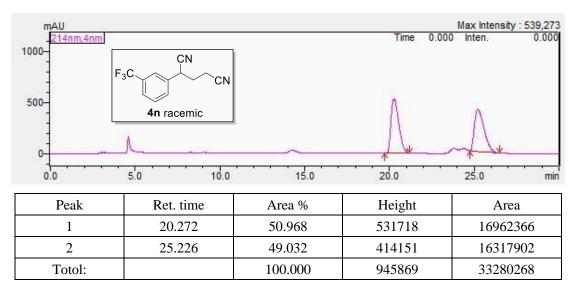
1	24.020	50.609	512053	18861078
2	28.941	49.391	401610	18406820
Totol:		100.000	913663	37267898

Supplementary Figure 233. HPLC data of rac-4k

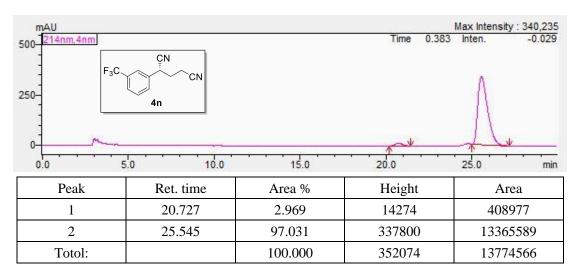
Supplementary Figure 234. HPLC data of 4k

Supplementary Figure 235. HPLC data of rac-41

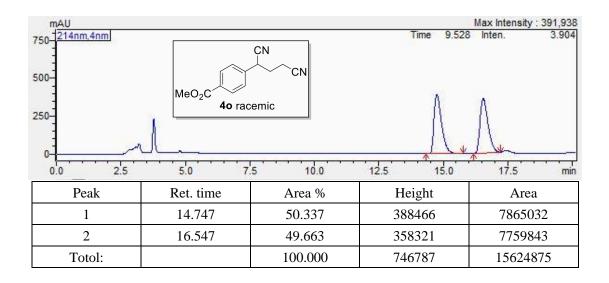
mAU 214nm,4nm			Time 10	Max Intensity : 339,986 0.537 Inten0.707
500- 250-		Ν	~*	
0.0 2.5	5.0 7.5 10	12.5 15.0	17.5 20.0	22.5 25.0 min
Peak	Ret. time	Area %	Height	Area
1	19.135	4.139	21286	603644
2	23.260	95.861	339858	13982000
Totol:		100.000	361144	14585644

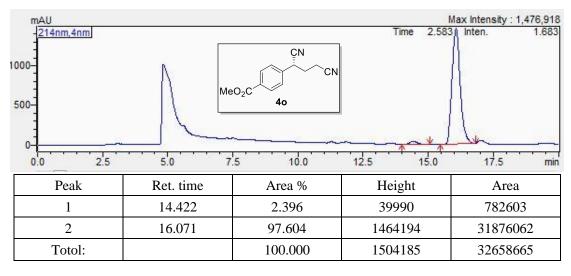

Supplementary Figure 236. HPLC data of 41

mAU				Max Intensity : 271,373
214nm,4nm] 500-	F ₃ CO CN CN		Time 10.6	74 Inten. 10.177
0.0 2.5	4m racemic	10.0 12.5	× 15.0 1	 ↑.5 20.0 min
Peak	Ret. time	Area %	Height	Area
1	16.393	50.385	268765	5880478
2	19.292	49.615	221632	5790573
Totol:		100.000	490397	11671050

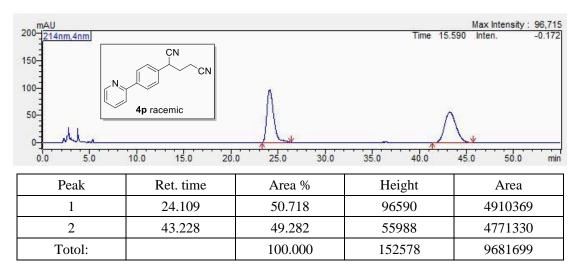

Supplementary Figure 237. HPLC data of rac-4m

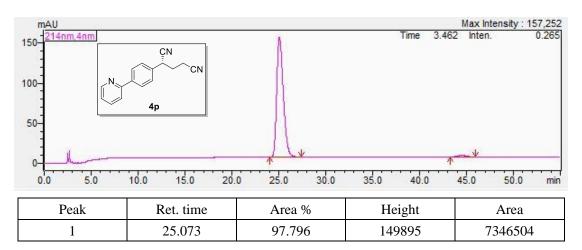
mAU								Max Intensity : 67	
214nm,4 1000- 500-	<u>Inm</u>	F ₃ CO	CN 	CN		Time	9.147	Inten.	4.381
0.0	2.5	5.0	7.5	10.0	12.5	15.0	17.	5 20.0	min
Peak	2	Ret. tin	ne	Area %		Height		Area	
1		16.68	0	3.696		36611		820531	
2		19.44	4	96.304		666264		21378195	5
Totol	l:			100.000		702875		22198725	5


Supplementary Figure 238. HPLC data of 4m



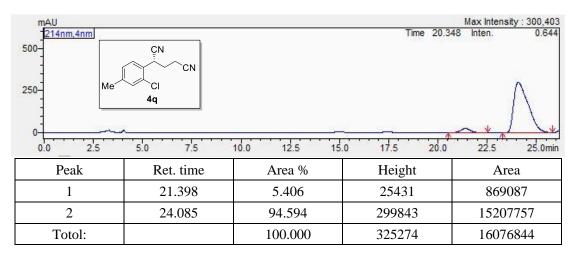
Supplementary Figure 239. HPLC data of rac-4n

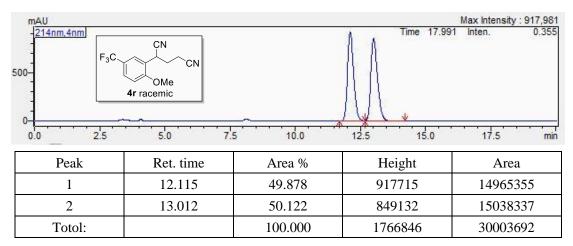

Supplementary Figure 240. HPLC data of 4n

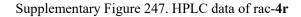


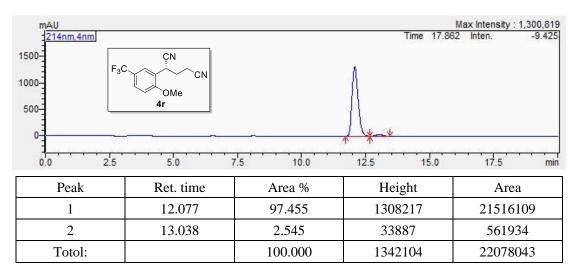
Supplementary Figure 241. HPLC data of rac-40

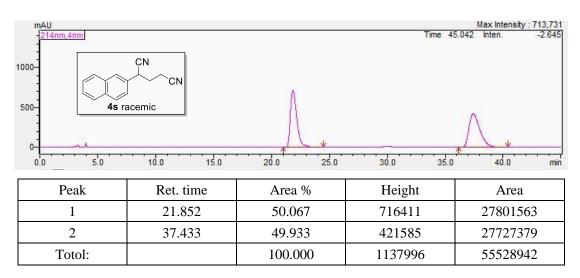
Supplementary Figure 242. HPLC data of 40

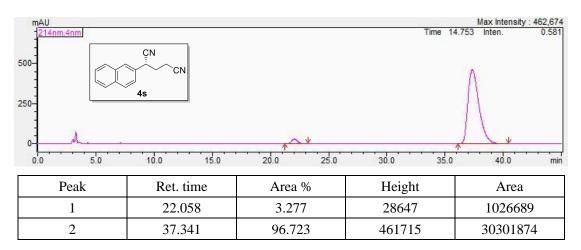

Supplementary Figure 243. HPLC data of rac-4p


2	44.488	2.204	2160	165578
Totol:		100.000	152055	7512081


mAU				Max Intensity : 523,075
1000-214nm,4nm			Time 1.40	2 Inten2.375
-	ÇN			
]	CN			
500-	Me			0
1	4q racemic			$\Lambda \Lambda \mid$
-				X X
0	v			
0.0 2.5	5.0 7.5	10.0 12.5 15.0	17.5 20.0	22.5 25.0min
22022				
Peak	Ret. time	Area %	Height	Area
1	21.250	49.255	534048	22053017
2	24.510	50.745	458360	22720504
Totol:		100.000	992408	44773521

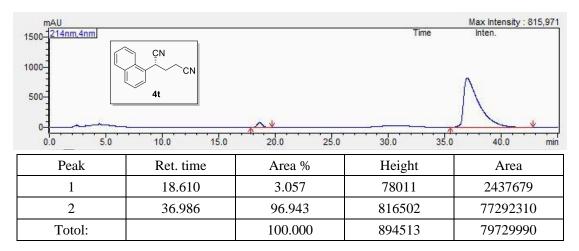

Supplementary Figure 245. HPLC data of rac-4q


Supplementary Figure 246. HPLC data of 4q

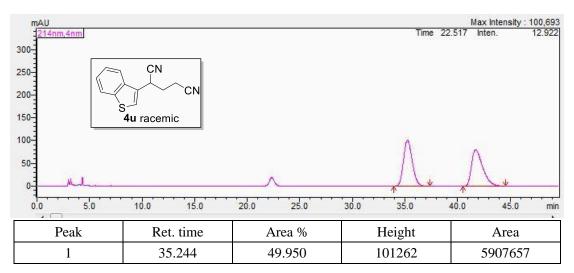


Supplementary Figure 248. HPLC data of 4r

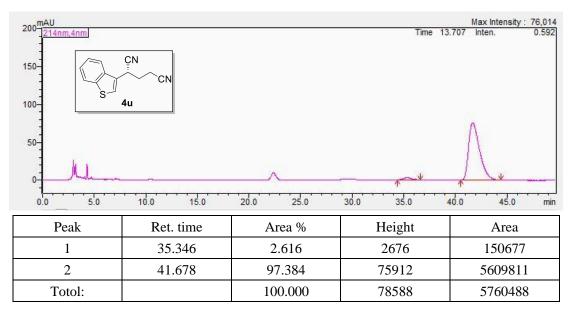
Supplementary Figure 249. HPLC data of rac-4s

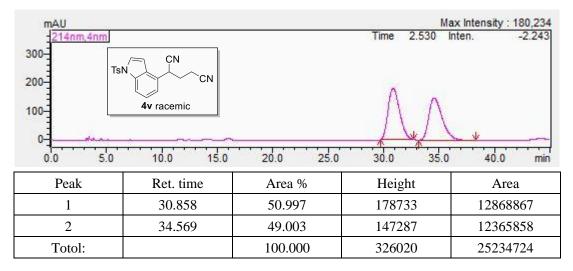


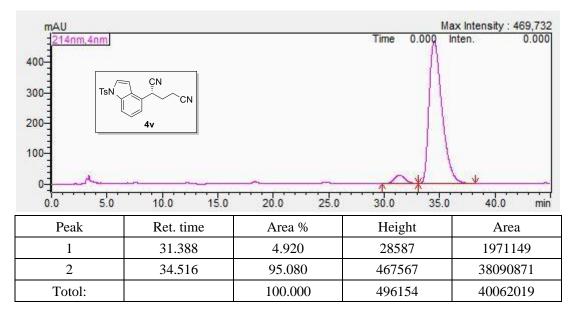
Totol:	100.000	490361	31328563

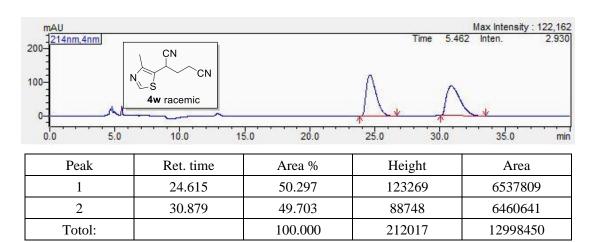

Supplementary Figure 250. HPLC data of 4s

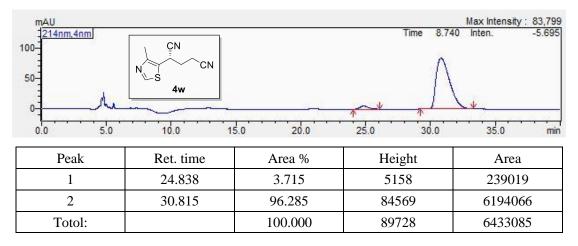
mAU				Max Intensity : 186,885
250- 0-	CN CN 4t racemic	<u>↓</u>	Time 8.8	30 Inten0.120
0.0 5.0	10.0 15.0	20.0 25.0	30.0 35.0	40.0 min
Peak	Ret. time	Area %	Height	Area
1	17.858	50.147	185718	5318123
2	36.123	49.853	74182	5286890
Totol:		100.000	259900	10605013


Supplementary Figure 251. HPLC data of rac-4t

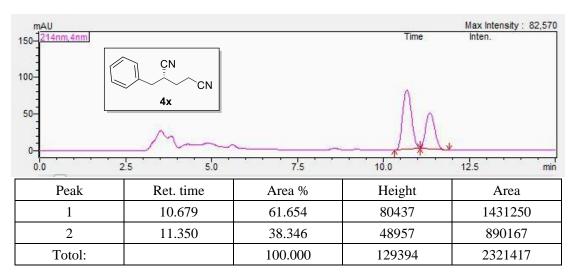

Supplementary Figure 252. HPLC data of 4t

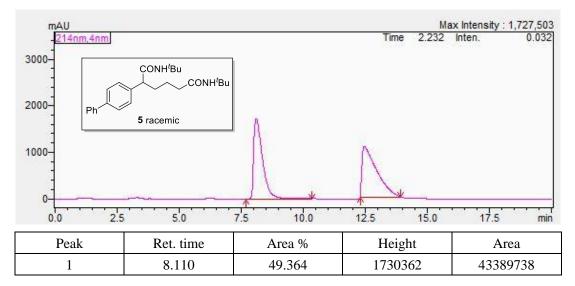

2	41.727	50.050	79936	5919500	
Totol:		100.000	181199	11827157	


Supplementary Figure 254. HPLC data of 4u


Supplementary Figure 255. HPLC data of rac-4v

Supplementary Figure 256. HPLC data of 4v

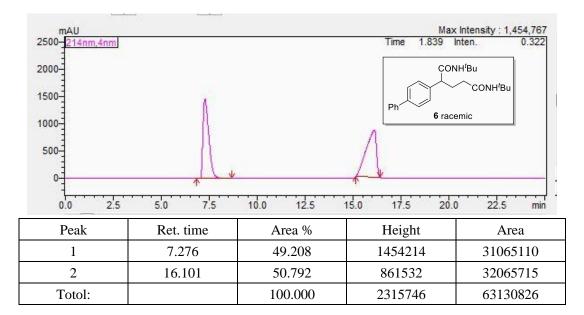

Supplementary Figure 257. HPLC data of rac-4w


Supplementary Figure 258. HPLC data of 4w

mAU 214nm,4nm			Time 0.	Max Intensity : 98,234 025 Inten. 0.000
	CN CN CN 4x, racemic 2.5 5.0	7.5	10.0	12.5 min
Peak	Ret. time	Area %	Height	Area
1	10.590	50.235	96031	1718263
2	11.259	49.765	92077	1702164
Totol:		100.000	188108	3420428

Supplementary Figure 259. HPLC data of rac-4x

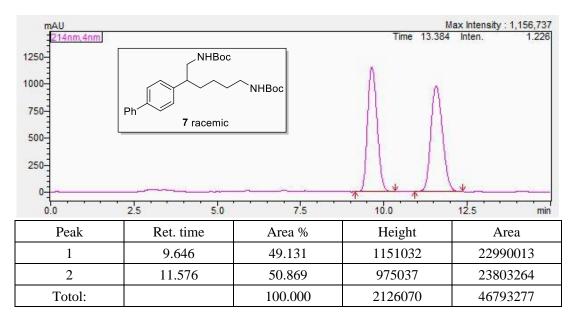
Supplementary Figure 260. HPLC data of 4x

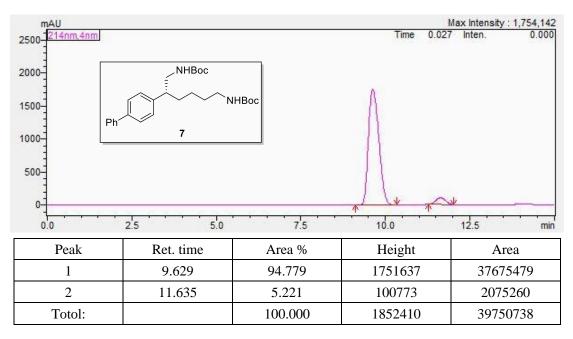


2	12.472	50.636	1080572	44508003	
Totol:		100.000	2810934	87897742	

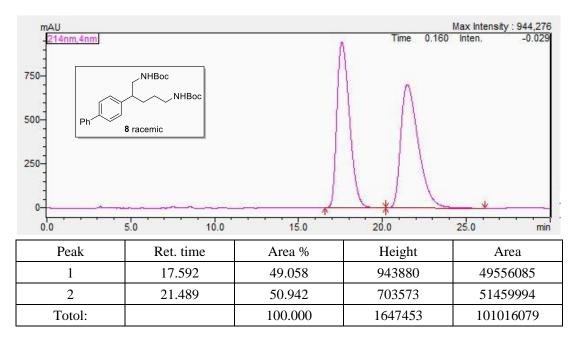
mAU 214nm,4nm Max Intensity : 2,011,624 Inten. Time 3000-<u>C</u>ONH^tBu .CONH^tBu 2000-Ph 5 1000-0-2.5 5.0 7.5 10.0 12.5 15.0 17.5 0.0 min Peak Ret. time Height Area % Area 8.334 5.139 226876 5191848 1 2 12.164 94.861 2009410 95833648 Totol: 100.000 2236286 101025496

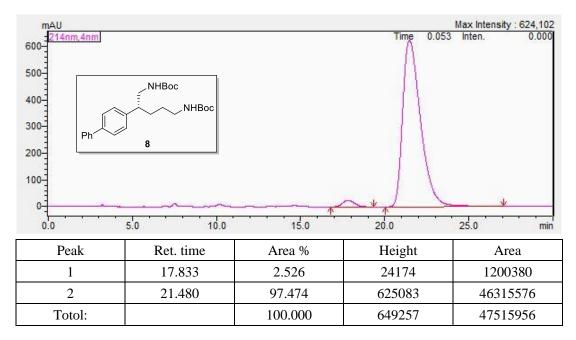
Supplementary Figure 261. HPLC data of rac-5


Supplementary Figure 262. HPLC data of 5


Supplementary Figure 263. HPLC data of rac-6

mAU								Max Inter	nsity : 1,27	9,141
1250 214nm	1,4nm						Time 23.6	30 Inten.	(0.232
1000-		ÇON	H ^t Bu	u			(
500-	Ph	6								
250-			An	~_						
0.0	2.5	5.0	7.5	10.0	12.5	15.0	17.5	20.0	22.5	min
Peak	K	Ret.	time	A	rea %		Height		Area	
1		7.4	7.406		2.778		110652		1980064	
2		16.	650	9	97.222		. 1276891		59301930	C
Toto	1:			10	00.000	1	387543		71281994	4


Supplementary Figure 264. HPLC data of 6


Supplementary Figure 265. HPLC data of rac-7

Supplementary Figure 266. HPLC data of 7

Supplementary Figure 267. HPLC data of rac-8

Supplementary Figure 268. HPLC data of 8

Supplementary Tables

Supplementary Table 1 Optimization of Reaction Conditions

R = p	-CF ₃ C ₆ H ₄ 1a	`R + ⊺		bu], L1 , Solvent py) ₃ , blue LEDs	Ph	CN CN 2a
Entry	Cu	lr(ppy) ₃	TMSCN	Solvent	Yield % ^a	ee % ^b
1	10 mol %	1 mol %	1.5 eq.	DMF/DCM	38	87
2	5 mol %	1 mol %	1.5 eq.	DMF/DCM	48	87
3	5 mol %	0.5 mol %	1.5 eq.	DMF/DCM	50	89
4	5 mol %	1 mol %	3 eq.	DMF/DCM	55	88
5	5 mol %	1 mol %	1.5 eq.	DCM	49	88
6	5 mol %	0.5 mol %	3 eq.	DCM	53	90
7	3 mol %	0.5 mol %	3 eq.	DCM	62	90
8	2 mol %	0.5 mol %	3 eq.	DCM	72	90
9	1 mol %	0.5 mol %	3 eq.	DCM	_c	-

Conditions: x mol % Cu(CH₃CN)₄PF₆, 1.2x mol % L1, y mol% lr(ppy)₃, 1.5 or 3.0 eq. TMSCN, 1.0 mL solvent was used for 0.1 mmol scale reaction, 24 W blue LEDs, RT, 24 h, 4/6 DMF/DCM. ^aisolated yield. ^bdetected by HPLC. ^clow conversion.

Ph R = p	0 -CF ₃ C ₆ H ₄ 1a	+ TMS	20°N	L1, DCM	Ph 2	n CN	
Entry	Cu	TMSCN	DCM	LED	Yield % ^a	ee % ^b	L1
1	2 mol %	3 eq.	1 mL	24 W	69	90	
2	2 mol %	2 eq.	1 mL	24 W	68	90	
3	2 mol %	2 eq.	0.5 mL	24 W	50	90	
4	2 mol %	2 eq.	2 mL	24 W	_c	-	
5	1.8 mol %	3 eq.	1 mL	24 W	53	90	
6	1.5 mol %	3 eq.	1 mL	24 W	62	89	
7	2 mol %	3 eq.	1 mL	5 W	71	90.6	

Supplementary Table 2 Optimization of Reaction Conditions

Conditions: x mol % Cu(CH₃CN)₄PF₆, 1.5x mol % L1, 0.5 mol% lr(ppy)₃, y eq. TMSCN was used for 0.1 mmol scale reaction, 24 or 5 W blue LEDs. RT. 36 h.

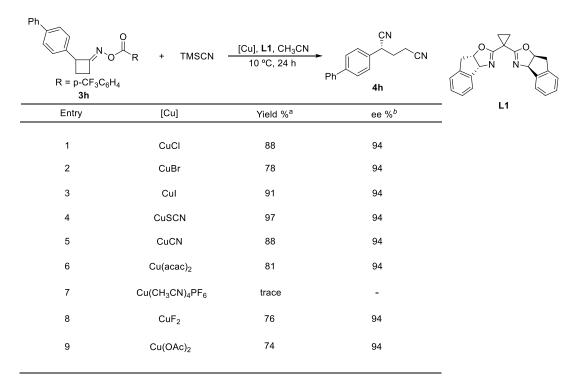
^aisolated yield. ^bdetected by HPLC. ^clow conversion.

Ph $R = p-CF_3C_6H_4$ Ia	O R + TMSCN	[Cu], L1, DCM Ir(ppy) ₃ , blue LEDs	Ph 2a	
Entry	Cu	Yield % ^a	ee % ^b	L1
1	CuBr	48	90	
2	CuCN	42	90.6	
3	CuOAc	51	91	
4	Cu(CH ₃ CN) ₄ BF ₄	64	91	
5	CuCl	43	91	
6	CuSCN	49	90.6	
7	Cu(CH ₃ CN) ₄ PF ₆	71	91	

Supplementary Table 3 Screening of Copper Catalyst

Conditions: 2 mol % [Cu], 3 mol % L1, 0.5 mol% $Ir(ppy)_3$, 3 eq. TMSCN, 1 mL DCM was used for 0.1 mmol scale reaction, 5 W blue LEDs, RT, 36 h.

^aisolated yield.^bdetected by HPLC.


Supplementary Table 4 Screening of Temperature

Ph R = p-CF 3h			L1, CH ₃ CN , 24 h Ph	CN CN 4h	
Entry	[Cu]	T/ºC	Yield % ^a	ee % ^b	LI
1	Cu ₂ O	-10 °C	47	94	
2	Cu ₂ O	0 °C	68	94	
3	Cu ₂ O	10 °C	91	94	
4	Cu ₂ O	25 °C	98	92.5	

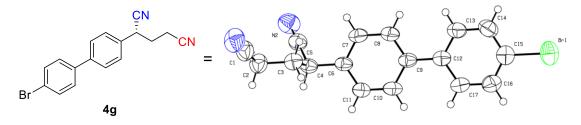
Conditions: 1 mol% Cu₂O, 4 mol % L1, 1.1 eq. TMSCN, 1.0 mL CH₃CN was used for 0.1 mmol scale reaction, T $^{\circ}$ C, 24h.

^aisolated yield.^bdetected by HPLC.

Supplementary Table 5 Screening of Copper Catalyst

Conditions: 2 mol % [Cu], 4 mol % L1, 1.1 eq. TMSCN, 1.0 mL CH₃CN was used for 0.1 mmol

scale reaction, 10 °C, 24h .


^aisolated yield.^bdetected by HPLC.

Ph R = p-CF 3h			-1, Solvent , 24 h Ph	ÇN CN	
Entry	[Cu]	solvent	Yield % ^a	ee % ^b	
1	CuSCN	DCM	72	94	
2	CuSCN	Et ₂ O	56	93	
3	CuSCN	DMF	71	93	
4	CuSCN	toluene	78	94	
5	CuSCN	MeOH	75	89	
6	CuSCN	Acetone	70	95	
7 ^c	CuSCN(3 mol %)	Acetone	93	95	

Supplementary Table 6 Screening of Solvent

Conditions: 2 mol % CuSCN, 4 mol % **L1**, 1.1 eq. TMSCN, 1.0 mL Solvent was used for 0.1 mmol scale reaction, 10 °C, 24h.

^aisolated yield.^bdetected by HPLC. ^c3 mol % Cu, 3.6 mol % L1, 1.5 eq. TMSCN, 1.0 mL degassed Acetone.

Supplementary Figure 269. X-ray crystallography of 4g

Supplementary Table 7 Crystal data and structure refinement for 4g.

Identification code	4g
Empirical formula	$C_{17}H_{13}BrN_2$
Formula weight	325.20
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P21
a/Å	7.98210(10)
b/Å	5.77100(10)
c/Å	16.0567(3)
α/°	90

β/°	93.240(2)
γ/°	90
Volume/Å ³	738.46(2)
Z	2
$\rho_{calc}g/cm^3$	1.463
µ/mm ⁻¹	3.706
F(000)	328.0
Crystal size/mm ³	0.3 imes 0.22 imes 0.2
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2 Θ range for data collection/°	11.038 to 147.586
Index ranges	$-9 \le h \le 8, -6 \le k \le 6, -19 \le l \le 19$
Reflections collected	6082
Independent reflections	2726 [$R_{int} = 0.0195, R_{sigma} = 0.0166$]
Data/restraints/parameters	2726/1/181
Goodness-of-fit on F ²	1.367
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0402, wR_2 = 0.1493$
Final R indexes [all data]	$R_1 = 0.0405, wR_2 = 0.1504$
Largest diff. peak/hole / e Å ⁻³	0.31/-0.61
Flack parameter	0.024(15)

Supplementary Table 8 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **4g**. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
Br1	240.9(6)	3265.2(16)	2337.5(3)	81.7(3)
C12	2534(4)	3632(8)	5089(3)	49.0(9)
C5	5078(6)	6564(9)	8880(3)	58.4(10)
N2	5053(6)	8376(11)	9137(3)	80.9(12)
C9	3206(4)	3779(7)	5975(3)	50.0(9)
C4	5164(4)	4181(7)	8549(3)	49.4(8)
C3	7014(5)	3332(11)	8559(3)	56.3(8)
C15	1195(5)	3403(11)	3455(3)	61.0(10)
C6	4420(5)	4085(7)	7650(2)	48.8(9)
C2	7864(5)	3338(15)	9429(3)	67.0(11)
N1	11113(5)	3097(17)	9336(4)	93.6(16)
C14	2200(8)	5243(11)	3707(3)	74.4(13)
C1	9689(6)	3173(14)	9380(3)	71.3(11)
C17	1537(6)	1768(9)	4803(3)	64.0(11)
C13	2845(7)	5337(9)	4515(3)	66.8(12)

C11	3454(7)	2255(10)	7381(4)	71.2(14)
C16	882(6)	1642(10)	3992(4)	67.1(12)
C10	2877(8)	2065(11)	6556(4)	77.5(16)
C8	4164(8)	5629(10)	6251(3)	71.7(14)
C7	4774(8)	5793(10)	7085(4)	73.3(14)

Supplementary Table 9 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for **4g**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Br1	81.4(4)	98.9(5)	64.5(4)	-9.1(3)	2.6(2)	20.4(3)
C12	40.4(15)	45(2)	63(2)	0.6(16)	12.6(14)	2.5(13)
C5	55(2)	57(3)	64(2)	3.8(19)	9.0(17)	0.7(17)
N2	99(3)	61(3)	85(3)	-5(3)	16(2)	10(2)
C9	37.7(14)	43(2)	70(2)	4.8(15)	9.5(14)	-0.8(12)
C4	42.0(16)	46(2)	61(2)	7.6(15)	9.8(14)	-0.9(13)
C3	47.3(16)	56(2)	66(2)	-1(2)	8.4(14)	3.0(19)
C15	54.5(18)	68(3)	61(2)	-5(2)	9.5(15)	8(2)
C6	40.2(13)	45(2)	62(2)	7.2(15)	10.1(13)	-3.3(13)
C2	56(2)	78(3)	67(2)	-1(3)	-0.6(17)	-1(2)
N1	54(2)	124(5)	101(3)	4(4)	-6(2)	4(3)
C14	101(4)	63(3)	60(3)	9(2)	11(2)	-7(3)
C1	60(2)	82(3)	70(2)	3(3)	-7.7(18)	3(3)
C17	67(3)	52(3)	73(3)	3.6(19)	4(2)	-16.2(19)
C13	80(3)	50(3)	71(3)	5(2)	6(2)	-10.9(19)
C11	77(3)	59(3)	76(3)	21(2)	-13(2)	-23(2)
C16	63(2)	65(3)	74(3)	-1(2)	8(2)	-10(2)
C10	87(3)	56(3)	88(4)	24(3)	-12(3)	-29(3)
C8	86(3)	66(3)	63(3)	14(2)	6(2)	-31(3)
C7	90(3)	62(3)	67(3)	7(2)	5(2)	-36(3)

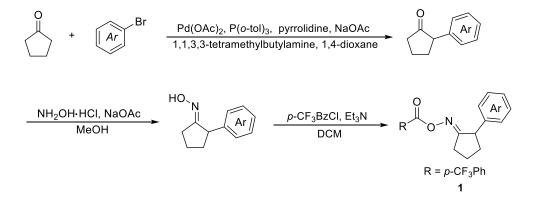
Supplementary Table 10 Bond Lengths for 4g

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Br1	C15	1.911(4)	C15	C14	1.377(8)
C12	С9	1.494(6)	C15	C16	1.364(8)
C12	C17	1.400(6)	C6	C11	1.364(6)
C12	C13	1.381(7)	C6	C7	1.380(6)
C5	N2	1.124(9)	C2	C1	1.466(6)
C5	C4	1.478(7)	N1	C1	1.143(7)
С9	C10	1.395(6)	C14	C13	1.370(8)

C9	C8	1.372(7)	C17	C16	1.378(8)
C4	C3	1.555(5)	C11	C10	1.381(8)
C4	C6	1.530(6)	C8	C7	1.401(8)
C3	C2	1.519(6)			

Supplementary Table 11 Bond Angles for 4g

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C17	C12	C9	121.5(4)	C11	C6	C4	120.6(4)
C13	C12	С9	121.8(4)	C11	C6	C7	118.5(4)
C13	C12	C17	116.7(4)	C7	C6	C4	120.8(4)
N2	C5	C4	178.4(5)	C1	C2	C3	110.1(4)
C10	С9	C12	121.7(4)	C13	C14	C15	119.3(5)
C8	С9	C12	121.0(4)	N1	C1	C2	178.4(9)
C8	С9	C10	117.3(5)	C16	C17	C12	121.9(5)
C5	C4	C3	110.7(4)	C14	C13	C12	122.2(5)
C5	C4	C6	110.5(4)	C6	C11	C10	121.2(4)
C6	C4	C3	108.5(3)	C15	C16	C17	119.0(5)
C2	C3	C4	112.6(4)	C11	C10	С9	121.3(5)
C14	C15	Br1	120.1(4)	С9	C8	C7	121.2(4)
C16	C15	Br1	119.0(4)	C6	C7	C8	120.5(4)
C16	C15	C14	120.9(4)				

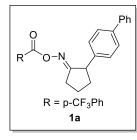

Supplementary Table 12 Hydrogen Atom Coordinates $(Å \times 10^4)$ and Isotropic Displacement Parameters $(Å^2 \times 10^3)$ for **4g**.

Atom	x	У	Z	U(eq)
H4	4524.68	3144.47	8895.43	59
H3A	7038.37	1772.68	8334.28	68
H3B	7638.71	4325.65	8200.46	68
H2A	7584.47	4752.89	9716.14	80
H2B	7463.42	2037.29	9745.02	80
H14	2438.98	6408.79	3331.45	89
H17	1309.55	580.01	5171.73	77
H13	3514.81	6590.71	4682.02	80
H11	3179.1	1115.15	7758.92	85
H16	236.47	376.94	3812.85	80
H10	2257.31	768.22	6385.18	93
H8	4412.29	6796.1	5878.29	86
H7	5422.63	7061.83	7257.88	88

Supplementary Methods

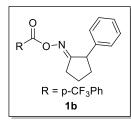
General Information ¹H NMR spectra were recorded at ambient temperature on Bruker-400 (400 MHz) spectrometers and are referenced relative to the residual protons in CDCl₃ at δ 7.26 ppm or (CD₃)₂SO-d₆ at δ 2.50 ppm. Data for ¹H NMR are reported as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q =quartet, m = multiplet, ap = apparent), integration, and coupling constant (Hz). ¹³C NMR spectra were recorded at ambient temperature on Bruker-400 (100 MHz) spectrometers and are referenced relative to CDCl₃ at δ 77.16 ppm or (CD₃)₂SO-d₆ at δ 39.25 ppm. The ¹³C NMR spectra were obtained with 1H decoupling. Data for ¹³C NMR are reported in terms of chemical shift and multiplicity where appropriate. High resolution mass spectra were recorded on P-SIMS-Gly of Bruker Daltonics Inc. using ESI-TOF (electrospray ionization-time of flight). High performance liquid chromatography was performed on shimadzu Series HPLC, using AD-H, OD-H, ID chiral column eluted with a mixture of hexane and isopropyl alcohol. TMSCN was purchased from energy-chemical, Cu(CH₃CN)₄PF₆ and CuSCN was purchased from TCI. Ir(ppy)₃ was purchased from Laajoo Reagent. DMAc was purchased from J&K Chemical Reagent. And acetone was purchased from Sinopharm Chemical Reagent Co. Ltd.

Genaral procedure (A) for synthesis of the substrates $1^{1,2,3}$.

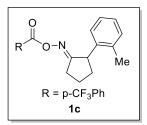

The 2-arylcyclopentan-1-ones were synthesized according to the reported procedure³. An 100 mL Schlenk flask was charged with Pd(OAc)₂ (67.6 mg, 0.3 mmol, 0.05 equiv), P(*o*-tol)₃ (182.8 mg, 0.6 mmol, 0.1 equiv), NaOAc (492.4 mg, 6.0 mmol, 1.0 equiv) and aryl bromides (7.8 mmol, 1.3 equiv), and then the flask was evacuated and backfilled with N₂ (repeated for 3 times). 1,4-dioxane (30.0 mL) was added in, followed by cyclopentanone (531 uL, 6.0 mmol, 1.0 equiv), pyrrolidine (148 μ L, 1.8 mmol, 0.3 equiv) and 1,1,3,3-tetramethylbutylamine (289 uL, 1.8 mmol, 0.3 equiv). The flask was then heated in an oil bath at 110 °C under stirring for 16 hours, before cooled to room temperature. The mixture was filtered through a small plug of silica gel, eluted with ethyl acetate. The solvent was removed in vacuo and flash column chromatography of the residue gave the arylation product.

The ketones (1.0 equiv, \sim 5 mmol), hydroxylamine hydrochloride (1.2 equiv) and sodium acetate (1.5 equiv) were added to a round bottom flask containing a stirrer bar. MeOH (0.56 M) was added and the reaction was stirred for 12 h at 75 °C. Then methanol was removed under vacuum and the resulting mixture was extracted with DCM. The organic layer was washed with water and dried over Na₂SO₄. The solvent was removed under reduced pressure and the crude material was subjected to column chromatography to afford oximes.

To a mixture of oxime (1.0 equiv, ~4 mmol), triethylamine (1.5 equiv) and DCM (0.5 M) in a flask was added 4-(trifluoromethyl)benzoyl chlorides (1.1 equiv) slowly at 0 °C. After 1 h, a saturated solution of aqueous NaHCO₃ (10 mL) was added to the above


solution, and the mixture was diluted with DCM. The organic layer was washed with brine (20 mL) and dried over Na₂SO₄. The solvent was removed under vacuum and the residue was subjected to column chromatography on silica gel with EtOAc–petroleum ether as an eluent to give the substrate.

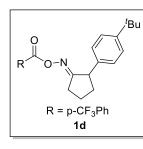
Characterization data for cyclopentanone oxime esters 1


Prepared according to general procedure (A) from cyclopentanone and 4-bromo-1,1'-biphenyl to provide the title compound **1a** as a yellowish solid¹. ¹H NMR (CDCl₃, 400 MHz) δ 8.19 (d, J = 8.2 Hz, 2H), 7.74 (d, J = 8.4 Hz, 2H), 7.64 - 7.54 (m, 4H), 7.48 - 7.38 (m, 4H), 7.34 (t, J = 7.4 Hz, 1H), 4.11 (t, J

= 7.6 Hz, 1H), 3.01 - 2.94 (m, 1H), 2.88 - 2.81 (m, 1H), 2.41 - 2.34 (m, 1H), 2.14 - 2.03 (m, 2H), 1.92 - 1.87 (m, 1H); ¹³C NMR(CDCl₃, 101 MHz) δ 178.2, 162.6, 140.8, 139.8,139.1, 134.6 (q, *J* = 32.8 Hz), 132.5, 129.9, 128.7, 128.3, 127.4, 127.2, 127.0, 125.5 (q, *J* = 3.6 Hz), 123.5 (q, *J* = 272.8 Hz), 49.0, 34.7, 30.0, 22.5.

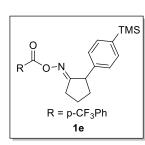
Prepared according to general procedure (A) from cyclopentanone and bromobenzene to provide the title compound **1b** as a yellowish solid¹. ¹H NMR (400 MHz, CDCl₃) 8.17 (d, J = 8.2 Hz, 2H), 7.73 (d, J = 8.3 Hz, 2H), 7.34 (d, J = 6.6 Hz, 4H), 7.26 – 7.21 (m, 1H), 4.07 (t, J = 7.2 Hz, 1H), 3.01 – 2.74 (m, 2H),

2.38 – 2.29 (m, 1H), 2.13 – 1.94 (m, 2H), 1.93 – 1.79 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.2, 162.6, 140.1, 134.6 (q, *J* = 32.7 Hz), 132.5, 129.9, 128.6, 127.8, 126.9, 125.5 (q, *J* = 3.5 Hz), 123.5 (q, *J* = 272.8 Hz), 49.2, 34.7, 30.0, 22.5.

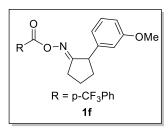


Prepared according to general procedure (A) from cyclopentanone and 1-bromo-2-methylbenzene to provide the title compound **1c** as a yellowish solid¹. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.1 Hz, 2H), 7.73 (d, *J* = 8.3 Hz, 2H), 7.21

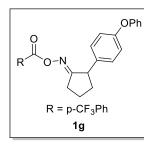
-7.08 (m, 4H), 4.22 (t, J = 7.3 Hz, 1H), 3.02 - 2.83 (m, 2H),


2.40 (s, 3H), 2.36 – 2.26 (m, 1H), 2.07 – 2.01 (m, 1H), 1.94 – 1.83 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 178.7, 162.6, 139.4, 135.9, 134.6 (q, *J* = 32.8 Hz), 132.5, 130.6,

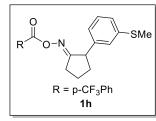
129.9, 127.1, 126.8, 126.2, 125.5 (q, *J* = 3.6 Hz), 123.5 (q, *J* = 270.4 Hz), 46.5, 34.0, 30.5, 22.5, 19.9.


Prepared according to general procedure (A) from cyclopentanone and 1-bromo-4-(tert-butyl)benzene to provide the title compound **1d** as a white solid¹. ¹H NMR (CDCl₃, 400 MHz) δ 8.18 (d, J = 8.1 Hz, 2H), 7.73 (d, J = 8.3 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 4.04 (t, J = 7.3 Hz, 2H)1H), 2.97 - 2.91 (m, 1H), 2.85 - 2.78 (m, 1H), 2.40 - 2.22 (m, 1H), 2.15 - 1.97 (m,

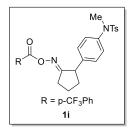
2H), 1.93 – 1.78 (m, 1H), 1.31 (s, 9H); ¹³C NMR (CDCl₃, 101 MHz) δ 178.4, 162.6, 149.6, 136.9, 134.5 (q, J = 32.7 Hz), 132.5, 129.9, 127.4, 125.5 (q, J = 3.3 Hz), 123.5 (q, J = 272.7 Hz), 48.8, 34.5, 34.3.31.3, 29.9, 22.5.


according to general procedure Prepared (A) from cyclopentanone and (4-bromophenyl)trimethylsilane to provide the title compound 1e as a yellowish oil². ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 8.1 Hz, 2H), 7.73 (d, J = 8.3 Hz, 2H), 7.50 (d, J = 8.1 Hz, 2H), 7.31 (d, J = 7.9 Hz, 2H), 4.05 (t, J = 7.2 Hz, 2Hz)

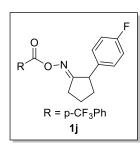
1H), 2.98 – 2.92 (m, 1H), 2.85 – 2.78 (m, 1H), 2.37 – 2.30 (m, 1H), 2.10 – 2.00 (m, 2H), 1.93 – 1.80 (m, 1H), 0.25 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 178.3, 162.6, 140.6, 138.8, 134.6 (q, *J* = 32.7 Hz), 133.7, 132.5, 129.9, 127.2, 125.5 (q, *J* = 3.6 Hz), 123.5 (q, J = 272.9 Hz), 49.3, 34.6, 30.1, 22.6, -1.6.


Prepared according to general procedure (A) from cyclopentanone and 1-bromo-3-methoxybenzene to provide the title compound **1f** as a yellowish liquid (37% total yield). ¹H NMR (CDCl₃, 400 MHz) δ ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 8.1 Hz, 2H), 7.73 (d, J = 8.2 Hz, 2H), 7.26 (t,

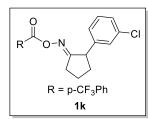
J = 7.9 Hz, 1H), 6.94 - 6.88 (m, 2H), 6.82 - 6.76 (m, 1H), 4.05 (t, J = 7.1 Hz, 1H), 3.81(s, 3H), 3.00 – 2.87 (m, 1H), 2.87 – 2.73 (m, 1H), 2.39 – 2.26 (m, 1H), 2.13 – 1.95 (m, 2H), 1.94 – 1.80 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 178.2, 162.7, 159.8, 141.8, 134.7 (q, J = 32.7 Hz), 130.1, 129.7, 125.6 (q, J = 3.7 Hz), 123.7 (q, J = 272.8 Hz), 120.3, 114.1, 112.1, 55.3, 49.2, 34.7, 30.1, 22.6. HRMS (ESI) calcd. for C₂₀H₁₈O₃NF₃ [M+Na]⁺ *m/z* 400.1136, found 400.1138.


Prepared according to general procedure (A) from cyclopentanone and 1-bromo-4-phenoxybenzene to provide the title compound **1g** as a yellowish liquid (44% total yield). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.1 Hz, 2H), 7.71 (d, *J* = 8.2 Hz, 2H), 7.37 – 7.25 (m, 4H), 7.11 – 7.04 (m, 1H), 7.03

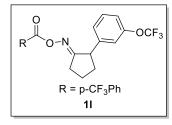
-6.93 (m, 4H), 4.02 (t, J = 7.6 Hz, 1H), 3.02 -2.87 (m, 1H), 2.86 -2.70 (m, 1H), 2.39 -2.23 (m, 1H), 2.08 -1.93 (m, 2H), 1.92 -1.78 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.2 , 162.6 , 157.2 , 156.1, 134.9 , 134.6 (q, J = 32.7 Hz), 132.6 , 130.0 , 129.7, 129.2, 125.6 (q, J = 3.7 Hz), 123.6 (q, J = 272.8 Hz), 123.3, 118.9, 48.7, 34.9, 30.0, 22.5. HRMS (ESI) calcd. for C₂₅H₂₀O₃NF₃ [M+Na]⁺ *m/z* 462.1293, found 462.1291.


Prepared according to general procedure (A) from cyclopentanone and (3-bromophenyl)(methyl)sulfane to provide the title compound **1h** as a yellowish solid (43% total yield). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.1 Hz, 2H),

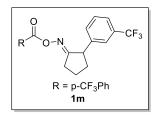
7.72 (d, J = 8.3 Hz, 2H), 7.31 – 7.21 (m, 2H), 7.17 – 7.05 (m, 2H), 4.02 (t, J = 7.4 Hz, 1H), 3.04 – 2.88 (m, 1H), 2.87 – 2.73 (m, 1H), 2.48 (s, 3H), 2.39 – 2.25 (m, 1H), 2.10 – 1.93 (m, 2H), 1.92 – 1.77 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 177.9, 162.6 , 140.9, 138.8, 134.6 (q, J = 32.7 Hz), 132.5, 130.0, 129.1 , 126.3, 125.6 (q, J = 3.7 Hz), 125.1 , 124.7, 123.6 (q, J = 272.8 Hz), 49.2 , 34.8 , 30.1 , 22.6, 15.9. HRMS (ESI) calcd. for C₂₀H₁₈O₂NF₃S [M+Na]⁺ *m/z* 416.0908, found 416.0901.


Prepared according to general procedure (A) from cyclopentanone and N-(4-bromophenyl)-N,4-dimethylbenzenesulfonamide to provide the title compound **1i** as a yellowish solid (11% total yield). ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 8.1 Hz, 2H), 7.70 (d, *J*

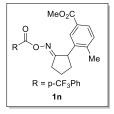
= 8.3 Hz, 2H), 7.41 (d, J = 8.2 Hz, 2H), 7.26 – 7.20 (m, 4H), 7.04 (d, J = 8.5 Hz, 2H), 4.01 (t, J = 7.6 Hz, 1H), 3.10 (s, 3H), 3.00 – 2.87 (m, 1H), 2.86 – 2.72 (m, 1H), 2.37 (s, 3H), 2.36 – 2.26 (m, 1H), 2.06 – 1.92 (m, 2H), 1.91 – 1.78 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 177.9, 162.6, 143.6, 140.2, 139.3, 134.5 (q, J = 32.7 Hz), 133.4, 132.4, 129.9, 129.4, 128.4, 127.8, 126.7, 125.5 (q, J = 3.6 Hz), 123.5 (q, J = 272.8 Hz), 48.8 , 38.0 , 34.7 , 30.0 , 22.5 , 21.5. HRMS (ESI) calcd. for $C_{27}H_{25}O_4N_2F_3S [M+Na]^+ m/z$ 553.1385, found 553.1385.


Prepared according to general procedure (A) from cyclopentanone and 1-bromo-4-fluorobenzene to provide the title compound **1j** as a yellowish solid¹. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.1 Hz, 2H), 7.73 (d, *J* = 8.3 Hz, 2H), 7.29 (dd, *J* = 8.6, 5.3 Hz, 2H), 7.03 (t, *J* = 8.7 Hz, 2H), 4.03 (t, *J* =

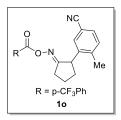
7.3 Hz, 1H), 2.98 - 2.92 (m, 1H), 2.83 - 2.76 (m, 1H), 2.37 - 2.31 (m, 1H), 2.05 - 1.97 (m, 2H), 1.91 - 1.83 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.0, 162.7 (d, J = 20.7 Hz), 160.8, 135.7 (d, J = 3.3 Hz), 134.6 (q, J = 32.8 Hz), 132.4, 129.9, 129.4 (d, J = 8.0 Hz), 125.5 (q, J = 3.7 Hz), 123.5 (q, J = 272.8 Hz), 115.4 (d, J = 21.4 Hz), 48.6, 34.8, 29.9, 22.4.


Prepared according to general procedure (A) from cyclopentanone and 1-bromo-3-chlorobenzene to provide the title compound **1k** as a yellowish solid (43% total yield). ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.1 Hz, 2H), 7.74 (d, *J*

= 8.3 Hz, 2H), 7.37 – 7.17 (m, 4H), 4.03 (t, J = 7.5 Hz, 1H), 3.04 – 2.90 (m, 1H), 2.89 – 2.74 (m, 1H), 2.43 – 2.29 (m, 1H), 2.10 – 1.95 (m, 2H), 1.95 – 1.79 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 177.6, 162.7 , 142.3, 134.8 (q, J = 32.8 Hz), 134.5, 132.5, 130.1, 130.0 , 128.1, 127.3, 126.4, 125.7 (q, J = 3.7 Hz), 123.7 (q, J = 272.9 Hz), 49.1, 34.9, 30.2, 22.6. HRMS (ESI) calcd. for C₁₉H₁₅O₂NF₃Cl [M+Na]⁺ m/z 404.0641, found 404.0638.

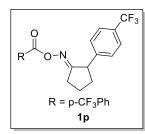

Prepared according to general procedure (A) from cyclopentanone and 1-bromo-3-(trifluoromethoxy)benzene to provide the title compound **11** as a yellowish solid (33% total yield). ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.1 Hz, 2H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.37 (t, *J* = 7.9 Hz, 1H),

7.28 (d, J = 7.9 Hz, 1H), 7.17 (s, 1H), 7.15 – 7.08 (m, 1H), 4.07 (t, J = 7.2 Hz, 1H), 3.06 – 2.91 (m, 1H), 2.91 – 2.73 (m, 1H), 2.45 – 2.28 (m, 1H), 2.12 – 1.96 (m, 2H), 1.96 – 1.81 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 177.4, 162.7, 149.6, 142.6, 134.9 $(q, J = 32.7 \text{ Hz}), 132.6, 130.12, 130.08, 126.6, 125.7 (q, J = 3.7 \text{ Hz}), \delta 123.7 (q, J = 272.8 \text{ Hz}), 120.7, 120.6 (q, J = 257.2 \text{ Hz}), 119.4, 49.1, 35.0, 30.2, 22.6. HRMS (ESI) calcd. for C₂₀H₁₅O₃NF₆ [M+Na]⁺$ *m/z*454.0854, found 454.0856.

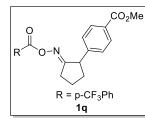

Prepared according to general procedure (A) from cyclopentanone and 1-bromo-3-(trifluoromethyl)benzene to provide the title compound **1m** as a yellowish solid (24% total yield). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.6 Hz, 2H),

7.73 (d, J = 8.6 Hz, 2H), 7.63 – 7.41 (m, 4H), 4.10 (t, J = 7.4 Hz, 1H), 3.08 – 2.94 (m, 1H), 2.92 – 2.77 (m, 1H), 2.48 – 2.33 (m, 1H), 2.14 – 1.96 (m, 2H), 1.96 – 1.80 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 177.6, 162.7, 141.2, 134.9 (q, J = 32.8 Hz), 132.5, 131.7, 131.0 (q, J = 32.2 Hz), 130.1, 129.3, 125.7 (q, J = 3.7 Hz), 124.8 (q, J = 3.8 Hz), 124.2 (q, J = 272.3 Hz), 124.0 (q, J = 3.8 Hz), 123.7 (q, J = 272.7 Hz), 49.3, 35.1, 30.2, 22.7. HRMS (ESI) calcd. for C₂₀H₁₅O₂NF₆ [M+Na]⁺ *m/z* 438.0905, found 438.0904.

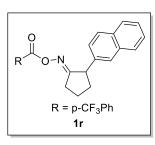
Prepared according to general procedure (A) from cyclopentanone and methyl 3-bromo-4-methylbenzoate to provide the title compound **1n** as a white solid (42% total yield). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.1 Hz, 2H), 7.85 – 7.78 (m, 2H), 7.73 (d, *J* =


8.3 Hz, 2H), 7.30 – 7.21 (m, 1H), 4.22 (t, J = 8.2 Hz, 1H), 3.87 (s, 3H), 3.08 – 2.86 (m, 2H), 2.47 (s, 3H), 2.42 – 2.27 (m, 1H), 2.19 – 2.02 (m, 1H), 2.03 – 1.80 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 178.1, 167.2, 162.7, 142.0, 139.7, 134.8 (q, J = 32.7 Hz), 132.6, 130.9, 130.1, 128.5, 128.3, 128.2, 125.7(q, J = 3.7 Hz), 123.7(q, J = 272.6 Hz), 52.1, 46.5, 34.0, 30.6, 22.8, 20.3. HRMS (ESI) calcd. for C₂₂H₂₀O₄NF₃ [M+Na]⁺ *m/z* 442.1242, found 442.1240.

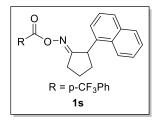
Prepared according to general procedure (A) from cyclopentanone and 3-bromo-4-methylbenzonitrile to provide the title compound **10** as a yellowish solid (5% total yield). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.1 Hz, 2H), 7.74 (d, *J* = 8.3 Hz, 2H), 7.46 – 7.40 (m,


2H), 7.27 (d, J = 7.4 Hz, 1H), 4.20 (t, J = 7.6 Hz, 1H), 3.09 – 2.83 (m, 2H), 2.46 (s, 3H), 2.42 – 2.29 (m, 1H), 2.14 – 1.98 (m, 1H), 1.98 – 1.80 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 177.4, 162.6, 142.2, 140.9, 134.8 (q, J = 32.8 Hz), 132.4, 131.5, 131.0,

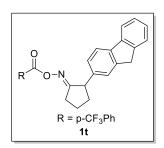
130.5, 130.1, 125.7 (q, J = 3.7 Hz), 123.6 (q, J = 272.9 Hz), 119.2, 110.2, 46.3, 33.9, 30.5, 22.7, 20.4. HRMS (ESI) calcd. for C₂₁H₁₇O₂N₂F₃ [M+Na]⁺ m/z 409.1140, found 409.1129.


Prepared according to general procedure (A) from cyclopentanone and 1-bromo-4-(trifluoromethyl)benzene to provide the title compound **1p** as a yellowish solid (36% total yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.17 (d, *J* = 8.2 Hz, 2H), 7.73 (d, *J* = 8.2 Hz, 2H), 7.59 (d, *J* = 8.2 Hz, 2H), 7.45 (d,

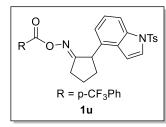
J = 8.1 Hz, 2H), 4.09 (t, J = 7.6 Hz, 1H), 3.08 - 2.93 (m, 1H), 2.91 - 2.74 (m, 1H), 2.47 - 2.31 (m, 1H), 2.12 - 1.96 (m, 2H), 1.95 - 1.80 (m, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.6, 162.7, 144.3, 134.8 (q, J = 32.7 Hz), 132.5, 130.1, 129.3 (q, J = 32.5 Hz), 128.5, 125.7 (q, J = 3.8 Hz), 124.3 (q, J = 270.3 Hz), 123.6 (q, J = 272.8 Hz), 49.4, 35.0, 30.2, 22.7. HRMS (ESI) calcd. for C₂₀H₁₅O₂NF₆ [M+H]⁺ m/z 416.1085, found 416.1072.


Prepared according to general procedure (A) from cyclopentanone and methyl 4-bromobenzoate to provide the title compound **1q** as a yellowish solid². ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.1 Hz, 2H), 7.73 (d, *J* = 8.3 Hz, 2H),

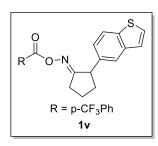
7.25 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 4.01 (t, J = 7.2 Hz, 1H), 3.79 (s, 3H), 3.00 – 2.87 (m, 1H), 2.84 – 2.73 (m, 1H), 2.36 – 2.23 (m, 1H), 2.07 – 1.96 (m, 2H), 1.90 – 1.80 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.4, 162.6,158.4, 134.6 (q, J =32.7 Hz), 132.5, 131.9, 129.9, 128.8, 125.5 (q, J = 3.7 Hz), 123.5(q, J = 272.8 Hz), 114.0, 55.2, 48.5, 34.6, 29.9, 22.4. HRMS (ESI) calcd. for C₂₁H₁₈O₄NF₃ [M+H]⁺ m/z406.1266, found 406.1254.


Prepared according to general procedure (A) from cyclopentanone and 2-bromonaphthalene to provide the title compound **1r** as a yellowish solid¹. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.1 Hz, 2H), 7.88 – 7.79 (m, 3H), 7.77 – 7.72 (m, 3H), 7.50 – 7.42 (m, 3H), 4.24 (t, *J* = 7.7 Hz, 1H),

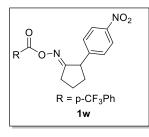
3.02 - 2.96 (m, 1H), 2.91 - 2.84 (m, 1H), 2.44 - 2.37 (m, 1H), 2.22 - 2.15 (m, 1H), 2.11 - 2.03 (m, 1H), 1.97 - 1.86 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.1, 162.6, 137.4, 134.6 (q, J = 32.9 Hz), 133.4, 132.5, 132.4, 130.0, 128.4, 127.8, 127.6, 126.4, 126.1, 126.2, 125.7, 125.5(q, J = 3.7 Hz), 123.5 (q, J = 272.8 Hz), 49.4, 34.6, 30.1, 22.6.


Prepared according to general procedure (A) from cyclopentanone and 1-bromonaphthalene to provide the title compound **1s** as a yellowish solid (20% total yield). ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.1 Hz, 2H), 8.06 (d, *J* = 8.3

Hz, 1H), 7.88 (d, J = 7.8 Hz, 1H), 7.81 – 7.71 (m, 3H), 7.60 – 7.48 (m, 2H), 7.44 (t, J = 7.7 Hz, 1H), 7.34 (d, J = 7.1 Hz, 1H), 4.86 (t, J = 7.0 Hz, 1H), 3.03 (t, J = 7.5 Hz, 2H), 2.54 – 2.35 (m, 1H), 2.14 – 2.03 (m, 1H), 2.03 – 1.87 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 178.7 , 162.6 , 137.4 , 134.6 (q, J = 32.7 Hz), 134.1 , 132.6, 131.3, 130.0 , 129.0 , 127.6 , 126.1 , 125.7 , 125.6 (q, J = 3.7 Hz), 125.4 , 124.7 , 123.6 (q, J = 272.7 Hz), 123.5 , 46.0 , 34.7 , 30.6 , 22.6 . HRMS (ESI) calcd. for C₂₃H₁₈O₂NF₃ [M+Na]⁺ *m/z* 420.1187, found 420.1186.

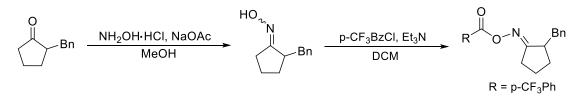

Prepared according to general procedure (A) from cyclopentanone and 2-bromo-9*H*-fluorene to provide the title compound **1t** as a yellowish solid (38% total yield). ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 8.1 Hz, 2H), 7.75 (dt, *J* = 8.8, 4.8 Hz, 4H), 7.57 – 7.48 (m, 2H), 7.40 – 7.28 (m, 3H), 4.15 (t,

J = 7.8 Hz, 1H), 3.90 (s, 2H), 3.08 – 2.78 (m, 2H), 2.47 – 2.33 (m, 1H), 2.20 – 2.01 (m, 2H), 1.99 – 1.83 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.6, 162.8, 143.8, 143.4, 141.5, 140.7, 138.9, 134.7 (q, J = 32.9 Hz), 132.7, 130.1, 126.8, 126.7, 126.6, 125.7 (q, J = 3.7 Hz), 125.1, 124.7, 123.7 (q, J = 272.8 Hz), 120.1, 119.9, 49.5, 37.0, 35.0, 30.2, 22.7. HRMS (ESI) calcd. for C₂₆H₂₀O₂NF₃ [M+Na]⁺ m/z 458.1344, found 458.1342.

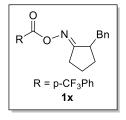

Prepared according to general procedure (A) from cyclopentanone and 4-bromo-1-tosyl-1*H*-indole to provide the title compound **1u** as a yellowish solid (28% total yield). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.2 Hz, 2H), 7.88 (d, *J* = 8.3 Hz, 1H), 7.75 (d, *J* = 8.5 Hz, 2H), 7.73 (d, *J* = 8.9

Hz, 2H), 7.60 (d, J = 3.7 Hz, 1H), 7.32 – 7.19 (m, 3H), 7.06 (d, J = 7.5 Hz, 1H), 6.71 (d, J = 3.7 Hz, 1H), 4.34 (t, J = 7.2 Hz, 1H), 3.06 – 2.84 (m, 2H), 2.42 – 2.28 (m, 4H), 2.09 – 1.85 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.9, 162.7, 145.2, 135.3, 135.1, 134.8 (q, J = 32.6 Hz), 133.9, 132.6, 130.1, 130.1, 129.7, 127.0, 126.3, 125.7 (q, J = 3.6 Hz), 124.9, 123.7 (q, J = 272.7 Hz), 121.8, 112.5, 107.2, 47.1, 34.8, 30.5, 22.9, 21.7. HRMS (ESI) calcd. for C₂₈H₂₃O₄N₂F₃S [M+Na]⁺ m/z 563.1228, found 563.1224.

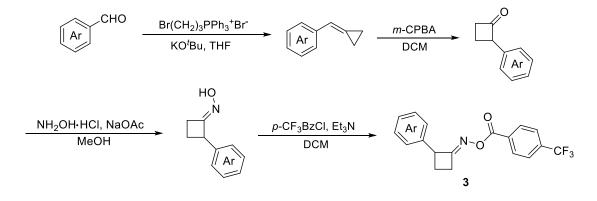
Prepared according to general procedure (A) from cyclopentanone and 5-bromobenzo[b]thiophene to provide the title compound **1v** as a yellowish solid¹. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.1 Hz, 2H), 7.85 (d, *J* = 8.4 Hz, 1H), 7.80 – 7.69 (m, 3H), 7.43 (d, *J* = 5.4 Hz, 1H), 7.35 – 7.28 (m,


2H), 4.19 (t, *J* = 7.9 Hz, 1H), 3.02 – 2.94 (m, 1H), 2.91 – 2.78 (m, 1H), 2.43 – 2.35 (m, 1H), 2.20 – 2.02 (m, 2H), 1.95 – 1.83 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.3, 162.6, 139.9, 138.4, 136.2, 134.6 (q, *J* = 32.7 Hz), 132.5, 129.9, 126.8, 125.5 (q, *J* = 3.7 Hz), 124.4, 123.8, 123.5 (q, *J* = 272.8 Hz), 122.7, 49.2, 34.9, 30.0, 22.5.

Prepared according to general procedure (A) from cyclopentanone and 1-bromo-4-nitrobenzene to provide the title compound **1w** as a yellow oil (18% total yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.23 – 8.07 (m, 4H), 7.71 (d, *J* = 8.3 Hz, 2H), 7.48 (d, *J* = 8.7 Hz, 2H), 4.11 (t, *J* = 8.3 Hz, 1H),


3.12 - 2.94 (m, 1H), 2.93 - 2.77 (m, 1H), 2.51 - 2.33 (m, 1H), 2.14 - 1.81 (m, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.1, 162.5, 147.8, 146.9, 134.7 (q, *J* = 32.8 Hz), 132.3, 130.0, 129.1, 125.6 (q, *J* = 3.7 Hz), 123.8, 123.5 (q, *J* = 272.8 Hz), 49.4, 35.0, 30.2, 22.7. HRMS (ESI) calcd. for C₁₉H₁₅O₄N₂F₃ [M+H]⁺ *m*/*z* 393.1062, found 393.1057.

The procedure for synthesis of the substrate 1x.


The 2-benzylcyclopentan-1-one were synthesized according to the reported procedure⁴. 2-benzylcyclopentan-1-one (1.0 equiv, 12.6 mmol), hydroxylamine hydrochloride (1.2 equiv) and sodium acetate (1.5 equiv) were added to a round bottom flask containing a stirrer bar. MeOH (0.56 M) was added and the reaction was stirred for 12 h at 75 °C. Then methanol was removed under vacuum and the resulting mixture was extracted with DCM. The organic layer was washed with water and dried over Na₂SO₄. The solvent was removed under reduced pressure and the crude material was subjected to column chromatography to afford oximes.

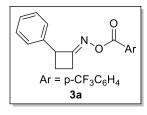
To a mixture of oxime (1.0 equiv, 6.7 mmol), triethylamine (1.5 equiv) and DCM (0.5 M) in a flask was added 4-(trifluoromethyl)benzoyl chlorides (1.1 equiv) slowly at 0 °C. After 1 h, a saturated solution of aqueous NaHCO₃ (10 mL) was added to the above solution, and the mixture was diluted with DCM. The organic layer was washed with brine (20 mL) and dried over Na₂SO₄. The solvent was removed under vacuum and the residue was subjected to column chromatography on silica gel with EtOAc–petroleum ether as an eluent to give the substrate.

Prepared from 2-benzylcyclopentan-1-one to provide the title compound **1x** as a white solid (77% total yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.20 (d, *J* = 8.1 Hz, 2H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.38 – 7.18 (m, 5H), 3.39 (dd, *J* = 13.7, 4.2 Hz, 1H), 3.14 – 3.01 (m,

1H), 2.93 - 2.78 (m, 1H), 2.77 - 2.64 (m, 2H), 1.97 - 1.83 (m, 2H), 1.77 - 1.63 (m, 1H), 1.62 - 1.50 (m, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.1, 162.9, 139.8, 134.8 (q, *J* = 32.7 Hz), 132.7, 130.1, 129.2, 128.6, 126.4, 125.7 (q, *J* = 3.7 Hz), 123.7 (q, *J* = 272.8 Hz), 45.8, 38.1, 30.9, 29.9, 22.3. HRMS (ESI) calcd. for C₂₀H₁₈O₂NF₃ [M+H]⁺ *m*/*z* 362.1368, found 362.1361.

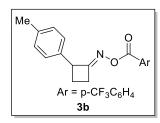
Genaral procedure (B) for synthesis of the substrates 3⁵⁻⁹.

A solution of KO'Bu (3.0 equiv) in THF (1.3 M) was slowly added to a solution of (3-bromopropyl)triphenylphosphonium bromide (1.5 equiv) in dry THF (0.5 M) and stirred at 70 °C for 1 h. Then a THF solution of benzaldehyde (~20 mmol, 2.0 M in THF, 1.0 equiv) was added dropwise and the mixture was refluxed for 6 h. After cooling, the suspension was filtered and the solvent of the filtrate was removed under vacuum, the products were purified by column chromatography on silica gel to afford (phenylmethylene)cyclopropanes.

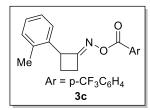

To the solution of (phenylmethylene)cyclopropanes (~15 mmol, 1.0 equiv) in DCM (0.15 M) was added a solution of *m*-CPBA (1.0 equiv) in DCM (0.38 M) dropwise at 0 °C and stirred at 0 °C (as for synthesis of substrates **3m**, **3n**, **3o**, **3p**, temperature should be elevated to RT) for ~1 h (detected by TLC). Then, the solution was diluted with a saturated solution of aqueous Na₂SO₃ (30 mL) and extracted with DCM (3*20 mL). The organic phase was washed successively with a saturated solution of aqueous Na₂SO₃ (2*30 mL), and brine (30 mL), then dried over Na₂SO₄ and concentrated in vacuum. The crude material was then purified by column chromatography on silica gel with a mixture of petroleum ether and ethyl acetate to give various cyclobutanones.

To a mixture of hydroxylamine hydrochloride (1.2 equiv), sodium acetate (1.5 equiv), methanol (0.56 M) in a flask was added cyclobutanone (~5 mmol, 1.0 equiv) and the mixture was stirred at 75 °C for 12 h. The reaction mixture was cooled to room

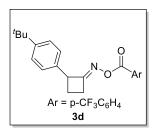
temperature and then methanol was removed under vacuum and the resulting mixture was extracted with DCM. The organic layer was washed with water and dried over Na₂SO₄. The solvent was removed under reduced pressure and the crude material was subjected to column chromatography to afford cyclobutanone oximes.


To a mixture of cyclobutanone oxime (~3 mmol, 1.0 equiv), triethylamine (1.5 equiv) and DCM (0.5 M) in a flask was added 4-(trifluoromethyl)benzoyl chlorides (1.1 equiv) slowly at 0 °C. After 1 h, a saturated solution of aqueous NaHCO₃ (10 mL) was added to the above solution, and the mixture was diluted with DCM. The organic layer was washed with brine and dried over Na₂SO₄. The solvent was removed under vacuum and the residue was subjected to column chromatography on silica gel with EtOAc–petroleum ether as an eluent to give cyclobutanone O-(4-(trifluoromethyl)benzoyl) oximes.

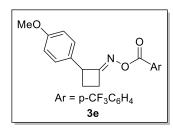
Characterization data for cyclobutanone oxime esters 3


Prepared according to general procedure (B) from benzaldehyde to provide the title compound **3a** as a yellowish solid⁵. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 8.1 Hz, 2H), 7.74 (d, J = 8.2 Hz, 2H), 7.44 – 7.26 (m, 5H), 4.70 (ddd, J =

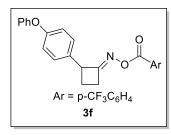
10.0, 7.1, 2.8 Hz, 1H), 3.31 - 3.07 (m, 2H), 2.65 (dtd, J = 11.3, 9.6, 6.1 Hz, 1H), 2.31 (ddt, J = 11.2, 9.9, 7.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 162.7, 138.5, 134.7 (q, J = 33.3 Hz), 132.4, 130.0, 128.7, 127.2, 127.1, 125.5 (q, J = 4.0 Hz), 123.5 (q, J = 274.7 Hz), 49.7, 29.6, 23.2.


Prepared according to general procedure (B) from 4methylbenzaldehyde to provide the title compound **3b** as a yellowish solid⁵. ¹H NMR (400 MHz, CDCl₃) δ 8.21–8.13 (m, 2H), 7.73 (d, *J* = 8.2 Hz, 2H), 7.29 (d, *J* = 7.8 Hz, 2H), 7.17

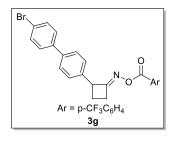
(d, *J* = 7.9 Hz, 2H), 4.66 (ddd, *J* = 10.0, 6.9, 2.9 Hz, 1H), 3.34– 3.04 (m, 2H), 2.62 (dtd, *J* = 11.3, 9.7, 6.1 Hz, 1H), 2.34 (s, 3H), 2.33–2.22 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 162.7, 136.8, 135.5, 134.7 (q, *J* = 32.3 Hz), 132.4, 130.0, 129.3, 127.0, 125.5 (q, *J* = 4.0 Hz), 123.5 (q, *J* = 273.7 Hz), 49.4, 29.5, 23.2, 21.1.


Prepared according to general procedure (B) from 2methylbenzaldehyde to provide the title compound **3c** as a white solid⁵. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 8.1 Hz, 2H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.60–7.53 (m, 1H), 7.27–7.13 (m,

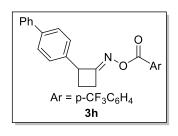
3H), 4.80 (ddd, *J* = 10.0, 7.1, 3.0 Hz, 1H), 3.33–3.03 (m, 2H), 2.65 (dtd, *J* = 11.2, 9.6, 6.1 Hz, 1H), 2.33 (s, 3H), 2.22–2.05 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 162.7, 136.9, 135.5, 134.7 (q, *J* = 33.3 Hz), 132.4, 130.4, 130.0, 127.2, 126.2, 126.1, 125.5 (q, *J* = 4.0 Hz), 123.5 (q, *J* = 243.4 Hz), 47.9, 29.3, 23.4, 19.5.


Prepared according to general procedure (B) from 4-(tertbutyl)benzaldehyde to provide the title compound **3d** as a white solid (5% total yield). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.1 Hz, 2H), 7.74 (d, *J* = 8.3 Hz, 2H), 7.43 – 7.30 (m, 4H), 4.70 – 4.61 (m, 1H), 3.31 – 3.04 (m, 2H), 2.69 – 2.52

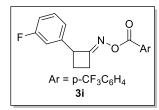
(m, 1H), 2.38 - 2.24 (m, 1H), 1.32 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.1, 162.9, 150.2, 135.5, 134.8 (q, J = 32.7 Hz), 132.6, 130.1, 127.0, 125.73, 125.67 (q, J = 3.7 Hz), 123.7 (q, J = 272.7 Hz), 49.5, 34.6, 31.4, 29.7, 23.2. HRMS (ESI) calcd. for $C_{22}H_{22}O_2NF_3$ [M+Na]⁺ m/z 412.1500, found 412.1498.


Prepared according to general procedure (B) from 4methoxybenzaldehyde to provide the title compound **3e** as a yellowish solid⁵. ¹H NMR (400 MHz, CDCl₃) δ 7.63–7.40 (m, 4H), 7.22 (d, *J* = 8.7 Hz, 2H), 6.87 (d, *J* = 8.7 Hz, 2H), 4.50 (ddd, *J* = 10.2, 7.4, 2.8 Hz, 1H), 3.77 (s, 3H), 3.28–

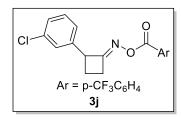
3.08 (m, 2H), 2.65–2.49 (m, 1H), 2.23–2.08 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 162.5, 158.8, 134.3 (q, *J* = 32.3 Hz), 131.9, 131.0, 129.8, 128.4, 125.1 (q, *J* = 3.0 Hz), 123.4 (q, *J* = 273.7 Hz), 114.1, 55.2, 50.8, 29.1, 24.3.


Prepared according to general procedure (B) from 4phenoxybenzaldehyde to provide the title compound **3f** as a yellowish solid (3% total yield). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 8.0 Hz, 2H), 7.74 (d, J = 8.2 Hz, 2H), 7.42 – 7.30 (m, 4H), 7.13 – 7.06 (m, 1H), 7.05 – 6.97 (m, 4H), 4.73

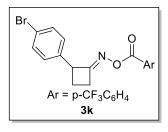
-4.60 (m, 1H), 3.31 - 3.08 (m, 2H), 2.71 - 2.57 (m, 1H), 2.37 - 2.21 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 162.8, 157.3, 156.4, 134.8 (q, *J* = 32.7 Hz), 133.5, 132.5, 130.1, 129.8, 128.7, 125.7 (q, *J* = 3.7 Hz), 123.7 (q, *J* = 272.9 Hz), 123.4, 119.2, 118.9, 49.2, 29.6, 23.5. HRMS (ESI) calcd. for C₂₄H₁₈O₃NF₃ [M+Na]⁺ *m/z* 448.1136, found 448.1138.


Prepared according to general procedure (B) from 4'bromo-[1,1'-biphenyl]-4-carbaldehyde to provide the title compound **3g** as a yellowish solid (3% total yield). ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.1 Hz, 2H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.58 – 7.51 (m, 4H), 7.51 – 7.40 (m, 4H), 4.78

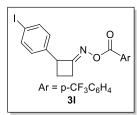
-4.67 (m, 1H), 3.33 - 3.13 (m, 2H), 2.74 - 2.60 (m, 1H), 2.41 - 2.26 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 162.9, 139.7, 139.0, 138.1, 134.8 (q, *J* = 32.6 Hz), 132.4, 132.0, 130.1, 128.8, 127.7, 127.3, 125.7 (q, *J* = 3.6 Hz), 123.7 (q, *J* = 272.7 Hz), 121.7, 49.5, 29.8, 23.3. HRMS (ESI) calcd. for C₂₄H₁₇O₂NF₃Br [M+Na]⁺ *m/z* 510.0292, found 510.0292.


Prepared according to general procedure (B) from [1,1'biphenyl]-4-carbaldehyde to provide the title compound **3h** as a yellowish solid (8% total yield). ¹H NMR (400 MHz, CDCl₃) δ 8.21 – 8.15 (m, 2H), 7.75 (d, *J* = 8.2 Hz, 2H), 7.62 – 7.56 (m, 4H), 7.51 – 7.41 (m, 4H), 7.39 – 7.32 (m, 1H),

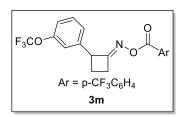
4.80 - 4.69 (m, 1H), 3.37 - 3.11 (m, 2H), 2.75 - 2.62 (m, 1H), 2.43 - 2.27 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 162.7, 140.7, 140.1, 137.6, 134.6 (q, J = 32.8 Hz), 132.4, 130.0, 128.8, 127.6, 127.4, 127.3, 127.0, 125.5, 123.6 (q, J = 272.8 Hz), 49.4, 29.6, 23.2. HRMS (ESI) calcd. for C₂₄H₁₈O₂NF₃ [M+Na]⁺ m/z 432.1187, found 432.1178.


Prepared according to general procedure (B) from 3fluorobenzaldehyde to provide the title compound **3i** as a yellowish solid⁵. ¹H NMR (400 MHz, CDCl₃): δ 7.62–7.51 (m, 4H), 7.33 (td, *J* = 7.9, 6.0 Hz, 1H), 7.10 (d, *J* = 7.7 Hz,

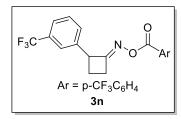
1H), 7.06–6.94 (m, 2H), 4.56 (ddd, J = 10.2, 7.2, 2.8 Hz, 1H), 3.34– 3.13 (m, 2H), 2.64 (dtd, J = 11.5, 9.7, 6.2 Hz, 1H), 2.21 (ddt, J = 11.5, 9.9, 7.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 169.1, 163.1 (d, J = 247.4 Hz), 162.4, 141.3 (d, J = 7.1 Hz), 134.6 (d, J = 33.3 Hz), 131.8, 130.4 (d, J = 9.1 Hz), 129.8, 125.3 (q, J = 4.0 Hz), 123.5 (q, J = 273.7 Hz), 123.0 (d, J = 3.0 Hz), 114.5 (d, J = 18.2 Hz), 114.3 (d, J = 18.2 Hz), 50.9 (d, J = 2.0 Hz), 29.4, 24.2.


Prepared according to general procedure (B) from 3chlorobenzaldehyde to provide the title compound **3j** as a yellowish solid (3% total yield). ¹H NMR (400 MHz, CDCl₃): δ 8.05 (d, J = 7.4 Hz, 2H), 7.61 (d, J = 8.1 Hz, 2H),

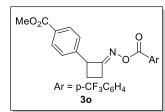
7.27 (s, 1H), 7.24 – 7.07 (m, 3H), 4.63 – 4.45 (m, 1H), 3.25 – 2.97 (m, 2H), 2.66 – 2.44 (m, 1H), 2.27 – 2.06 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 170.9, 162.7, 140.5, 134.7 (q, *J* = 32.6 Hz), 134.5, 132.3, 130.03, 130.00, 127.4, 127.3, 125.6 (q, *J* = 3.6 Hz), 125.5, 123.6 (q, *J* = 272.8 Hz), 49.1, 29.6, 23.2. HRMS (ESI) calcd. for C₁₈H₁₃O₂NF₃Cl [M+Na]⁺ *m/z* 390.0485, found 390.0484.


Prepared according to general procedure (B) from 4bromobenzaldehyde to provide the title compound **3k** as a yellow solid⁵. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.1 Hz, 2H), 7.73 (d, *J* = 8.3 Hz, 2H), 7.47 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.2 Hz, 2H), 4.64 (ddd, *J* = 10.1, 7.1, 2.9 Hz,

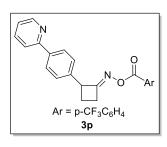
1H), 3.37–3.06 (m, 2H), 2.64 (dtd, J = 11.4, 9.6, 6.1 Hz, 1H), 2.38–2.17 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 170.9, 162.6, 137.4, 134.7 (q, J = 33.3 Hz), 132.3, 131.8, 130.0, 128.8, 125.5 (q, J = 3.0 Hz), 123.5 (q, J = 274.7 Hz), 121.1, 49.0, 29.5, 23.2.


Prepared according to general procedure (B) from 4iodobenzaldehyde to provide the title compound 31 as a yellowish solid⁵. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 8.1 Hz, 2H), 7.73 (d, J = 8.2 Hz, 2H), 7.68 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 4.63 (ddd, J = 10.0, 7.1, 2.8 Hz, 1H), 3.31–3.05 (m, 2H), 2.64 (dtd,

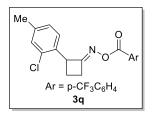
J = 11.4, 9.6, 6.1 Hz, 1H), 2.25 (ddt, J = 11.4, 10.0, 7.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 170.9, 162.6, 138.1, 137.8, 134.8 (q, J = 32.3 Hz), 132.3, 130.0, 129.1, 125.6 (q, J = 4.0 Hz), 123.5 (q, J = 273.7 Hz), 92.6, 49.1, 29.6, 23.1.


Prepared according to general procedure (B) from 3-(trifluoromethoxy)benzaldehyde to provide the title compound **3m** as a white solid (4 % total yield). ¹H NMR $(CDC1_3, 400 \text{ MHz}) \delta 8.20 - 8.13 \text{ (m, 2H)}, 7.73 \text{ (dd, } J = 8.8,$

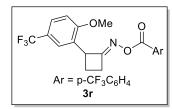
0.6 Hz, 2H), 7.40 – 7.37 (m, 2H), 7.25 – 7.22 (m, 1H), 7.17 – 7.09 (m, 1H), 4.75 – 4.65 (m, 1H), 3.32 - 3.09 (m, 2H), 2.75 - 2.59 (m, 1H), 2.36 - 2.20 (m, 1H); ¹³C NMR $(CDCl_3, 101 \text{ MHz}) \delta 170.8, 162.8, 149.6 (q, J = 1.8 \text{ Hz}), 140.9, 134.9 (q, J = 32.7 \text{ Hz}),$ 132.4, 130.2, 130.2, 125.8, 125.7 (q, J = 3.8 Hz), 123.7 (q, J = 272.8 Hz), 120.6 (q, J =257.2 Hz), 119.9, 119.7, 49.2, 29.7, 23.4. HRMS (ESI) calcd. for C19H13O3NF6 [M+Na]⁺ *m*/*z* 440.0697, found 440.0700.


Prepared according to general procedure (B) from 3-(trifluoromethyl)benzaldehyde to provide the title compound **3n** as a yellowish liquid (4% total yield). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 8.7 Hz, 2H), 7.72

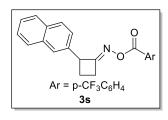
(d, J = 8.6 Hz, 2H), 7.68 - 7.58 (m, 2H), 7.56 - 7.42 (m, 2H), 4.84 - 4.66 (m, 1H), 3.40-3.11 (m, 2H), 2.78 - 2.61 (m, 1H), 2.40 - 2.21 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 170.8, 162.8, 139.6, 134.9 (q, J = 32.7 Hz), 132.3, 131.1 (q, J = 32.3 Hz), 130.9, 130.1, 129.4, 125.69 (q, J = 3.7 Hz), 124.2 (q, J = 3.8 Hz), 124.16 (q, J = 272.4 Hz), 123.99 (q, J = 3.8 Hz), 123.65 (q, J = 272.7 Hz), 49.3, 29.7, 23.4. HRMS (ESI) calcd. for $C_{19}H_{13}O_2NF_6 [M+Na]^+ m/z 423.0748$, found 424.0753.


Prepared according to general procedure (B) from methyl 4-formylbenzoate to provide the title compound **30** as a yellowish solid (2% total yield). ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 8.2 Hz, 2H), 8.00 (d, *J* = 8.2 Hz, 2H), 7.71 (d,

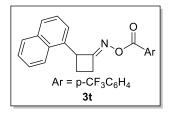
J = 8.1 Hz, 2H), 7.47 (d, J = 8.2 Hz, 2H), 4.79 – 4.63 (m, 1H), 3.89 (s, 3H), 3.32 – 3.08 (m, 2H), 2.75 – 2.59 (m, 1H), 2.36 – 2.20 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 170.9, 166.8, 162.7, 143.7, 134.8 (q, J = 32.8 Hz), 132.3, 130.06, 130.08, 129.1, 127.2, 125.6 (q, J = 3.6 Hz), 123.6 (q, J = 272.8 Hz), 52.1, 49.5, 29.7, 23.3. HRMS (ESI) calcd. for C₂₀H₁₆O₄NF₃ [M+Na]⁺ *m/z* 414.0929, found 414.0927.


Prepared according to general procedure (B) from 4-(pyridin-2-yl)benzaldehyde to provide the title compound **3p** as a yellowish solid (14% total yield). ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, *J* = 4.6 Hz, 1H), 8.16 (d, *J* = 8.1 Hz, 2H), 7.98 (d, *J* = 8.3 Hz, 2H), 7.76 – 7.66 (m, 4H), 7.50 (d, *J* = 8.2

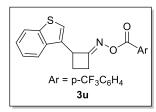
Hz, 2H), 7.23 – 7.17 (m, 1H), 4.79 – 4.67 (m, 1H), 3.32 – 3.09 (m, 2H), 2.73 – 2.57 (m, 1H), 2.38 – 2.24 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.5, 162.8, 157.0, 149.7, 139.4, 138.3, 136.9, 134.7 (q, *J* = 32.7 Hz), 132.4, 130.1, 127.6, 127.3, 125.6 (q, *J* = 3.7 Hz), 123.6 (q, *J* = 272.7 Hz), 122.2, 120.5, 49.4, 29.7, 23.3. HRMS (ESI) calcd. for C₂₃H₁₇O₂N₂F₃ [M+H]⁺ *m/z* 411.1320, found 411.1320.


Prepared according to general procedure (B) from 2-chloro-4methylbenzaldehyde to provide the title compound **3q** as a white solid (5% total yield). ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.7 Hz, 2H), 7.72 (d, *J* = 8.6 Hz, 2H), 7.54 (d, *J* = 7.9

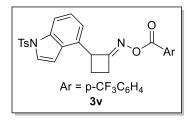
Hz, 1H), 7.19 (s, 1H), 7.05 (d, J = 7.9 Hz, 1H), 4.95 – 4.83 (m, 1H), 3.29 – 3.05 (m, 2H), 2.78 – 2.64 (m, 1H), 2.30 (s, 3H), 2.17 – 2.03 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.0, 162.7, 138.8, 134.8 (q, J = 32.7 Hz), 133.3, 132.9, 132.4, 130.2, 130.1, 128.2, 127.9, 125.6 (q, J = 3.7 Hz), 123.6 (q, J = 272.8 Hz), 47.7, 29.4, 24.1, 20.8. HRMS (ESI) calcd. for C₁₉H₁₅O₂NF₃Cl [M+Na]⁺ *m/z* 404.0641, found 404.0634.


Prepared according to general procedure (B) from 2methoxy-5-(trifluoromethyl)benzaldehyde to provide the title compound **3r** as a yellowish solid (15% total yield). ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.4 Hz, 2H), 7.73 (d,

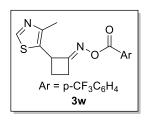
J = 8.2 Hz, 2H), 7.66 (s, 1H), 7.52 (d, J = 8.6 Hz, 1H), 6.94 (d, J = 8.6 Hz, 1H), 4.84 – 4.72 (m, 1H), 3.90 (s, 3H), 3.35 – 3.20 (m, 1H), 3.20 – 3.06 (m, 1H), 2.67 – 2.53 (m, 1H), 2.28 – 2.14 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 162.8, 159.6, 134.8 (q, J = 32.7 Hz), 132.6, 130.2, 128.0, 126.2 (q, J = 3.8 Hz), 125.9 – 125.6 (m), 124.5 (q, J = 271.3 Hz), 123.7 (q, J = 272.8 Hz), 122.9 (q, J = 32.7 Hz), 110.7, 55.9, 45.9, 29.7, 23.2. HRMS (ESI) calcd. for C₂₀H₁₅O₃NF₆ [M+Na]⁺ *m/z* 454.0854, found 454.0854.


Prepared according to general procedure (B) from 2naphthaldehyde to provide the title compound **3s** as a yellowish solid⁵. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 8.1 Hz, 2H), 7.84 (ddd, J = 12.3, 8.4, 3.6 Hz, 4H), 7.74 (d, J

= 8.2 Hz, 2H), 7.59–7.38 (m, 3H), 4.86 (ddd, J = 10.0, 6.8, 2.9 Hz, 1H), 3.41–3.13 (m, 2H), 2.71 (dtd, J = 11.3, 9.7, 6.1 Hz, 1H), 2.40 (ddt, J = 11.2, 9.9, 7.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 162.7, 135.8, 134.7 (q, J = 32.3 Hz), 133.3, 132.6, 132.4, 130.0, 128.6, 127.9, 127.6, 126.3, 125.9, 125.6 (q, J = 3.0 Hz), 125.3, 123.5 (d, J = 273.7 Hz), 49.8, 29.6, 23.2.

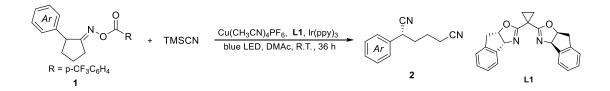

Prepared according to general procedure (B) from 1naphthaldehyde to provide the title compound **3t** as a yellowish solid (6% total yield). ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.1 Hz, 2H), 7.91 – 7.82 (m, 3H), 7.81 – 7.73

(m, 3H), 7.58 - 7.43 (m, 2H), 5.29 (t, J = 8.1 Hz, 1H), 3.30 - 3.21 (m, 2H), 2.91 - 2.79 (m, 1H), 2.26 - 2.12 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 162.8, 134.8 (q, J = 32.7 Hz), 134.3, 134.1, 132.4, 130.7, 130.1, 129.1, 128.0, 126.3, 125.9, 125.7 (q, J = 3.3 Hz), 125.6, 123.7, 123.7 (q, J = 272.8 Hz), 123.4, 47.7, 29.6, 24.5. HRMS (ESI) calcd. for C₂₂H₁₆O₂NF₃ [M+Na]⁺ *m/z* 406.1031, found 406.1028.


Prepared according to general procedure (B) from benzo[b]thiophene-3-carbaldehyde to provide the title compound **3u** as a yellowish solid (2% total yield). ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, *J* = 8.0 Hz, 2H), 7.91 – 7.85 (m,

1H), 7.78 - 7.68 (m, 3H), 7.65 (d, J = 1.3 Hz, 1H), 7.44 - 7.35 (m, 2H), 5.00 - 4.88 (m, 1H), 3.39 - 3.17 (m, 2H), 2.85 - 2.68 (m, 1H), 2.36 - 2.20 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 170.8, 162.9, 141.0, 137.6, 134.9 (q, J = 32.8 Hz), 132.7, 130.7, 130.2, 125.7 (q, J = 3.7 Hz), 124.7, 124.3 , 123.7 (q, J = 272.8 Hz), 123.2, 122.9, 121.8, 44.7, 30.0, 22.8. HRMS (ESI) calcd. for C₂₀H₁₄O₂NSF₃ [M+H]⁺ *m/z* 390.0776, found 390.0780.

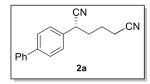
Prepared according to general procedure (B) from 1tosyl-1*H*-indole-4-carbaldehyde to provide the title compound **3v** as a yellowish solid (8% total yield). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.1 Hz, 2H), 7.91


(d, J = 8.3 Hz, 1H), 7.80 – 7.71 (m, 4H), 7.61 (d, J = 3.7 Hz, 1H), 7.40 (dt, J = 7.5, 0.8 Hz, 1H), 7.29 (t, 1H), 7.25 – 7.21 (m, 2H), 6.69 (dd, J = 3.7, 0.8 Hz, 1H), 4.96 – 4.87 (m, 1H), 3.35 - 3.13 (m, 2H), 2.75 - 2.62 (m, 1H), 2.35 (s, 3H), 2.40 - 2.25 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 162.7, 145.2, 135.2, 135.0, 134.7 (q, J = 32.5 Hz), 132.4, 131.3, 130.1, 130.0, 129.0, 126.9, 126.3, 125.6 (q, J = 3.7 Hz), 124.8, 123.6 (q, J = 272.8 Hz), 121.2, 112.7, 107.0, 29.8, 23.4, 21.6. HRMS (ESI) calcd. for $C_{27}H_{21}O_4N_2SF_3$ [M+Na]⁺ m/z 549.1072, found 549.1074.

Prepared according to general procedure (B) from 4methylthiazole-5-carbaldehyde to provide the title compound **3w** as a yellowish solid (9% total yield). ¹H NMR (400 MHz, CDCl₃) δ 8.60 (s, 1H), 8.12 (d, *J* = 8.1 Hz, 2H), 7.68 (d, *J* = 8.2

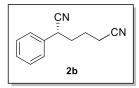
Hz, 2H), 4.87 - 4.76 (m, 1H), 3.35 - 3.22 (m, 1H), 3.20 - 3.07 (m, 1H), 2.77 - 2.64 (m, 1H), 2.41 (s, 3H), 2.20 - 2.09 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 170.8, 162.5, 150.3, 149.8, 134.8 (q, J = 32.7 Hz), 132.1, 130.1, 128.9, 125.6 (q, J = 3.7 Hz), 123.5 (q, J = 272.8 Hz), 42.2, 29.8, 25.6, 15.4. HRMS (ESI) calcd. for C₁₆H₁₃O₂N₂SF₃ [M+H]⁺ m/z 355.0728, found 355.0726.

General Procedure (C) for the asymmetric ring-opening cyanation of cyclopentanone oxime esters 1:


To a 25 mL Schlenk tube, $Cu(CH_3CN)_4PF_6$ (3.7 mg, 0.01 mmol), chiral bisoxazoline ligand L1 (5.3 mg, 0.015 mmol), $Ir(ppy)_3$ (1.6 mg, 0.0025 mmol) were added in super dry DMAc (5 mL) under N₂ atmosphere. The tube was sealed with a Teflon-lined cap, then the mixture was stirred at room temperature for 0.5 h. The **catalyst solution I** was prepared firstly and used in the next step.

To a 25 mL Schlenk tube containing substrate 1(0.1 mmol, 1.0 equiv), **catalyst solution I**(1 mL) and TMSCN (0.15 mmol, 1.5 equiv) were sequentially added under N₂ atmosphere. The tube was sealed with a Teflon-lined cap, and the mixture was stirred at a distance of ~5 cm from a 5 W blue LEDs at room temperature for 36 h .The reaction mixture was diluted with EA(10 mL). The organic layer was washed with brine (3×5 mL) and dried over anhydrous Na₂SO₄. After filtration and concentration, the residue was purified by silica gel chromatography with petroleum ether and ethyl acetate (PE/EA = 9:1~3:1) to afford the product **2**.

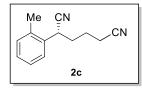
Supplementary Figure 270. photoreactions' set-up and the reaction performed in dark


Characterization data for 2-arylhexanedinitriles

Prepared according to general procedure (C) using 1a to provide the title compound 2a as a yellowish solid (78% yield, 92% ee; 1mmol scale: 68% yield, 90% ee). ¹H NMR (400 MHz,

CDCl₃) δ 7.68 – 7.55 (m, 4H), 7.51 – 7.44 (m, 2H), 7.44 – 7.34 (m, 3H), 3.92 (t, *J* = 7.2 Hz, 1H), 2.52 – 2.33 (m, 2H), 2.19 – 2.04 (m, 2H), 2.01 – 1.77 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 141.7, 140.2, 133.7, 129.0, 128.1, 127.9, 127.7, 127.2, 120.1, 118.8, 36.6, 34.5, 22.9, 17.0. HRMS (ESI) calcd. for C₁₈H₁₆N₂ [M+Na]⁺ *m/z* 283.1211, found 283.1206.

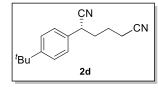
HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 8/2, flow 1.0 mL/min, detection at 214 nm) retention time = 21.23 min (major) and 27.83 min (minor). [α]_D^{20.0} = 3.77 (c 1.0, CHCl₃).



Prepared according to general procedure (C) using **1b** to provide the title compound **2b** as a yellow oil (64% yield, 91% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.31 (m, 5H), 3.87 (t, *J* = 7.2

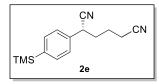
Hz, 1H), 2.51 – 2.31 (m, 2H), 2.18 – 1.99 (m, 2H), 1.94 – 1.73 (m, 2H); ¹³C NMR (101

MHz, CDCl₃) δ 134.8, 129.5, 128.6, 127.3, 120.1, 118.8, 36.9, 34.6, 22.9, 16.9. HRMS (ESI) calcd. for C₁₂H₁₂N₂ [M+Na]⁺ *m/z* 207.0898, found 207.0889.


HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 8/2, flow 1.0 mL/min, detection at 214 nm) retention time = 18.83 min (minor) and 21.38 min (major). [α]_D^{20.0} = 37.0 (c 0.39, CHCl₃).

Prepared according to general procedure (C) using **1c** to provide the title compound **2c** as a yellow oil (81% yield, 90% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.39 (m, 1H), 7.31 – 7.18 (m,

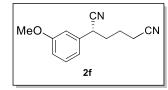
3H), 4.07 - 3.97 (m, 1H), 2.47 - 2.39 (m, 2H), 2.36 (s, 3H), 2.09 - 1.77 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 135.0, 133.2, 131.4, 128.6, 127.5, 127.2, 120.4, 118.8, 33.7, 33.1, 23.1, 19.3, 16.9. HRMS (ESI) calcd. for C₁₃H₁₄N₂ [M+Na]⁺ *m/z* 221.1055, found 221.1050.


HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 8/2, flow 1.0 mL/min, detection at 214 nm) retention time = 20.60 min (minor) and 29.09 min (major). [α]_D^{20.0} = 49.0 (c 0.99, CHCl₃).

Prepared according to general procedure (C) using **1d** to provide the title compound **2d** as a yellowish oil (91% yield, 88% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.37 (m, 2H),

7.30 – 7.23 (m, 2H), 3.84 (t, J = 7.1 Hz, 1H), 2.46 – 2.37 (m, 2H), 2.13 – 2.01 (m, 2H), 1.94 – 1.73 (m, 2H), 1.32 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 151.7, 131.7, 127.0, 126.4, 120.3, 118.8, 36.4, 34.7, 34.5, 31.4, 22.9, 16.9. HRMS (ESI) calcd. for C₁₆H₂₀N₂ [M+Na]⁺ *m/z* 263.1524, found 263.1522.

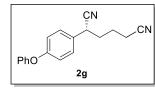
HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 9/1, flow 1.0 mL/min, detection at 214 nm) retention time = 16.39 min (minor) and 17.83 min (major). [α]_D^{20.0} = 9.95 (c 1.24, CHCl₃).



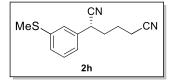
Prepared according to general procedure (C) using **1e** to provide the title compound **2e** as a yellow oil (70% yield, 90% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.1 Hz, 2H),

7.32 (d, J = 7.9 Hz, 2H), 3.86 (t, J = 7.1 Hz, 1H), 2.51 – 2.32 (m, 2H), 2.14 – 2.00 (m, 2H), 1.95 – 1.73 (m, 2H), 0.28 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 141.3, 135.1,

134.4, 126.6, 120.0, 118.8, 36.8, 34.5, 22.9, 16.9, -1.1. HRMS (ESI) calcd. for $C_{15}H_{20}N_2Si [M+Na]^+ m/z$ 279.1293, found 279.1292.

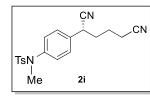

HPLC (AS-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 19/1, flow 1.0 mL/min, detection at 214 nm) retention time = 18.20 min (major) and 22.01 min (minor). [α]_D^{20.0} = 7.66 (c 1.34, CHCl₃).

Prepared according to general procedure (C) using **1f** to provide the title compound **2f** as a yellow oil (52% yield, 90% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (t, *J* = 7.9 Hz, 1H),


6.94 - 6.85 (m, 3H), 3.84 (t, J = 7.1 Hz, 1H), 3.83 (s, 3H), 2.50 - 2.33 (m, 2H), 2.16 - 2.01 (m, 2H), 1.93 - 1.75 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 160.3, 136.2, 130.5, 120.0, 119.5, 118.8, 113.9, 113.2, 55.5, 36.8, 34.4, 22.8, 16.9. HRMS (ESI) calcd. for C₁₃H₁₄N₂O [M+Na]⁺ *m/z* 237.1004, found 237.0998.

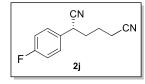
HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 8/2, flow 1.0 mL/min, detection at 214 nm) retention time = 30.34 min (minor) and 36.25 min (major). [α]_D^{20.0} = 18.0 (c 0.43, CHCl₃).

Prepared according to general procedure (C) using **1g** to provide the title compound **2g** as a yellow oil (63% yield, 84% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.34 (m, 2H), 7.31


-7.25 (m, 3H), 7.18 -7.12 (m, 1H), 7.07 -6.99 (m, 4H), 3.85 (t, *J* = 7.2 Hz, 1H), 2.50 -2.34 (m, 2H), 2.14 -2.01 (m, 2H), 1.97 -1.75 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 157.8, 156.6, 130.0, 129.2, 128.7, 124.0, 120.1, 119.5, 119.3, 118.8, 36.2, 34.6, 22.9, 16.9. HRMS (ESI) calcd. for C₁₈H₁₆N₂O [M+Na]⁺ *m/z* 299.1160, found 299.1158. HPLC (OD-H, 0.46*25 cm, 5 µm, hexane/isopropanol = 8/2, flow 1.0 mL/min, detection at 214 nm) retention time = 19.77 min (major) and 25.61 min (minor). [α]_D^{20.0} = -3.41 (c 0.99, CHCl₃).

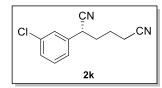
Prepared according to general procedure (C) using **1h** to provide the title compound **2h** as a yellow oil (81% yield, 90% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.26 (m, 1H),

7.26 – 7.16 (m, 2H), 7.09 (dt, *J* = 7.7, 1.4 Hz, 1H), 3.83 (t, *J* = 7.2 Hz, 1H), 2.50 (s, 3H), 2.47 – 2.36 (m, 2H), 2.14 – 2.00 (m, 2H), 1.95 – 1.73 (m, 2H); ¹³C NMR (101 MHz,


CDCl₃) δ 140.4, 135.5, 129.8, 126.3, 125.0, 123.8, 119.8, 118.7, 36.8, 34.4, 22.9, 16.9, 15.7. HRMS (ESI) calcd. for C₁₃H₁₄N₂S [M+Na]⁺ *m/z* 253.0775, found 253.0775. HPLC (OD-H, 0.46*25 cm, 5 µm, hexane/isopropanol = 8/2, flow 1.0 mL/min, detection at 214 nm) retention time = 25.41 min (minor) and 27.72 min (major). [α]_D^{20.0} = 22.7 (c 1.04, CHCl₃).

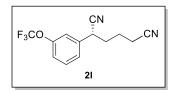
Prepared according to general procedure (C) using **1i** to provide the title compound **2i** as a yellowish oil (79% yield, 90% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 8.3 Hz, 2H), 7.31 – 7.23 (m, 4H), 7.14 (d, J = 8.5 Hz, 2H), 3.87 (t, J = 7.2

Hz, 1H), 3.15 (s, 3H), 2.49 – 2.36 (m, 5H), 2.12 – 1.98 (m, 2H), 1.94 – 1.74 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 144.0, 142.0, 133.6, 133.3, 129.6, 127.9, 127.8, 127.3, 119.8, 118.8, 38.0, 36.4, 34.4, 22.9, 21.7, 16.9. HRMS (ESI) calcd. for C₂₀H₂₁N₃O₂S [M+Na]⁺ *m/z* 390.1252, found 390.1253.


HPLC (AD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 85/15, flow 0.5 mL/min, detection at 214 nm) retention time = 88.43 min (minor) and 93.25 min (major). [α]_D^{20.0} = 4.15 (c 1.37, CHCl₃).

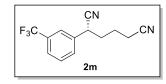
Prepared according to general procedure (C), with modifications of 1.5 mol% Cu(CH₃CN)₄PF₆ and 2.25 mol% L1, using 1j to provide the title compound 2j as a yellow oil (71% yield, 87%

ee). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.29 (m, 2H), 7.15 – 7.06 (m, 2H), 3.86 (t, *J* = 7.2 Hz, 1H), 2.50 – 2.34 (m, 2H), 2.12 – 1.99 (m, 2H), 1.97 – 1.73 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 162.7 (d, *J* = 248.3 Hz), 130.6 (d, *J* = 3.4 Hz), 129.0 (d, *J* = 8.4 Hz), 119.9 , 118.7 , 116.5 (d, *J* = 21.9 Hz), 36.2 , 34.6 , 22.8, 16.9. HRMS (ESI) calcd. for C₁₂H₁₁N₂F [M+Na]⁺ *m/z* 225.0804, found 225.0806.

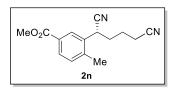

HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 9/1, flow 1.0 mL/min, detection at 214 nm) retention time = 28.40 min (major) and 32.39 min (minor). [α]_D^{20.0} = 18.5 (c 1.49, CHCl₃).

Prepared according to general procedure (C) using 1k to provide the title compound 2k as a yellow oil (64% yield, 91% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.31 (m, 3H), 7.26

- 7.20 (m, 1H), 3.86 (t, J = 7.2 Hz, 1H), 2.53 – 2.34 (m, 2H), 2.14 – 1.99 (m, 2H), 1.95
- 1.73 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 136.7, 135.4, 130.8, 129.0, 127.5, 125.5, 119.4, 118.7, 36.6, 34.4, 22.8, 16.9. HRMS (ESI) calcd. for C₁₂H₁₁N₂Cl [M+Na]⁺ *m/z* 241.0508, found 241.0503.

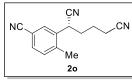

HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 8/2, flow 1.0 mL/min, detection at 214 nm) retention time = 15.20 min (minor) and 18.67 min (major). [α]_D^{20.0} = 22.0 (c 0.81, CHCl₃).

Prepared according to general procedure (C), with modifications of 1.5 mol% Cu(CH₃CN)₄PF₆ and 2.25 mol% L1, using 11 to provide the title compound 21 as a yellow oil (79% yield, 90% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (t,


J = 8.0 Hz, 1H), 7.31 (d, J = 7.8 Hz, 1H), 7.26 – 7.18 (m, 2H), 3.91 (t, J = 7.2 Hz, 1H), 2.55 – 2.36 (m, 2H), 2.17 – 2.01 (m, 2H), 1.98 – 1.76 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 149.9, 137.0, 131.0, 125.7, 121.1, 120.5 (q, J = 258.0 Hz), 120.0, 119.3, 118.6, 36.6, 34.4, 22.8, 16.9. HRMS (ESI) calcd. for C₁₃H₁₁N₂OF₃ [M+Na]⁺ m/z 291.0721, found 291.0720.

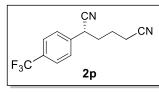
HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 92/8, flow 1.0 mL/min, detection at 214 nm) retention time = 26.14 min (minor) and 28.11 min (major). [α]_D^{20.0} = 18.8 (c 0.66, CHCl₃).

Prepared according to general procedure (C) using **1m** to provide the title compound **2m** as a yellow oil (72% yield, 90% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.52 (m, 4H),


3.95 (t, J = 7.3 Hz, 1H), 2.59 – 2.36 (m, 2H), 2.16 – 2.03 (m, 2H), 1.99 – 1.77 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 135.9 , 132.0 (q, J = 32.8 Hz), 130.7, 130.2, 125.7 (q, J = 3.7 Hz), 124.1 (q, J = 3.7 Hz), 123.7 (q, J = 272.5 Hz), 119.3, 118.6, 36.8, 34.5, 22.9, 16.9. HRMS (ESI) calcd. for C₁₃H₁₁N₂F₃ [M+Na]⁺ m/z 275.0772, found 275.0765. HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 9/1, flow 1.0 mL/min, detection at 214 nm) retention time = 22.71 min (minor) and 24.10 min (major). [α]_D^{20.0} = 19.9 (c 1.12, CHCl₃).

Prepared according to general procedure (C) using **1n** to provide the title compound **2n** as a yellowish oil (79% yield, 89% ee). ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 1.6 Hz,

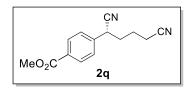
1H), 7.92 (dd, J = 7.9, 1.7 Hz, 1H), 7.30 (d, J = 8.0 Hz, 1H), 4.04 (dd, J = 8.8, 5.6 Hz, 1H), 3.93 (s, 3H), 2.55 – 2.38 (m, 5H), 2.17 – 1.80 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 140.5, 133.6, 131.6, 129.8, 129.3, 128.6, 119.8, 118.7, 52.4, 33.7, 32.9, 23.2, 19.6, 16.9. HRMS (ESI) calcd. for C₁₅H₁₆N₂O₂ [M+Na]⁺ *m/z* 279.1109, found 279.1107.


HPLC (ID, 0.46*25 cm, 5 μ m, hexane/isopropanol = 8/2, flow 1.0 mL/min, detection at 214 nm) retention time = 37.33 min (major) and 42.41 min (minor). [α]_D^{20.0} = 45.7 (c 0.94, CHCl₃).

Prepared according to general procedure (C) using **10** to provide the title compound **20** as a yellow solid (85% yield, 89% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 1.5 Hz, 1H), 7.56 (dd, *J*

= 7.9, 1.6 Hz, 1H), 7.35 (d, J = 7.9 Hz, 1H), 4.04 (dd, J = 8.3, 6.0 Hz, 1H), 2.58 – 2.39 (m, 5H), 2.13 – 1.82 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 140.9, 134.9, 132.4, 132.2, 131.1, 119.2, 118.5, 118.2, 111.4, 33.7, 32.8, 23.1, 19.7, 16.9. HRMS (ESI) calcd. for C₁₄H₁₃N₃ [M+Na]⁺ *m/z* 246.1007, found 246.1003.

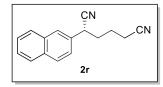
HPLC (ID, 0.46*25 cm, 5 μ m, hexane/isopropanol = 8/2, flow 1.0 mL/min, detection at 214 nm) retention time = 30.24 min (major) and 35.87 min (minor). [α]_D^{20.0} = 40.7 (c 0.91, CHCl₃).



Prepared according to general procedure (C) using **1p** to provide the title compound **2p** as a yellow oil (50% yield, 85% ee). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 (d, *J* =

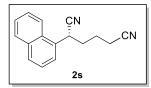
8.1 Hz, 2H), 7.49 (d, J = 8.1 Hz, 2H), 3.96 (t, J = 7.2 Hz, 1H), 2.55 – 2.36 (m, 2H), 2.18 – 2.01 (m, 2H), 1.98 – 1.76 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.8, 131.1 (q, J = 32.8 Hz), 127.8, 126.5 (q, J = 3.7 Hz), 123.8 (q, J = 270.7 Hz), 119.3, 118.6,

36.8, 34.4, 22.8, 16.9. HRMS (ESI) calcd. for C₁₃H₁₁N₂F₃ [M+H]⁺ *m/z* 253.0953, found 253.0946.


HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 95/5, flow 1.0 mL/min, detection at 214 nm) retention time = 51.07 min (minor) and 53.43 min (major). [α]_D^{20.0} = 10.1 (c 0.73, CHCl₃).

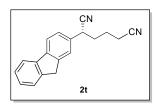
Prepared according to general procedure (C) using **1q** to provide the title compound **2q** as a yellowish oil (74% yield, 76% ee). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08

(d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.3 Hz, 2H), 4.03 – 3.87 (m, 4H), 2.52 – 2.34 (m, 2H), 2.17 – 2.02 (m, 2H), 1.96 – 1.74 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 139.6, 130.7, 130.6, 127.4, 119.4, 118.6, 52.5, 36.9, 34.3, 22.8, 16.9. HRMS (ESI) calcd. for C₁₄H₁₄N₂O₂ [M+H]⁺ *m/z* 243.1134, found 243.1124.


HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 8/2, flow 1.0 mL/min, detection at 214 nm) retention time = 21.47 min (major) and 24.00 min (minor). [α]_D^{20.0} = 7.2 (c 1.17, CHCl₃).

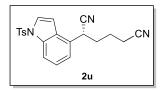
Prepared according to general procedure (C) using **1r** to provide the title compound **2r** as a yellowish solid (79% yield, 90% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.81 (m, 4H),

7.60 – 7.50 (m, 2H), 7.40 (dd, J = 8.5, 1.9 Hz, 1H), 4.04 (t, J = 7.1 Hz, 1H), 2.55 – 2.29 (m, 2H), 2.23 – 2.08 (m, 2H), 1.97 – 1.74 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 133.4, 133.1, 132.0, 129.6, 128.0, 127.9, 127.1, 126.9, 126.5, 124.5, 120.1, 118.8, 37.0, 34.4, 22.9, 17.0. HRMS (ESI) calcd. for C₁₆H₁₄N₂ [M+Na]⁺ *m/z* 257.1055, found 257.1054.


HPLC (AD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 19/1, flow 1.0 mL/min, detection at 214 nm) retention time = 31.36 min (minor) and 33.61 min (major). [α]_D^{20.0} = 11.7 (c 1.08, CHCl₃).

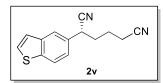
Prepared according to general procedure (C) using **1s** to provide the title compound **2s** as a yellow oil (89% yield, 93% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.83 (m, 3H), 7.69

(d, J = 6.8 Hz, 1H), 7.65 - 7.47 (m, 3H), 4.64 (dd, J = 8.3, 5.5 Hz, 1H), 2.51 - 2.32 (m, 3H), 2.51 - 2.32 (m, 3H), 3.51 - 2.32 (m, 3H)


2H), 2.30 – 2.12 (m, 2H), 2.01 – 1.87 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 134.2, 130.4, 129.9, 129.6, 129.5, 127.4, 126.5, 125.8, 125.6, 121.9, 120.4, 118.8, 33.9, 33.3, 23.2, 16.9. HRMS (ESI) calcd. for C₁₆H₁₄N₂ [M+Na]⁺ *m/z* 257.1055, found 257.1050. HPLC (AD-H, 0.46*25 cm, 5 µm, hexane/isopropanol = 9/1, flow 1.0 mL/min, detection at 214 nm) retention time = 17.89 min (minor) and 21.75 min (major). [α]_D^{20.0} = 98.3 (c 1.01, CHCl₃).

Prepared according to general procedure (C) using **1t** to provide the title compound **2t** as a yellowish solid (88% yield, 90% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.76 (m, 2H), 7.61 – 7.50 (m, 2H), 7.40 (t, *J* = 7.1 Hz, 1H), 7.37 – 7.29 (m,

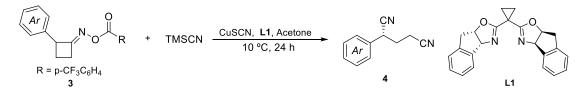
2H), 4.00 - 3.87 (m, 3H), 2.49 - 2.34 (m, 2H), 2.17 - 2.06 (m, 2H), 1.97 - 1.77 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 144.5, 143.4, 142.2, 140.8, 133.0, 127.4, 127.1, 126.0, 125.3, 124.0, 120.6, 120.3, 120.2, 118.8, 36.98, 36.96, 34.8, 22.9, 16.9. HRMS (ESI) calcd. for C₁₉H₁₆N₂ [M+Na]⁺ *m/z* 295.1211, found 295.1205.


HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 8/2, flow 1.0 mL/min, detection at 214 nm) retention time = 23.48 min (major) and 28.48 min (minor). [α]_D^{20.0} = 11.4 (c 1.17, CHCl₃).

Prepared according to general procedure (C) using **1u** to provide the title compound **2u** as a yellowish oil (84% yield, 89% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.3 Hz,

1H), 7.78 (d, J = 8.4 Hz, 2H), 7.67 (d, J = 3.8 Hz, 1H), 7.37 – 7.28 (m, 1H), 7.29 – 7.21 (m, 3H), 6.75 (dd, J = 3.8, 0.9 Hz, 1H), 4.11 (t, J = 7.4 Hz, 1H), 2.47 – 2.29 (m, 5H), 2.20 – 2.04 (m, 2H), 1.94 – 1.70 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 145.5, 135.2, 135.1, 130.2, 128.4, 127.4, 127.2, 127.0, 125.1, 122.2, 119.7, 118.7, 113.9, 105.6, 34.7, 33.3, 23.0, 21.7, 16.8. HRMS (ESI) calcd. for C₂₁H₁₉N₃O₂S [M+Na]⁺ *m/z* 400.1096, found 400.1096.

HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 8/2, flow 1.0 mL/min, detection at 214 nm) retention time = 39.69 min (minor) and 43.44 min (major). [α]_D^{20.0} = 9.13 (c 1.14, CHCl₃).

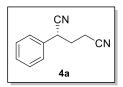


Prepared according to general procedure (C) using **1v** to provide the title compound **2v** as a yellow solid (67% yield, 80% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.3 Hz,

1H), 7.82 (d, J = 1.5 Hz, 1H), 7.54 (d, J = 5.4 Hz, 1H), 7.36 (d, J = 5.4 Hz, 1H), 7.29 (dd, J = 8.4, 1.7 Hz, 1H), 4.01 (t, J = 7.1 Hz, 1H), 2.51 – 2.34 (m, 2H), 2.21 – 2.08 (m, 2H), 1.98 – 1.77 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 140.2, 139.9, 130.9, 128.3, 123.8, 123.6, 123.1, 122.4, 120.2, 118.8, 36.9, 34.8, 22.8, 16.9. HRMS (ESI) calcd. for C₁₄H₁₂N₂S [M+Na]⁺ *m/z* 263.0619, found 263.0618.

HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 8/2, flow 1.0 mL/min, detection at 214 nm) retention time = 35.62 min (minor) and 38.44 min (major). [α]_D^{20.0} = 15.8 (c 0.96, CHCl₃).

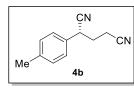
General procedure (D) for the asymmetric ring-opening cyanation of cyclobutanone oxime esters 3:



To a 5 mL Schlenk tube, CuSCN (1.8 mg, 0.015 mmol), chiral bisoxazoline ligand L1 (6.4 mg, 0.018 mmol) were added in degassed Acetone (1 mL) under N₂ atmosphere. The tube was sealed with a Teflon-lined cap, then the mixture was stirred at room temperature for 0.5 h. The **catalyst solution II** was prepared firstly and used in the next step.

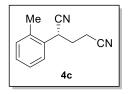
To a 25 mL Schlenk tube containing substrate 3(0.1 mmol, 1.0 equiv), 0.8 mL Acetone, **catalyst solution II**(200 uL) and TMSCN (0.15 mmol, 1.5 equiv) were sequentially added under N₂ atmosphere. The tube was sealed with a Teflon-lined cap, and the mixture was stirred at 10 °C for 24 h. Then solvent was removed under vacuum

and the residue was purified by silica gel chromatography with petroleum ether and ethyl acetate ($PE/EA = 10:1 \sim 5:1$) to afford the product **4**.


Characterization data for 2-arylpentanedinitriles

Prepared according to general procedure (D) using **3a** to provide the title compound **4a** as a colorless oil (73% yield, 94% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.32 (m, 5H), 3.99 (t, *J* = 7.5 Hz,

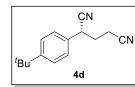
1H), 2.64 – 2.49 (m, 1H), 2.49 – 2.16 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 133.5, 129.7, 129.1, 127.4, 119.3, 117.9, 36.2, 31.5, 15.1. HRMS (ESI) calcd. for C₁₁H₁₀N₂ [M+H]⁺ *m*/*z* 171.0922, found 171.0926.


HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 86/14, flow 1.0 mL/min, detection at 214 nm) retention time = 19.77 min (minor) and 28.07 min (major). [α]_D^{20.0} = -18.7 (c 0.52, CHCl₃).

Prepared according to general procedure (D) using **3b** to provide the title compound **4b** as a yellowish oil (64% yield, 89% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.23 (s, 4H), 3.94 (t, *J* = 7.6 Hz,

1H), 2.59 - 2.47 (m, 1H), 2.46 - 2.33 (m, 1H), 2.37 (s, 3H), 2.33 - 2.15 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 139.1, 130.5, 130.3, 127.3, 119.5, 117.9, 35.8, 31.5, 21.2, 15.1. HRMS (ESI) calcd. for C₁₂H₁₂N₂ [M+Na]⁺ *m*/*z* 207.0898, found 207.0891.

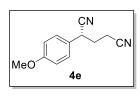
HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 86/14, flow 1.0 mL/min, detection at 214 nm) retention time = 17.97 min (minor) and 20.59 min (major). [α]_D^{20.0} = -20.0 (c 0.36, CHCl₃).



Prepared according to general procedure (D) using **3c** to provide the title compound **4c** as a yellowish oil (95% yield, 93% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.37 (m, 1H), 7.32 – 7.20 (m, 3H), 4.16 (dd, *J* = 8.8, 6.2 Hz, 1H), 2.67 – 2.47 (m, 2H), 2.39 (s,

3H), 2.29 – 2.14 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 135.3, 131.9, 131.6, 129.1, 127.5, 127.3, 119.5, 118.0, 33.1, 30.2, 19.2, 15.4. HRMS (ESI) calcd. for C₁₂H₁₂N₂ [M+Na]⁺ *m/z* 207.0898, found 207.0893.

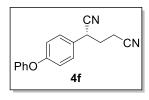
HPLC (OD-H, 0.46*25 cm, 5 µm, hexane/isopropanol = 8/2, flow 1.0 mL/min,


detection at 214 nm) retention time = 16.98 min (minor) and 31.80 min (major). $[\alpha]_D^{20.0}$ = 14.3 (c 0.66, CHCl₃).

Prepared according to general procedure (D) using **3d** to provide the title compound **4d** as a yellowish oil (89% yield, 89% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.4 Hz, 2H), 7.27 (d,

J = 8.2 Hz, 2H), 3.95 (t, J = 7.4 Hz, 1H), 2.60 – 2.49 (m, 1H), 2.47 – 2.36 (m, 1H), 2.35 – 2.17 (m, 2H), 1.32 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 152.3, 130.4, 127.1, 126.6, 119.5, 118.0, 35.7, 34.8, 31.4, 31.3, 15.1. HRMS (ESI) calcd. for C₁₅H₁₈N₂ [M+Na]⁺ *m/z* 249.1368, found 249.1359.

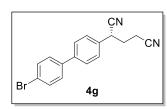
HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 86/14, flow 1.0 mL/min, detection at 214 nm) retention time = 11.31 min (minor) and 13.75 min (major). [α]_D^{20.0} = -25.9 (c 0.93, CHCl₃).



Prepared according to general procedure (D) using **3e** to provide the title compound **4e** as a yellowish oil (62% yield, 90% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, *J* = 8.6 Hz, 2H), 6.94 (d, *J* =

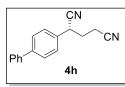
8.7 Hz, 2H), 3.93 (t, J = 7.5 Hz, 1H), 3.82 (s, 3H), 2.61 – 2.47

(m, 1H), 2.47 - 2.34 (m, 1H), 2.35 - 2.13 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 160.1, 128.6, 125.3, 119.6, 118.0, 115.0, 55.5, 35.4, 31.5, 15.0. HRMS (ESI) calcd. for C₁₂H₁₂N₂O [M+Na]⁺ *m/z* 223.0847, found 223.0853.

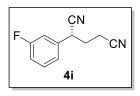

HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 8/2, flow 1.0 mL/min, detection at 214 nm) retention time = 18.22 min (minor) and 20.05 min (major). [α]_D^{20.0} = -31.0 (c 0.56, CHCl₃).

Prepared according to general procedure (D) using **3f** to provide the title compound **4f** as a yellowish oil (82% yield, 91% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.34 (m, 2H), 7.33 – 7.27 (m, 2H), 7.20 – 7.13 (m, 1H), 7.07 – 7.00 (m, 4H), 3.97 (t, *J* =

7.5 Hz, 1H), 2.62 – 2.51 (m, 1H), 2.50 – 2.39 (m, 1H), 2.37 – 2.15 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 158.3, 156.4, 130.1, 128.9, 127.8, 124.2, 119.6, 119.4, 117.9, 35.5, 31.5, 15.1. HRMS (ESI) calcd. for C₁₇H₁₄N₂O [M+Na]⁺ *m/z* 285.1004, found 285.0998. HPLC (AD-H, 0.46*25 cm, 5 µm, hexane/isopropanol = 97/3, flow 1.0 mL/min,

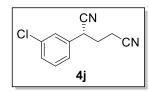

detection at 214 nm) retention time = 35.02 min (minor) and 36.89 min (major). $[\alpha]_D^{20.0}$ = -40.7 (c 0.97, CHCl₃).

Prepared according to general procedure (D) using **3g** to provide the title compound **4g** as a yellowish solid (71% yield, 96% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.56 (m, 4H), 7.47 – 7.40 (m, 4H), 4.04 (t, *J* = 8.8, 1H), 2.65 –


2.54 (m, 1H), 2.52 – 2.41 (m, 1H), 2.40 – 2.21 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 141.0, 138.9, 132.8, 132.2, 128.8, 128.2, 128.0, 122.4, 119.2, 117.8, 35.9, 31.4, 15.2. HRMS (ESI) calcd. for C₁₇H₁₃N₂Br [M+Na]⁺ *m/z* 347.0160, found 347.0157.

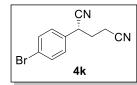
HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 8/2, flow 1.0 mL/min, detection at 214 nm) retention time = 19.31 min (minor) and 20.85 min (major). [α]_D^{20.0} = -38.5 (c 1.0, CHCl₃).

Prepared according to general procedure (D) using **3h** to provide the title compound **4h** as a yellowish solid (93% yield, 95% ee; 1 mmol scale: 87% yield, 95% ee). ¹H NMR (400 MHz, CDCl₃) δ

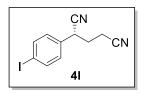

7.69 – 7.63 (m, 2H), 7.62 – 7.56 (m, 2H), 7.52 – 7.35 (m, 5H), 4.04 (t, J = 7.5 Hz,1H), 2.66 – 2.53 (m, 1H), 2.53 – 2.41 (m, 1H), 2.41 – 2.21 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 142.1, 140.0, 132.4, 129.1, 128.3, 128.0, 127.8, 127.2, 119.3, 117.9, 35.9, 31.4, 15.2. HRMS (ESI) calcd. for C₁₇H₁₄N₂ [M+Na]⁺ *m/z* 269.1055, found 269.1052. HPLC (OD-H, 0.46*25 cm, 5 µm, hexane/isopropanol = 8/2, flow 1.0 mL/min, detection at 214 nm) retention time = 24.31 min (major) and 34.52 min (minor). [α]_D^{20.0} = -40.7 (c 1.0, CHCl₃).

Prepared according to general procedure (D) using **3i** to provide the title compound **4i** as a yellowish oil (86% yield, 91% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.38 (m, 1H), 7.20 – 7.06 (m, 3H), 4.00 (dd, *J* = 8.1, 6.9 Hz, 1H), 2.67 – 2.52 (m, 1H), 2.52 –

2.40 (m, 1H), 2.39 – 2.18 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ ¹³C NMR (101 MHz, CDCl₃) δ 163.3 (d, *J* = 249.1 Hz), 135.8 (d, *J* = 7.4 Hz), 131.5 (d, *J* = 8.4 Hz), 123.2 (d, *J* = 3.1 Hz), 118.7, 117.7, 116.3 (d, *J* = 21.0 Hz), 114.7 (d, *J* = 23.0 Hz), 35.92, 35.9, 31.4, 15.2. HRMS (ESI) calcd. for C₁₁H₉N₂F [M+H]⁺ *m/z* 189.0828, found 189.0839.


HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 8/2, flow 1.0 mL/min, detection at 214 nm) retention time = 12.48 min (minor) and 16.94 min (major). [α]_D^{20.0} = -16.2 (c 0.64, CHCl₃).

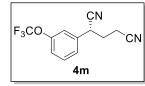
Prepared according to general procedure (D) using **3j** to provide the title compound **4j** as a yellowish oil (77% yield, 89% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.34 (m, 3H), 7.29 – 7.23


(m, 1H), 3.98 (dd, J = 8.2, 6.8 Hz, 1H), 2.67 – 2.52 (m, 1H), 2.52 – 2.39 (m, 1H), 2.38 – 2.17 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 135.7, 135.5, 131.0, 129.5, 127.6, 125.6, 118.7, 117.6, 35.87, 31.37, 15.20. HRMS (ESI) calcd. for C₁₁H₉N₂Cl [M+Na]⁺ m/z 227.0352, found 227.0353.

HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 8/2, flow 1.0 mL/min, detection at 214 nm) retention time = 13.76 min (minor) and 20.52 min (major). [α]_D^{20.0} = -15.5 (c 0.67, CHCl₃).

Prepared according to general procedure (D) using **3k** to provide the title compound **4k** as a yellowish oil (89% yield, 94% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.46 (m, 2H), 7.35 – 7.13 (m,

2H), 3.97 (t, J = 8.8 Hz, 1H), 2.65 – 2.52 (m, 1H), 2.50 – 2.37 (m, 1H), 2.35 – 2.15 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 132.9, 132.6, 129.1, 123.3, 118.8, 117.7, 35.7, 31.3, 15.2. HRMS (ESI) calcd. for C₁₁H₉N₂Br [M+Na]⁺ *m/z* 270.9847, found 270.9865. HPLC (OD-H, 0.46*25 cm, 5 µm, hexane/isopropanol = 86/14, flow 1.0 mL/min, detection at 214 nm) retention time = 24.13 min (minor) and 28.87 min (major). [α]D^{20.0} = -29.2 (c 0.97, CHCl₃).



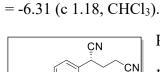
Prepared according to general procedure (D) using **3l** to provide the title compound **4l** as a yellowish oil (83% yield, 92% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.4 Hz, 2H), 7.11 (d, *J* =

8.4 Hz, 2H), 3.95 (t, J = 7.6 Hz, 1H), 2.65 – 2.51 (m, 1H), 2.50 – 2.37 (m, 1H), 2.36 – 2.16 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 138.9, 133.2, 129.2, 118.7, 117.7, 94.9, 35.9, 31.4, 15.2. HRMS (ESI) calcd. for C₁₁H₉N₂I [M+H]⁺ m/z 296.9889, found 296.9890.

HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 8/2, flow 1.0 mL/min,

detection at 214 nm) retention time = 19.14 min (minor) and 23.26 min (major). $[\alpha]_D^{20.0}$ = -27.5 (c 1.0, CHCl₃).

Prepared according to general procedure (D), with modifications of 5 mol% CuSCN and 6 mol% L1, using **3m** to provide the title compound **4m** as a yellow oil (91% yield, 93%


ee). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (t, J = 8.0 Hz, 1H), 7.32 (d, J = 7.9 Hz, 1H), 7.29 – 7.24 (m, 1H), 7.23 (s, 1H), 4.03 (dd, J = 8.2, 6.9 Hz, 1H), 2.66 – 2.54 (m, 1H), 2.53 – 2.42 (m, 1H), 2.38 – 2.19 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 150.1, 135.8, 131.3, 125.8, 121.5, 120.5 (q, J = 258.3 Hz), 120.1, 118.5, 117.6, 36.0, 31.4, 15.2. HRMS (ESI) calcd. for C₁₂H₉N₂OF₃ [M+Na]⁺ *m/z* 277.0565, found 277.0555.

HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 9/1, flow 1.0 mL/min, detection at 214 nm) retention time = 16.68 min (minor) and 19.44 min (major). [α]_D^{20.0} = -8.67 (c 1.24, CHCl₃).

Prepared according to general procedure (D) using **3n** to provide the title compound **4n** as a yellowish oil (75% yield, 94% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.52 (m, 4H), 4.08 (dd, J

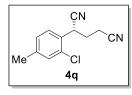
= 8.6, 6.6 Hz, 1H), 2.69 – 2.57 (m, 1H), 2.56 – 2.45 (m, 1H), 2.40 – 2.21 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 134.8 , 132.3 (q, J = 32.8 Hz), 130.8 , 130.4 , 126.1 (q, J = 3.7 Hz), 124.2 (q, J = 3.8 Hz), 123.6 (q, J = 272.6 Hz), 118.5, 117.5, 36.1, 31.4, 15.3. HRMS (ESI) calcd. for C₁₂H₉N₂F₃ [M+H]⁺ m/z 239.0796, found 239.0806. HPLC (OD-H, 0.46*25 cm, 5 µm, hexane/isopropanol = 9/1, flow 1.0 mL/min, detection at 214 nm) retention time = 20.73 min (minor) and 25.55 min (major). [α]_D^{20.0}

40

MeO₂C

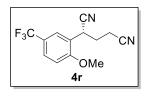
Prepared according to general procedure (D) using **30** to provide the title compound **40** as a yellowish oil (89% yield, 95% ee, ee of the crude product. 28% ee of **40** was obtained after

purification by silica gel chromatography). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 8.3 Hz, 2H), 4.06 (dd, J = 8.2, 6.8 Hz, 1H), 3.94 (s, 3H), 2.64 – 2.55 (m, 1H), 2.51 – 2.40 (m, 1H), 2.38 – 2.19 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 138.3, 131.1, 130.9, 127.5, 118.6, 117.6, 52.5, 36.2, 31.3, 15.2. HRMS (ESI)


calcd. for $C_{13}H_{12}N_2O_2 [M+H]^+ m/z 229.0977$, found 229.0971.

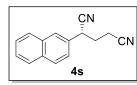
HPLC (AD-H, 0.46*25 cm, 5 µm, hexane/isopropanol = 85/15, flow 1.0 mL/min, detection at 214 nm) retention time = 14.42 min (minor) and 16.07 min (major).

Prepared according to general procedure (D) using **3p** to provide the title compound 4p as a white solid (92% yield, 91% ee). 1 H NMR (400 MHz, CDCl₃) δ 8.75 – 8.67 (m, 1H), 8.06 (d, J = 8.2Hz, 2H), 7.83 – 7.71 (m, 2H), 7.47 (d, J = 8.4 Hz, 2H), 7.30 – 7.24 (m, 1H), 4.06 (t, J = 7.4 Hz, 1H), 2.65 - 2.52 (m, 1H), 2.50 - 2.22 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 156.3, 150.0, 140.4, 137.1, 134.1, 128.2, 127.9, 122.8, 120.7, 119.2, 117.8, 36.0, 31.5, 15.1. HRMS (ESI) calcd. for $C_{16}H_{13}N_3 [M+H]^+ m/z$ 248.1188, found 248.1187. HPLC (OD-H, 0.46*25 cm, 5 µm, hexane/isopropanol = 7/3, flow 1.2 mL/min, detection at 214 nm) retention time = 24.10 min (major) and 43.66 min (minor). $\left[\alpha\right]_{D}^{20.0}$

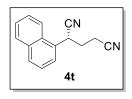

= -46.4 (c 0.95, CHCl₃).

Prepared according to general procedure (D) using 3q to provide the title compound 4q as a yellowish oil (87% yield, 89% ee). 1 H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 7.9 Hz, 1H), 7.26 (s, 1H), 7.19 - 7.13 (m, 1H), 4.41 (dd, J = 8.6, 5.8 Hz, 1H), 2.66 - 2.47

(m, 2H), 2.36 (s, 3H), 2.35 – 2.16 (m, 2H); 13 C NMR (101 MHz, CDCl₃) δ 141.1, 132.6, 131.0, 128.9, 128.8, 128.3, 118.8, 117.8, 33.6, 29.8, 21.0, 15.2. HRMS (ESI) calcd. for $C_{12}H_{11}N_2Cl [M+Na]^+ m/z 241.0508$, found 241.0506.

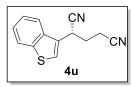

HPLC (AS-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 9/1, flow 1.0 mL/min, detection at 214 nm) retention time = 21.40 min (minor) and 24.09 min (major). $\left[\alpha\right]_{D}^{20.0}$ = 27.3 (c 0.94, CHCl₃).

Prepared according to general procedure (D) using 3r to provide the title compound 4r as a yellowish oil (96% yield, 95% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.56 (m, 2H), 7.02 (d, J = 9.2 Hz, 1H), 4.37 (dd, J = 7.9, 6.7 Hz, 1H), 3.96 (s, 3H), 2.66 –


2.44 (m, 2H), 2.37 – 2.18 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 158.7, δ 128.0 (q, J = 3.8 Hz), 125.7 (q, J = 3.6 Hz), 123.9 (q, J = 269.9 Hz), 123.8 (q, J = 33.3 Hz), 122.8, 118.8, 117.9, 111.3, 56.2, 31.0, 29.3, 15.4. HRMS (ESI) calcd. for C13H11N2OF3 [M+Na]⁺ *m*/*z* 291.0721, found 291.0719.

HPLC (ID, 0.46*25 cm, 5 μ m, hexane/isopropanol = 9/1, flow 1.0 mL/min, detection at 214 nm) retention time = 12.08 min (major) and 13.04 min (minor). [α]_D^{20.0} = 17.2 (c 0.94, CHCl₃).

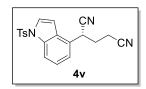
Prepared according to general procedure (D) using **3s** to provide the title compound **4s** as a yellowish oil (94% yield, 93% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.5 Hz, 1H), 7.87 (dd, *J*


= 6.2, 3.8 Hz, 3H), 7.60 – 7.52 (m, 2H), 7.41 (dd, J = 8.5, 1.9 Hz, 1H), 4.17 (t, J = 7.2 Hz, 1H), 2.65 – 2.53 (m, 1H), 2.50 – 2.28 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 133.4, 133.2, 130.7, 129.9, 128.1, 128.0, 127.3, 127.2, 126.9, 124.3, 119.3, 117.9, 36.3, 31.4, 15.2. HRMS (ESI) calcd. for C₁₅H₁₂N₂ [M+Na]⁺ *m/z* 243.0898, found 243.0892. HPLC (OD-H, 0.46*25 cm, 5 µm, hexane/isopropanol = 77/23, flow 1.0 mL/min, detection at 214 nm) retention time = 22.06 min (minor) and 37.34 min (major). [α]_D^{20.0} = -51.2 (c 0.79, CHCl₃).

Prepared according to general procedure (D) using **3t** to provide the title compound **4t** as a yellowish oil (83% yield, 94% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.88 (m, 3H), 7.70 (dd, *J* = 7.2, 1.1 Hz, 1H), 7.64 (ddd, *J* = 8.6, 6.9, 1.4 Hz, 1H), 7.58 (ddd, *J* =

7.9, 6.9, 1.2 Hz, 1H), 7.52 (dd, J = 8.2, 7.2 Hz, 1H), 4.77 (dd, J = 8.7, 5.5 Hz, 1H), 2.76 - 2.62 (m, 1H), 2.60 - 2.32 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 134.3, 130.0, 129.8, 129.7, 129.2, 127.7, 126.7, 126.0, 125.6, 121.7, 119.5, 118.0, 33.4, 30.5, 15.5. HRMS (ESI) calcd. for C₁₅H₁₂N₂ [M+H]⁺ *m/z* 221.1079, found 221.1075.

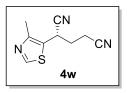
HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 7/3, flow 1.0 mL/min, detection at 214 nm) retention time = 18.61 min (minor) and 36.99 min (major). [α]_D^{20.0} = 31.4 (c 0.94, CHCl₃).



Prepared according to general procedure (D) using **3u** to provide the title compound **4u** as a yellowish oil (50% yield, 95% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.90 (m, 1H), 7.82 – 7.77 (m,

1H), 7.56 (s, 1H), 7.51 – 7.42 (m, 2H), 4.45 – 4.38 (m, 1H), 2.70 – 2.60 (m, 1H), 2.55 – 2.39 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 141.1, 135.9, 127.3, 125.8, 125.5, 125.2,

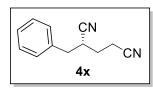
123.7, 120.9, 118.6, 117.9, 30.6, 29.3, 15.3. HRMS (ESI) calcd. for $C_{13}H_{10}N_2S$ [M+Na]⁺ m/z 249.0462, found 249.0455.


HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 77/23, flow 1.0 mL/min, detection at 214 nm) retention time = 35.35 min (minor) and 41.68 min (major). [α]_D^{20.0} = 37.3 (c 0.22, CHCl₃).

Prepared according to general procedure (D), with modifications of 5 mol% CuSCN and 6 mol% L1, using **3v** to provide the title compound **4v** as a yellowish oil (73% yield, 90% ee). ¹H NMR

(400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.3 Hz, 1H), 7.79 (d, *J* = 8.4 Hz, 2H), 7.70 (d, *J* = 3.8 Hz, 1H), 7.35 (t, , *J* = 8.0 Hz 1H), 7.30 – 7.22 (m, 3H), 6.78 (d, *J* = 3.8 Hz, 1H), 4.25 (t, *J* = 7.3 Hz, 1H), 2.63 – 2.48 (m, 1H), 2.37 (s, 3H), 2.46 – 2.21 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.6, 135.3, 135.0, 130.2, 128.4, 127.7, 127.0, 125.8, 125.2, 122.3, 119.0, 117.9, 114.4, 105.4, 34.0, 30.4, 21.7, 15.3. HRMS (ESI) calcd. for C₂₀H₁₇N₃O₂S [M+Na]⁺ *m/z* 386.0939, found 386.0934.

HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 77/23, flow 1.0 mL/min, detection at 214 nm) retention time = 31.39 min (minor) and 34.52 min (major). [α]_D^{20.0} = -22.6 (c 1.23, CHCl₃).

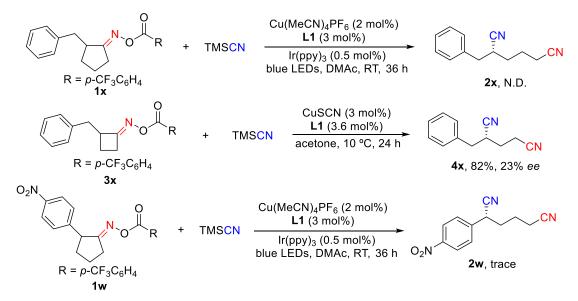


Prepared according to general procedure (D) using **3w** to provide the title compound **4w** as a yellowish oil (57% yield, 93% ee). ¹H NMR (400 MHz, CDCl₃) δ 8.76 (s, 1H), 4.29 (t, *J* = 7.8 Hz, 1H),

2.67 – 2.57 (m, 1H), 2.56 – 2.46 (m, 1H), 2.51 (s, 3H), 2.46 – 2.36

(m, 1H), 2.31 - 2.19 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 152.1, 152.0, 123.6, 117.8, 117.4, 31.3, 28.2, 15.5, 15.3. HRMS (ESI) calcd. for C₉H₉N₃S [M+H]⁺ *m/z* 192.0595, found 192.0592.

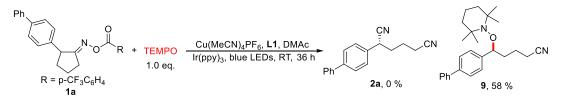
HPLC (AS-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 8/2, flow 1.0 mL/min, detection at 214 nm) retention time = 24.84 min (minor) and 30.82 min (major). [α]_D^{20.0} = -34.0 (c 0.44, CHCl₃).



Prepared according to general procedure (D) using 3x (prepared according to the reported literature⁵) to provide the title compound 4x as a yellowish oil (82% yield, 23% ee). ¹H

NMR (400 MHz, Chloroform-*d*) δ 7.40 – 7.29 (m, 3H), 7.26 – 7.22 (m, 2H), 3.09 – 2.87 (m, 3H), 2.71 – 2.49 (m, 2H), 2.08 – 1.88 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 135.7, 129.12, 129.09, 127.9, 120.0, 118.0, 38.0, 32.8, 27.7, 15.5. HRMS (ESI) calcd. for C₁₂H₁₂N₂ [M+H]⁺ *m*/*z* 185.1079, found 185.1070.

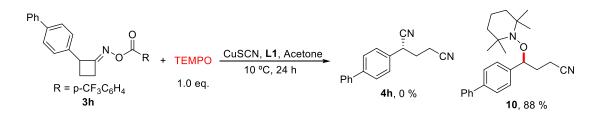
HPLC (ID, 0.46*25 cm, 5 μ m, hexane/isopropanol = 8/2, flow 1.0 mL/min, detection at 214 nm) retention time = 10.68 min (major) and 11.35 min (minor). [α]_D^{20.0} = 5.1 (c 1.06, CHCl₃).


The ring-opening reactions of several limited substrates:

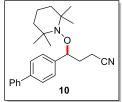
Supplementary Figure 271. The ring-opening reactions of several limited substrates

Mechanism Details

(1) Procedure of the radical trapping experiment with TEMPO:

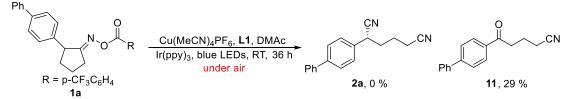

To a 25 mL Schlenk tube, $Cu(CH_3CN)_4PF_6$ (3.7 mg, 0.01 mmol), chiral bisoxazoline ligand L1 (5.3 mg, 0.015 mmol), $Ir(ppy)_3$ (1.6 mg, 0.0025 mmol) were added in super dry DMAc (5 mL) under N₂ atmosphere. The tube was sealed with a Teflon-lined cap, then the mixture was stirred at room temperature for 0.5 h. The **catalyst solution I** was prepared firstly and used in the next step.

To a 25 mL Schlenk tube containing substrate **1a** (0.1 mmol, 1.0 equiv) and TEMPO (0.1 mmol, 1.0 equiv), **catalyst solution I**(1 mL) and TMSCN (0.15 mmol, 1.5 equiv) were sequentially added under N₂ atmosphere. The tube was sealed with a Teflon-lined cap, and the mixture was stirred at a distance of ~5 cm from a 5 W blue LEDs at room temperature for 36 h .The reaction mixture was diluted with EA(10 mL). The organic layer was washed with brine (3×5 mL) and dried over anhydrous Na₂SO₄. After filtration and concentration, the residue was purified by silica gel chromatography to afford product **9** as a yellowish oil (58 %).

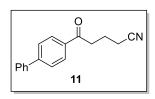

¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.59 (m, 2H), 7.59 – 7.55 (m, 2H), 7.48 – 7.41 (m, 2H), 7.38 – 7.31 (m, 3H), 4.71 (dd, *J* = 9.1, 4.0 Hz, 1H), 2.32 – 2.15 (m, 3H), 2.11 – 1.94 (m, 1H), 1.60 – 0.54 (m, 20H); ¹³C NMR (101 MHz, CDCl₃) δ 141.8, 140.9,

140.2, 128.9, 128.0, 127.4, 127.1, 126.9, 119.7, 86.1, 59.9, 40.5, 35.0, 34.6, 34.3, 21.5, 20.5, 17.4, 17.3. HRMS (ESI) calcd. for $C_{26}H_{34}N_2O$ [M+H]⁺ m/z 391.2749, found 391.2743.

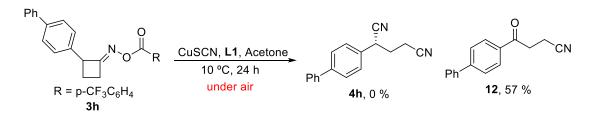
To a 5 mL Schlenk tube, CuSCN (1.8 mg, 0.015 mmol), chiral bisoxazoline ligand L1 (6.4 mg, 0.018 mmol) were added in degassed Acetone (1 mL) under N₂ atmosphere. The tube was sealed with a Teflon-lined cap, then the mixture was stirred at room temperature for 0.5 h. The **catalyst solution II** was prepared firstly and used in the next step.


To a 25 mL Schlenk tube containing substrate **3h** (0.1 mmol, 1.0 equiv) and TEMPO (0.1 mmol, 1.0 equiv), 0.8 mL Acetone, **catalyst solution II** (200 uL), TMSCN (0.15 mmol, 1.5 equiv) were sequentially added under N_2 atmosphere. The tube was sealed with a Teflon-lined cap, and the mixture was stirred at 10 °C for 24 h. Then Solvent was removed under vacuum and the crude product was purified by flash chromatography on silica gel directly to give the product **10** as a white solid.

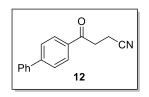
¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.55 (m, 4H), 7.49 – 7.41 (m, 2H), 7.40 – 7.31 (m, 3H), 4.85 (dd, *J* = 8.8, 3.9 Hz, 1H), 2.54 – 2.41 (m, 1H), 2.34 – 2.13 (m, 2H), 2.08 – 1.94 (m, 1H), 1.73 – 0.58 (m, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 140.7, 140.7, 140.3,


128.9, 127.8, 127.5, 127.2, 127.1, 119.7, 84.9, 60.1, 40.5, 34.6, 34.2, 31.6, 20.5, 17.2, 13.4. HRMS (ESI) calcd. for C₂₅H₃₂N₂O [M+H]⁺ *m/z* 377.2593, found 377.2594.

(2) Procedure of the radical trapping experiment with O₂:


To a 25 mL screw-cap sealed tube containing substrate **1a** (0.1 mmol, 1.0 equiv), **catalyst solution I**(1 mL) and TMSCN (0.15 mmol, 1.5 equiv) were sequentially added under air atmosphere. The tube was sealed with a Teflon screw-cap, and the mixture

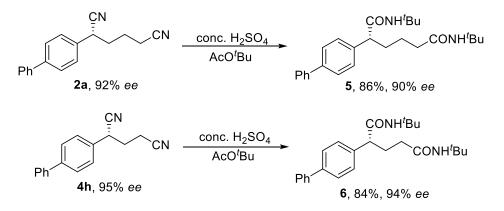
was stirred at a distance of ~5 cm from a 5 W blue LEDs at room temperature for 36 h .The reaction mixture was diluted with EA(10 mL). The organic layer was washed with brine (3×5 mL) and dried over anhydrous Na₂SO₄. After filtration and concentration, the residue was purified by silica gel chromatography to afford product **11** as a white solid.



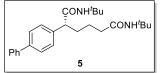
¹H NMR (400 MHz, CDCl₃) δ 8.08 – 8.02 (m, 2H), 7.74 – 7.68 (m, 2H), 7.66 – 7.61 (m, 2H), 7.52 – 7.45 (m, 2H), 7.45 – 7.38 (m, 1H), 3.22 (t, *J* = 6.8 Hz, 2H), 2.55 (t, *J* = 7.0 Hz, 2H), 2.15 (p, *J* = 6.9 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 197.9,

146.3, 139.9, 135.3, 129.1, 128.7, 128.5, 127.5, 127.4, 119.5, 36.5, 19.9, 16.8. HRMS (ESI) calcd. for C₁₇H₁₅NO [M+Na]⁺ *m/z* 272.1051, found 272.1049.

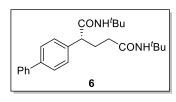
To a 25 mL screw-cap sealed tube containing substrate 3h(0.1 mmol, 1.0 equiv), 0.8 mL Acetone, catalyst solution II (200 uL) and TMSCN (0.15 mmol, 1.5 equiv) were sequentially added under air atmosphere. The tube was sealed with a Teflon screw-cap, and the mixture was stirred at 10 °C for 24 h. Then Solvent was removed under vacuum and the crude product was purified by flash chromatography on silica gel directly to give the product 12 as a white solid.



¹H NMR (400 MHz, CDCl₃) δ 8.08 – 8.00 (m, 2H), 7.76 – 7.69 (m, 2H), 7.68 – 7.61 (m, 2H), 7.53 – 7.45 (m, 2H), 7.46 – 7.40 (m, 1H), 3.42 (t, *J* = 7.2 Hz, 2H), 2.81 (t, *J* = 7.2 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 195.0, 146.7, 139.7, 134.4, 129.2,


128.8, 128.6, 127.6, 127.4, 119.4, 34.4, 12.0. HRMS (ESI) calcd. for C₁₆H₁₃NO [M+H]⁺ *m/z* 236.1075, found 236.1070.

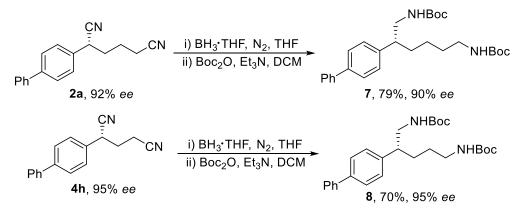
Further transformations of the products


To a stirred solution of **2a** or **4h** (1.0 equiv, 0.1 mmol) in *tert*-butyl acetate(0.4 mL) in a 25 mL screw-cap sealed tube was added slowly conc. H_2SO_4 (10 uL). The tube was sealed with a Teflon screw-cap, and the mixture was stirred at 42 °C for 2 h. The reaction mixture was diluted with EA(10 mL). The organic layer was washed with sat. aq. NaHCO₃ (2×5 mL) and dried over anhydrous Na₂SO₄. After filtration and concentration, the residue was purified by silica gel chromatography to afford product **5** or **6** as a white solid.

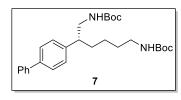
¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.50 (m, 4H), 7.43 (t, J = 7.6 Hz, 2H), 7.38 – 7.29 (m, 3H), 5.48 (s, 1H), 5.45 (s, 1H), 3.28 (t, J = 7.4 Hz, 1H), 2.21 – 2.02 (m, 3H), 1.81 – 1.65 (m,

1H), 1.66 – 1.54 (m, 2H), 1.33 (s, 9H), 1.30 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.7, 172.2, 140.8, 140.0, 139.7, 128.9, 128.2, 127.5, 127.3, 127.1, 53.6, 51.4, 51.2, 37.4, 33.3, 28.9, 28.8, 24.0. HRMS (ESI) calcd. for C₂₆H₃₆O₂N₂ [M+H]⁺ *m/z* 409.2855, found 409.2849.

HPLC (AD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 97/3, flow 1.0 mL/min, detection at 214 nm) retention time = 8.33 min (minor) and 12.16 min (major). [α]_D^{20.0} = -11.6 (c 1.0, CHCl₃).



¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.51 (m, 4H), 7.48 – 7.40 (m, 2H), 7.39 – 7.30 (m, 3H), 5.56 (s, 1H), 5.41 (s, 1H), 3.44 (dd, J = 8.0, 6.7 Hz, 1H), 2.45 – 2.27 (m, 1H), 2.25 – 1.96 (m, 3H), 1.34 (s, 9H), 1.30 (s, 9H); ¹³C NMR (101


MHz, CDCl₃) δ 172.5, 172.0, 140.7, 140.1, 139.1, 128.9, 128.4, 127.5, 127.4, 127.1, 52.2, 51.4, 51.2, 35.2, 29.9, 28.9, 28.8. HRMS (ESI) calcd. for C₂₅H₃₄O₂N₂ [M+H]⁺ *m/z* 395.2699, found 395.2692.

HPLC (AD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 97/3, flow 1.0 mL/min, detection at 214 nm) retention time = 7.41 min (minor) and 16.65 min (major). [α]_D^{20.0} = -16.5 (c 1.0, CHCl₃).

(2) Procedure for the synthesis of diamines 7 and 8.¹¹


To the solution of **2a** or **4h** (0.1 mmol) in THF (0.4 mL) was added BH₃·THF (0.6 mmol, 1M in THF) at room temperature under N₂ atmosphere, then the mixture was refluxed for 3 h. The reaction was quenched by the dropwise addition of MeOH. Then solvent was removed under vacuum. And 6 M aqueous HCl (~3 mL)was added followed by refluxing another 2 h. After cooling to room temperature, the solution was made basic with 6 M aqueous NaOH. Then it was extracted with DCM (5×10 mL), dried over Na₂SO₄, filtered. After DCM was removed under vacuum, 2 mL DCM, 2.4 eq. Et₃N (0.24 mmol) and 2.4 eq. Boc₂O (0.24 mmol)were added. The mixture was stirred for 3 h at room temperature, and purified by column chromatography directly to afford the product **7** or **8** as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.49 (m, 4H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.34 (t, *J* = 7.3 Hz, 1H), 7.22 (d, *J* = 8.0 Hz, 2H), 4.52 (s, 1H), 4.46 (s, 1H), 3.63 – 3.44 (m, 1H), 3.26 – 3.11 (m, 1H), 3.10 – 2.96 (m, 2H), 2.78 (s, 1H), 1.74

-1.53 (m, 3H), 1.52 - 1.35 (m, 19H), 1.33 - 1.14 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 156.1, 141.9, 140.9, 139.7, 128.9, 128.3, 127.5, 127.3, 127.1, 79.3, 79.1, 46.3, 45.9, 40.4, 33.3, 30.2, 28.52, 28.49, 24.6. HRMS (ESI) calcd. for C₂₈H₄₀O₄N₂ [M+Na]⁺ *m/z* 491.2886, found 491.2885.

HPLC (AD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 9/1, flow 1.0 mL/min, detection at 214 nm) retention time = 9.63 min (major) and 11.64 min (minor). [α]_D^{20.0} = 32.3 (c 1.0, CHCl₃).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 (dd, *J* = 14.5, 7.8 Hz, 4H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.34 (t, *J* = 7.3 Hz, 1H), 7.23 (d, *J* = 8.0 Hz, 2H), 4.49 (s, 1H), 3.62 – 3.42 (m, 1H), 3.30 – 3.13 (m, 1H), 3.15 – 2.96 (m, 2H), 2.80 (s, 1H), 1.77

-1.67 (m, 1H), 1.66 -1.52 (m, 2H), 1.52 -1.31 (m, 19H); ¹³C NMR (101 MHz, CDCl₃) δ 156.1, 141.6, 140.9, 139.8, 128.9, 128.3, 127.5, 127.3, 127.1, 79.3, 79.2, 46.3, 45.6, 40.5, 30.6, 28.5, 28.5, 28.0. HRMS (ESI) calcd. for C₂₇H₃₈O₄N₂ [M+Na]⁺ *m/z* 477.2729, found 477.2723.

HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 19/1, flow 1.0 mL/min, detection at 214 nm) retention time = 17.83 min (minor) and 21.48 min (major). [α]_D^{20.0} = 32.6 (c 1.0, CHCl₃).

Supplementary References

- Zhao, B., Chen, C., Lv, J., Li, Z., Yuan, Y., Shi, Z. Photoinduced fragmentationrearrangement sequence of cycloketoxime esters. *Org. Chem. Front.* 5, 2719-2722 (2018).
- Zhao, B., Tan, H., Chen, C., Jiao, N., Shi, Z. Photoinduced C-C bond cleavage and oxidation of cycloketoxime esters. *Chin. J. Chem.* 36, 995-999 (2018).

- Xu, Y., Su, T.-S., Huang, Z.-X., Dong, G. Practical direct α-arylation of cyclopentanones by palladium/enamine cooperative catalysis. *Angew. Chem. Int. Ed.* 55, 2559-2563 (2016).
- Wang, S., Chen, G., Kayser, M. M., Iwaki, H., Lau, P. C.K., Hasegawa, Y. Baeyer-Villiger oxidations catalyzed by engineered microorganisms: Enantioselective synthesis of δ-valerolactones with functionalized chains. *Can. J. Chem.* **80**, 613-621 (2002).
- Ai, W., Liu, Y., Wang, Q., Lu, Z., Liu, Q. Cu-catalyzed redox-neutral ring cleavage of cycloketone *O*-acyl oximes: chemodivergent access to distal oxygenated nitriles. *Org. Lett.* 20, 409-412 (2018).
- Wang, Y., Muratore, M. E., Rong, Z., Echavarren, A. M. Formal (4+1) cycloaddition of methylenecyclopropanes with 7-aryl-1,3,5-cycloheptatrienes by triple gold(I) catalysis. *Angew. Chem. Int. Ed.* 53, 14022-14026 (2014).
- Yu, L., Ren, L., Yi, R., Wu, Y., Chen, T., Guo, R. Iron salt, a cheap, highly efficient and environment-friendly metal catalyst for Se–Se bond cleavage and the further reaction with methylenecyclopropanes under mild conditions. *J. Organomet. Chem.* 696, 2228-2233 (2011).
- Cho, H., Iwama, Y., Sugimoto, K., Mori, S., Tokuyama, H. Regioselective synthesis of heterocycles containing nitrogen neighboring an aromatic ring by reductive ring expansion using diisobutylaluminum hydride and studies on the reaction mechanism. *J. Org. Chem.* **75**, 627-636 (2010).
- Nishimura, T., Uemura, S. Palladium(0)-catalyzed ring cleavage of cyclobutanone oximes leading to nitriles via β-carbon elimination. J. Am. Chem. Soc. 122, 12049-12050 (2000).
- Reddy, K. L. An efficient method for the conversion of aromatic and aliphatic nitriles to the corresponding *N-tert*-butyl amides: a modified Ritter reaction. *Tetrahedron Lett.* 44, 1453-1455 (2003).
- 11. Guo, Q., Wang, M., Peng, Q., Huo, Q., Liu, Q., Wang, R., Xu, Z. Dual-functional chiral Cu-catalyst-induced photoredox asymmetric cyanofluoroalkylation of

alkenes. ACS Catal. 9, 4470-4476 (2019).