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Supplementary Methods

I. POPULATION AND ENERGY LANDSCAPES

A. Gaussian mixture models

A Gaussian mixture model (GMM) was used to represent the probability density function (PDF), or population
landscape, of samples. The PDF of a GMM with C mixture components in d dimensions is

p(x) =

C∑
i=1

φipi(x), (1)

where φi are the weights of each component and x is a d-dimensional vector. Each component in the mixture has a
multivariate normal distribution with the d-dimensional mean vector µi and the d×d covariance matrix Σi. Therefore
the PDF of each component is

pi(x) =
exp

(
− 1

2 (x− µi)
T

Σ−1
i (x− µi)

)
√

det (2πΣi)
. (2)

The derivative of each multivariate normal in the mixture with respect to x is

∂pi(x)

∂x
= −pi(x)Σ−1

i (x− µi) .

The Hessian of each multivariate normal in the mixture is

∂2pi(x)

∂x∂xT
= pi(x)

(
Σ−1
i (x− µi) (x− µi)

T
Σ−1
i −Σ−1

i

)
.

The overall mean µ and covariance Σ of a GMM are given by

µ =

C∑
i=1

φiµi, Σ =

C∑
i=1

φi (Σi + µi (µi − µ)) . (3)

Two Gaussians N
(
µ1; σ2Id

)
and N

(
µ2; σ2Id

)
in a mixture are c-separated if

|µ1 − µ2| ≥ cσ
√
d,

and a mixture of Gaussians is c-separated if the Gaussians in it are c-separated1.

B. Artificial population landscapes

To construct artificial population landscapes for the mock data (Fig. 1), a Gaussian mixture model with 5 compo-
nents in 10 dimensions was generated. The means were chosen to be 5 arbitrary points and the weights were chosen
arbitrarily. The covariance matrices were arbitrary matrices satisfying the conditions necessary for our dimensionality
reduction method, as described in the section “Preserving the topology of energy landscapes after dimensionality
reduction” of the Supplementary Methods.

C. Protein folding population landscapes

To construct population landscapes of proteins, we used the following algorithm. First, the number of Gaussians
in the mixture was determined by calculating the optimal number of k-means clusters in the first two principal
components of the data using the Calinski-Harabasz criterion, then adding four extra Gaussian components to increase
the fit. This was found empirically to lead to accurate transition networks. Second, after the number of clusters had
been determined, the clustering itself was performed by fitting a GMM in three dimensions using the expectation
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maximization (EM) algorithm; to reduce the number of fitted parameters, covariance matrices were assumed to be
diagonal. Third, using the clusters that had been identified in three dimensions, a single Gaussian component was fit
to each cluster of samples in the higher number of dimensions, again with diagonal covariance matrices; weights of each
component in the mixture were given by the proportion of the total samples in the corresponding cluster. Population
landscapes in five dimensions were found to be sufficient to capture the mean first passage times (Supplementary
Fig. 1A). The robustness of the results to different numbers of Gaussians in the mixture was tested by adding up
to five extra Gaussians and recalculating transition networks between states identified on the original landscape
(Supplementary Fig. 1B). The error bars on Supplementary Fig. 1B show the standard error calculated from these
results.

D. Identification of protein states

The global minimum was designated to be the folded state and the second lowest minimum was designated to be
the unfolded state. These classifications were confirmed to be accurate by calculating the root mean squared distance
(RMSD) from the folded state obtained from the Protein Data Bank (https://www.rcsb.org/). An exception was
WW, which had two minima with low RMSD; in this case, the folded and unfolded states were identified manually.
Other low energy states were identified as minima on the energy landscape whose energy difference from the unfolded
state was lower than the energy difference between the unfolded state and the folded state.

E. Data pre-processing: HIV sequences

HIV sequence data was obtained from a previous study, in which whole-genome deep sequencing of HIV-1 popu-
lations was performed in 9 untreated patients, with 6-12 samples per patient taken longitudinally at intervals over a
period of 5-8 years2. Data from two of the patients (P4 and P7) was removed because they were excluded from the
analysis in the original paper. A multi-sequence alignment (MSA) was performed on identified sequences in the p17
section of the HIV genome. Sequences were binarized using the method of Ref. 3, by comparing with the HIV type
B consensus sequence identified by the Los Alamos National Laboratory HIV database (http://www.hiv.lanl.gov).
Residues with nucleotides matching those of the consensus sequence were set to 0, and the remaining residues were
set to 1 to denote a mutation. Sequences from the final 5 timepoints for each patient were retained to avoid bias
by founder sequences and weighting towards patients with more longitudinal samples taken; at each timepoint the
number of reads of each unique sequence was normalized by the amount of total reads at that timepoint. The first
ten principle components of the discretized data were taken and assumed to correspond to a continuous phenotype
space.

F. HIV population landscapes

A Gaussian was fit to binarized samples in the first 10 principal components for each patient. The GMM representing
the population landscape was constructed by combining the individual Gaussians with equal weights.

G. GRN population landscapes

A Gaussian mixture model was fit to the D-dimensional data in protein copy number space using the EM algorithm
for each gene regulatory network (GRN) motif (D = 2, 3, 4). To reduce the number of fitted parameters, covariance
matrices were assumed to be diagonal; this assumption may need to be relaxed for many GRN motifs, but was found
empirically to lead to accurate results for the motifs studied here (see Fig. 3C in the main paper and Supplementary
Fig. 5). Owing to the low number of dimensions of this data, the number of minima was observable by inspection, and
the number of Gaussians in the mixture was chosen to ensure each visible minimum was captured by the probably
density function, as tested by the minima-finding algorithm.

II. FINDING MINIMA, MINIMUM ENERGY PATHWAYS AND SADDLE POINTS

The energy landscape exploration involved locating the local minima in the system and the subseqent minimum
energy pathways between them, passing through a saddle point located at the point on the pathway with the highest
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energy. To find the local minima we apply a random hopping algorithm. In this algorithm, a step consists of a trial
move followed by an energy minimization. The simplest trial move consists of random perturbations for the system
configuration. All unique local minima were accepted and stored.

The minimum energy pathway (MEP) between each pair of minima, through the corresponding saddle point, was
calculated using the nudged elastic band (NEB) method4. The NEB method starts with the coordinates of two
minima and attempts to trace out the MEP using a set of N images with a set of cordinates {q1,q2, ...,qN}. A
suitable initial guess is taken to be a linear path between the two minima, where the images at each end are fixed in
place. Random perturbations to this initial guess were confirmed to give the same MEP. An image, with coordinates
qn, is assumed to be connected to the two adjacent images, qn−1 and qn+1, via springs. The energy of the spring
and image system is then minimised using a gradient calculated from the true gradient of the energy surface and
the forces due to springs between the images, projected perpendicular and parallel to the vector tangent to the path,
respectively, giving gn = gtrue

n,⊥ + gspring
n,‖ . Using the true and spring gradients without any projection is known to lead

to corner-cutting (images are pulled away from the minimum energy path) and sliding-down problems (images slide
down from barrier regions)5.

In NEB, the relevant component of the gradient on an image at qn due to the springs attached to adjacent images,
qn−1 and qn+1 is the component parallel to the tangent vector τn. The projected spring gradient at image n, gspring

n ,
is thus given by

gspring
n,‖ = k (|qn+1 − qn| − |qn−1 − qn|) τ̂n (4)

with k a tunable spring constant and the unit tangent vector τ̂n = τn/|τn|. The tangent vector for image n is
calculated using the approach given in Ref. 5. If the image is neither at a maximum or a minimum then the tangent
vector is defined as

τn =

{
τn,+, if En+1 > En > En−1

τn,−, if En+1 < En < En−1
(5)

where En is the energy of image n and τn,± = qn±1 − qn. However, if the image n is at a minimum or a maximum
then the tangent is caculated using

τn =

{
∆Emaxτn,+ + ∆Eminτn,− , if En+1 > En−1

∆Eminτn,+ + ∆Emaxτn,− , if En+1 < En−1
(6)

where

∆Emax = max(|En+1 − En|, |En−1 − En|)
∆Emin = min(|En+1 − En|, |En−1 − En|).

(7)

For the true gradient, in NEB we retain the component which is perpendicular to the unit tangent vector

gtrue
n,⊥ = gtrue

n − (gtrue
n · τ̂n)τ̂n. (8)

Once the MEP has been found, the saddle point is the point along the path with the highest energy. However, in
some cases, owing to the finite spacing between the images, the local maxima found by NEB along the MEP deviate
too far from the saddle points, so that our calculations for the Hessian and normal mode frequencies are inaccurate.
To avoid this, we refine the saddle point position and energy by allowing the maximum energy image along the MEP
to climb. We use the climbing image nudged elastic band method6, which has been found to be highly succesful in
accurately calculating saddle energies.

III. KRAMERS RATES AND FIRST PASSAGE TIMES

A. Markov state models

Diffusion in a landscape comprising multiple minima, as in a Gaussian mixture model, can be coarse-grained into
a discrete-state, continuous-time random walk between the basins of the minima. A direct transition between two
minima is possible if they are connected by a minimum-energy pathway over a saddle point. If the minima are well
separated and the energy barrier is sufficiently high, the transition waiting time is exponentially distributed with rate
constant exponential in the energy barrier.
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Formally, suppose we find n minima with energies E1, . . . , En. The landscape algorithm finds all paths connecting
pairs of minima via saddle points; let Sij = Sji be the energy of the saddle point connecting minima i and j, with
Sij =∞ if there is no such saddle. The energy barrier for the direct transition i→ j is then ∆Eij = Sij −Ei. Under
quadratic approximations for the basins and saddle, the waiting time for an overdamped diffusive transition i→ j is
distributed exponentially with Kramers rate constant7

kij =
ωS
2πγ

∏
a ω

i
a∏′

b ω
S
b

exp (−∆Eij /kBT ). (9)

In this rate, ωia are the d angular frequencies of the energy E at minimum i, while at the saddle ωSb are the d − 1
stable angular frequencies and ωS is the unstable angular frequency. This prefactor accounts for the shapes of minima
and saddles, and is necessary to obtain the correct steady state distribution. Note that if i and j are not linked, with
Sij =∞, then kij = 0.

Assuming transitions from one minimum to its neighbours are independent of one another, we can use the rates kij
to define a continuous-time Markov chain on the minima. Let Mij = kij be the transition rate from i to j, and set
Mii = −

∑
j kij so that rows sum to zero. The matrix M is the generator matrix of such a chain.

Typically in diffusive systems a key quantity of interest is the mean first-passage time (MFPT) between a pair of
states, such as folded and unfolded states of a protein. The MFPT τij , also called the hitting time, is the expected
waiting time starting from state i to first reach state j. For a fixed target j, the times for all start points i can be
computed by solving the linear system∑

i

Mkiτij = −1 for 1 ≤ k ≤ n, k 6= j,

τjj = 0.

Solving the system for each j then populates the entire pairwise MFPT matrix τij .

B. Quartic shape corrections

The Kramers rates in (9) assume that the neighbourhood geometries of the minima and saddles are well approxi-
mated as quadratics. For a GMM this is certainly true for the minima, but the saddles are ‘pointy’ with significant
quartic terms in their expansion. As an example, consider the simplest symmetric case of a two-state one-dimensional

symmetric GMM probability density p(x) ∝ e−(x−1)2/2σ2

+ e−(x+1)2/2σ2

. Then by symmetry the maximum of the
energy E(x) (which is the one-dimensional equivalent of a saddle point) between the minima x ≈ ±1 is at x = 0, with
expansion

E(x) ≡ − ln p(x) + ln pmax

= const +
σ2 − 1

2σ4
x2 +

1

12σ8
x4 +O(x6).

Assuming well separated minima with σ � 1, the quadratic term only dominates the quartic term on scales x �
σ2 ≪ 1, suggesting a strong quartic influence on the rates. Indeed, the correction can be computed: from Ref. 7, the
quartic saddle correction to (9) amounts to replacing kij → φkij where the prefactor φ reads

φ = 1− 1

8

E′′′′(0)

E′′(0)2
= 1− 1

4(σ2 − 1)2
.

Thus φ < 3/4, so quartic corrections are numerically significant if calculating state transition rates from a full set of
known parameters. That said, φ is approximately constant for σ � 1, approaching the limit φ → 3/4 as σ → 0, so
for a system of well-separated minima the contributions of quartic saddle corrections are likely to amount to a global
correction factor which can be absorbed into a global effective friction constant.

C. Comparison with time-dependent transitions

Reference MFPTs were calculated using the time-dependent protein folding trajectories and GRN simulation data.
The first passage time between state i and state j was defined as the time between entering state i and entering state
j, with a fixed lag time to reduce noise. The MFPT was calculated by taking the mean of the first passage times.
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D. Comparison with maximum caliber method

An alternative set of MFPTs were calculated by supplying the size of the energy barriers to the maximum caliber
method, which is described in detail elsewhere8–10. Specifically, using this method the transition rates i → j were
taken to be9

kij = µ

√
πj

πi
exp (−γ∆Eij), (10)

where πi is the stationary population of state i, Eij is the energy barrier between states i and j, and µ and γ are
fitting parameters that we chose by minimizing the Euclidean distance between the reference and predicted vectors
of MFPTs. Using these rates with the energy barriers calculated between states for the protein data, we found that
the MFPTs predicted by maximum caliber did not capture both folding and unfolding transitions accurately, owing
to the dependence of the MFPTs on the prefactors in Supplementary Equation 9 (Supplementary Fig. 4).

IV. GENE REGULATORY NETWORK SIMULATIONS

A. Method

We simulated three repressilator-type gene regulatory network motifs11 with self-activation, in which each gene
encodes a protein that activates the expression of its associated gene and represses another, with D = 2, 3 and 4
dimensions. The motifs were assumed to behave similarly to the mutual inhibition/self activation (MISA) system
described in Ref. 12, which corresponds to the D = 2 case considered here. We also simulated an asymmetric network
in 5D, as illustrated in Supplementary Fig. 7.

Specifically, each gene (denoted A, B, C and D) encodes a transcription factor (protein), which forms homodimers13

that can either bind to the promoter of another one of the genes, repressing its expression, or bind to the promoter
of its own gene, activating its expression. Therefore, the promoter controlling each gene X can exist in either the
unbound state X00, the activator-bound/repressor-unbound state X10, the activator-unbound/repressor-bound state
X01, or the activator-bound/repressor-bound state X11. Each gene’s associated protein x is produced at a rate g1 in the
activator-bound/repressor-unbound state and g0 otherwise. Protein dimerization is assumed to occur simultaneously
with binding to DNA.

All gene regulatory network motifs were simulated using a Gillespie stochastic simulation algorithm (SSA) in the
SimBiology toolbox in Matlab, and therefore account for intrinsic fluctuations in gene expression; other sources of
noise are addressed in Supplementary Fig. 6. For brevity, below we list the reactions only for the D = 4 system;
reactions and parameters for the D = 2 and D = 3 systems can be found in the simulation code available from Github
(https://github.com/philip-pearce/learning-dynamical). Each simulation was initiated without transcription factors
present, and with each promoter in the unbound state X00. In the D = 4 case, the parameters were taken to be
g0 = 5 s−1, g1 = 14 s−1, k = 1 s−1, hr = 10−4 s−1molecule−2, fr = 10−2 s−1, ha = 2 s−1molecule−2, fa = 10−1 s−1

and the simulation was run for 107 s. Deterministic ordinary differential equation (ODE) simulations of the same
networks were performed using the ode15s solver in the SimBiology toolbox in Matlab with the same parameters and
initial conditions as above. All reactions were assumed to obey the law of mass action14.

B. Reactions

Protein synthesis

A01
g0−−→ A01 + a, A00

g0−−→ A00 + a, A10
g1−−→ A10 + a, A11

g0−−→ A11 + a

B01
g0−−→ B01 + b, B00

g0−−→ B00 + b, B10
g1−−→ B10 + b, B11

g0−−→ B11 + b

C01
g0−−→ C01 + c, C00

g0−−→ C00 + c, C10
g1−−→ C10 + c, C11

g0−−→ C11 + c

D01
g0−−→ D01 + d, D00

g0−−→ D00 + d, D10
g1−−→ D10 + d, D11

g0−−→ D11 + d

Protein degradation

a
k−−→ φ, b

k−−→ φ, c
k−−→ φ, d

k−−→ φ



7

Repression

A00 + 2 d
hr−−⇀↽−−
fr

A01, A10 + 2 d
hr−−⇀↽−−
fr

A11,

B00 + 2 a
hr−−⇀↽−−
fr

B01, B10 + 2 a
hr−−⇀↽−−
fr

B11,

C00 + 2 b
hr−−⇀↽−−
fr

C01, C10 + 2 b
hr−−⇀↽−−
fr

C11,

D00 + 2 c
hr−−⇀↽−−
fr

D01, D10 + 2 c
hr−−⇀↽−−
fr

D11

Activation

A00 + 2 a
ha−−⇀↽−−
fa

A10, A01 + 2 a
ha−−⇀↽−−
fa

A11,

B00 + 2 b
ha−−⇀↽−−
fa

B10, B01 + 2 b
ha−−⇀↽−−
fa

B11,

C00 + 2 c
ha−−⇀↽−−
fa

C10, C01 + 2 c
ha−−⇀↽−−
fa

C11,

D00 + 2 d
ha−−⇀↽−−
fa

D10, D01 + 2 d
ha−−⇀↽−−
fa

D11

V. BROWNIAN DYNAMICS SIMULATIONS

Brownian motion in a potential U(x) was modeled by an overdamped Langevin equation7

ẋ = − 1

γ
∇U(x) +

√
2kBT

γ
R(t), (11)

where γ is the friction, kB is Boltzmann’s constant, T is the temperature and R(t) is a delta-correlated stationary
Gaussian process with zero-mean. (11) was simulated using a finite-difference approximation.

VI. PRESERVING THE TOPOLOGY OF ENERGY LANDSCAPES AFTER DIMENSIONALITY
REDUCTION

A Gaussian mixture model (GMM) in D dimensions can be reduced to d dimensions via the eigendecomposition of
the covariance matrix of the Gaussian means

Σ = UDUT . (12)

Projection of a GMM defined by (1)-(3) onto the d-dimensional subspace spanned by the top d eigenvectors of Σ gives
a GMM with C mixture components, which has the same mixing parameters φi, means µdi = UT

d µi and variances
Σd
i = UT

d ΣiUd. Here Ud corresponds to the first d columns of the matrix of sorted eigenvectors U; as these columns
are orthogonal, UT

d Ud is the d× d identity matrix.
To reduce the dimension of an energy landscape while preserving its topology requires preserving the topology of

the PDF in the reduced dimension. For each individual component of a GMM, the PDF at a point x in the original
D-dimensional space (lying on the subspace spanned by the principal components) can be calculated from the value of
the PDF at the point xd = UT

d x in the reduced dimensional space as follows. In d dimensions, inserting the projected
coordinates, means and covariances into (2), the PDF is given by

pdi (xd) =
exp

(
− 1

2

[
UT
d (x− µi)

]T [
UT
d ΣiUd

]−1 [
UT
d (x− µi)

])√
det 2πUT

d ΣiUd

.
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If we change coordinates to the basis of eigenvectors of Σi by substituting in Σi = SiDiS
T
i with diagonal Di and

orthogonal Si, y = STi (x− µi), and Vd = STi Ud, the terms in the exponent become

−1

2

[
UT
d (x− µi)

]T [
UT
d ΣiUd

]−1 [
UT
d (x− µi)

]
= −1

2
yTVd

[
VT
d DiVd

]−1
VT
d y (13)

Suppose that Vd and y are zero outside of a subset of d rows, i.e. that up to some permutation of the rows

Vd =

(
W
0

)
y =

(
y∗

0

)
(14)

for some orthogonal matrix W ∈ Rd×d and d-dimensional vector y∗. For y, Eqs. (14) require that y falls in the
subspace spanned by d eigenvectors of Σi. For Vd, the requirement is that this subspace is the same as the subspace
spanned by the d columns of Ud, which is the PCA subspace we project onto. Since our methods work exclusively
with points x in this latter subspace, if µi is also in the subspace, i.e. µi = Udµdi for some µdi, then y = STi (Udxd−
Udµdi) = Vd(xd −µdi) and the assumption for Vd implies the assumption for y. This will be true for all component
centers µ as long as the components are well separated and d ≥ C − 1. The condition on Vd is therefore the stronger
assumption. Essentially, we are assuming that the set of d directions with most variance in the entire dataset matches
a set of d directions in which points within state i vary. This is intuitively plausible in biology: it will occur, for
example, if the primary source of variation in the full dataset is differences between states while the primary source
of variation within each state is transitions to a neighboring state.

Given Eqs. (14), (13) simplifies to

−1

2
yTVd

[
VT
d DiVd

]−1
VT
d y = y∗TD∗iy

∗,

where D∗i is the submatrix of Di restricted to the d rows where Vd has nonzero entries. Note that Ud has completely
dropped out of the equation. Under these circumstances, the contribution to the higher dimensional PDF from this
component is related to the projected PDF by a simple scaling:

pdi (xd) = pi(x)

√
det (2πΣi)√

det
(
2πUT

d ΣiUd

) ,
with no change to the exponent.

When the assumption in Eqs. (14) holds, the value of the PDF in the original D-dimensional space can be calculated
from the value of the PDF at the corresponding point xd in d-dimensional PC-space using

p (x) =

C∑
i=1

φip
d
i (xd)

√
det
(
2πUT

d ΣiUd

)√
det (2πΣi)

. (15)

Note that this requires knowledge of the covariance Σi in the full D dimensions, reflecting the fact that one cannot
entirely ignore high-dimensional information and then hope to recover it perfectly. Note also that this scaling assumes
that the relative positions of the C mixture component centers are preserved in the reduced d-dimensional subspace;
therefore d can in general not be lower than C − 1, which is generically the dimension of the subspace containing all
of the centers. Finally, in situations where an orthogonal projection other than PCA is used, dimensions could still be
neglected while preserving the energy landscape accurately, as long as the assumptions made above are satisfied. In
particular, projecting onto a subset of the original data dimensions would be possible with the identity transformation
replacing the transformation to principal component space; this would require the directions of most variance within
each state to match the directions of the original axes and there to be negligible variation between states in the
neglected dimensions.

For a mixture of spherical Gaussians with covariance matrices Σi = σiI, equation (15) becomes

p (x) =

C∑
i=1

φip
d
i (xd)

(
1√

2πσi

)D−d
, (16)

and in this specific case a GMM needs only to be fit to the data in the reduced dimensional space.
Supplementary Equation 15 can be used to find MEPs in a low-dimensional space before converting back to the

high-dimensional space and calculating Hessian matrices for substitution into (9) for the Kramers rates.
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VII. FINITE SAMPLE EFFECTS

In applications, we must estimate the energy landscapes using a finite number of samples from the underlying
distribution. To understand how sampling error affects our calculations, we compute here the expectation and variance
of the maximum likelihood estimate of the barrier and minima energies in a simplified case with two well-separated
Gaussians with known, equal covariance matrices Σ1 = Σ2 and known, equal mixing weights φ1 = φ2 = 1

2 . The full
PDF is

p(x) = φ1
1√

(2π)d|Σ1|
e−

1
2 (x−µ1)>Σ−1

1 (x−µ1) + φ2
1√

(2π)d|Σ2|
e−

1
2 (x−µ2)>Σ−1

2 (x−µ2). (17)

If the Gaussians are well-separated, direct transitions between two minima will approximately follow the straight
line between the two means. Here x = µ1 + c(µ2 − µ1), and we can reduce to a one-dimensional problem

p(x(c)) = φ1
1√

(2π)d|Σ1|
e−

s1
2 c

2

+ φ2
1√

(2π)d|Σ2|
e−

s2
2 (1−c)2 . (18)

where s1 = (µ2 − µ1)>Σ−1
1 (µ2 − µ1) and s2 = (µ1 − µ2)>Σ−1

2 (µ1 − µ2). The barrier is at the minimum as a function
of c, where

0 = ∂cp(c) = −φ1
s1c√

(2π)d|Σ1|
e−

s1
2 c

2

+ φ2
s2(1− c)√
(2π)d|Σ2|

e−
s2
2 (1−c)2 . (19)

As we assumed φ1 = φ2 = 1
2 and Σ1 = Σ2, we have s1 = s2 = s and the minimum occurs at c = 1/2, with a barrier

probability

1√
(2π)d|Σ1|

e−
s
8 . (20)

With real data, we need to deal with estimates from a finite sample. Suppose that we are able to cluster perfectly,
i.e., that we know which Gaussian each sample came from. The only remaining parameters to estimate are the two
means. The maximum likelihood estimates are the empirical means,

µ̂1 =
1

n1

∑
x

(1)
i , µ̂2 =

1

n2

∑
x

(2)
i

where n1, n2 are the sample sizes for groups 1 and 2 respectively, with corresponding samples x
(1)
i and x

(2)
i . These

estimators have empirical distribution

µ̂1 ∼ N (µ1,Σ1/n1), µ̂2 ∼ N (µ2,Σ2/n2)

Since we’ve assumed the variances are known, the true probabilities at the means µi will nearly match the fitted
probabilities at the estimated means µ̂i. The minima, for well separated Gaussians, will be approximately at the
means, so we can estimate the minima energy well. For the barriers, with n1 = n2 = n, we get an estimate of the
barrier probability

p̂b =
1√

(2π)d|Σ1|
e−

ŝ
8 ,

where ŝ = (µ̂1 − µ̂2)>Σ−1
1 (µ̂1 − µ̂2) is the estimated Mahalanobis distance between the means. This corresponds to

an energy

Êb = − log(p̂b)

= log

(√
(2π)d|Σ1|

)
+
ŝ

8

= log

(√
(2π)d|Σ1|

)
+

(µ̂1 − µ̂2)>Σ−1
1 (µ̂1 − µ̂2)

8

= log

(√
(2π)d|Σ1|

)
+

(µ1 − µ2 + ε)>Σ−1
1 (µ1 − µ2 + ε)

8

= EB +
ε>Σ−1

1 (µ1 − µ2)

4
+
ε>Σ−1

1 ε

8
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where the error term ε = (µ̂1 − µ̂2)− (µ1 − µ2) has distribution N (0, 2Σ1/n). This has expectation

E
[
Êb

]
= Eb +

1

8
E
[
ε>Σ−1

1 ε
]

= Eb +
d

4n
(21)

and variance

E

[(
Êb − Eb −

d

4n

)2
]

=
1

64
E
[(

2ε>Σ−1
1 (µ1 − µ2) + ε>Σ−1

1 ε− 2d/n
)2]

=
1

64
E
[
(2ε>Σ−1

1 (µ1 − µ2))2

+ 4(ε>Σ−1
1 (µ1 − µ2))(ε>Σ−1

1 ε− 2d/n)

+(ε>Σ−1
1 ε− 2d/n)2

]
=

1

64
E
[
(2ε>Σ−1

1 (µ1 − µ2))2

+(ε>Σ−1
1 ε− 2d/n)2

]
=

1

64
tr(4Σ−1

1 (µ1 − µ2)(µ1 − µ2)>Σ−1
1 E[εε>])

+
1

64
E
[
(ε>Σ−1

1 ε− 2d/n)2
]

=
1

8
(µ1 − µ2)>Σ−1

1 (µ1 − µ2)/n

+
1

64
Var

(
ε>Σ−1

1 ε
)

=
s

8n
+

1

16n2
Var

(
ε>(2Σ1/n)−1ε

)
.

In the above calculation, all the odd moments are zero since ε is Gaussian, and the quadratic moments can be
calculated by taking traces, e.g.

E[ε>Σ−1
1 ε] = E[tr(Σ−1

1 εε>)] = tr(Σ−1
1 E[εε>]) = tr(Σ−1

1 (2Σ1/n)) = 2d/n. (22)

For the variance of the final term, we can decompose ε>(2Σ1/n)−1ε into a sum of squares of independent normally-
distributed variables using the eigenvalue decomposition of Σ1; this is a χ2 distribution with d degrees of freedom,
with variance 2d. So

Var(Êb) =
s

8n
+

d

8n2
(23)

In comparison, the true energy barrier height above the minima (approximated as the mean of one Gaussian) is

Eb − Emin ≈ log

(√
(2π)d|Σ1|

)
+
s

8
− log

(√
(2π)d|Σ1|

)
=
s

8
. (24)

Unless s, the Mahalanobis distance between means, grows with dimension, in high dimensions with d � n the
variance will dominate and it will be impossible to accurately estimate the barrier height. If the coordinates of the
means are independent and identically distributed, then the distance between means s should scale with

√
d. So for a

fixed sample size n, Var(∆Ê) ∼
(
E
[
∆Ê

])2

and the energy barrier estimates will typically be off by roughly constant

factors.
This provides an approximate lower bound on the number of samples required for recovering energy barriers. In

addition, for moderate sample sizes n ∼ d there will be a bias in the barrier heights from (21) that must be corrected.
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Supplementary Fig. 1. (A) Comparison between predicted and measured MFPTs in 5D, 10D and 15D for villin, demonstrating
that the first 5 principal components are enough to capture the transition network accurately. The 10D and 15D results
were obtained after reducing to 7D using (15). (B) Comparison between predicted and measured MFPTs in 5D for villin, for
different numbers of Gaussians in the mixture. The markers show the mean MFPT after adding up to five extra Gaussians and
recalculating transition networks between states identified on the original landscape each time. Error bars show the standard
error in the calculation.
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Supplementary Fig. 2. States and transition network in the first three principal components (PCs) for villin including predicted
transition paths between states (red lines) and transition paths from time-dependent data (black lines). Transition paths were
calculated from time-dependent molecular dynamics (MD) data by drawing a straight line between the average pre-transition
point and the average post-transition point, where a transition was defined as a change in cluster from one time-point to
the next (see “Protein folding population landscapes” for a description of how clusters were identified). The two-dimensional
projection of the empirical energy landscape onto the first two PCs is shown for illustration.
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Supplementary Fig. 3. (A) Comparison between predicted and measured MFPTs in 5D for villin after further subsampling the
data by a factor S = 5, 10 or 25, leading to around 2500, 1300 or 500 samples per Gaussian, respectively. The dataset used in
the main paper (see Fig. 2) was already subsampled from the available data by a factor of 5 and consisted of approximately
105 samples. (B) Comparison between predicted and measured MFPTs in 4D for the gene regulatory network example after
further subsampling the data by a factor S = 5, 10 or 25, leading to around 7 · 103, 3 · 103 or 1 · 103 samples per Gaussian,
respectively. The energy landscapes constructed from the S = 10 and S = 25 datasets do not capture one of the highest energy
minima (specifically, the minimum corresponding to low quantities of all four proteins), but the MFPTs are still accurate. The
dataset used in the main paper (see Fig. 3) was already subsampled from the available data by a factor of 103 and consisted
of approximately 8 · 105 samples.
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Supplementary Fig. 4. (A) Comparison between predicted and measured MFPTs in 5D for villin, after supplying the sizes
of the energy barriers to the maximum caliber method8–10. Filled triangles correspond to unfolding transitions and unfilled
triangles correspond to folding transitions. The Pearson correlation coefficient between predicted and measured MFPTs is
ρ = −0.03 for the maximum caliber method, in comparison to ρ = 0.91 for our method. (B) Comparison between predicted
and measured MFPTs in 4D for the repressilator-type gene regulatory network shown in Fig. 3, after supplying the sizes
of the energy barriers to the maximum caliber method. The Pearson correlation coefficient between predicted and measured
MFPTs is ρ = 0.40 for the maximum caliber method, in comparison to ρ = 0.94 for our method. In both cases, because of the
variation in the prefactors between transitions in Supplementary Equation 9, the maximum caliber method is unable to predict
all transitions accurately.
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Supplementary Fig. 5. (A) Heatmaps showing population landscapes, or probability density function (PDF), for the 4D GRN
in selected dimensions. The population landscapes in the other dimensions look similar. (B) Locations of minima (circles) and
minimum energy paths (red lines) for the 4D GRN in three dimensions, including the corresponding directed transition paths
from time-dependent data (one solid green line and one dashed blue line for each pair of minima, to help distinguish the paths
in each direction). Time-dependent transition paths were calculated from gene-regulatory network simulation data by drawing
a straight line between the average pre-transition point and the average post-transition point, where a transition was defined
as a change in cluster from one time-point to the next. For every pair of minima, the time-dependent transition paths in each
direction are almost indistinguishable and close to the minimum energy paths. For simplicity, shown are minima for which the
copy number of protein d is below 10, and the minimum energy paths between these specific minima. Axes have lower limits
of 3 and upper limits of 15.
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Supplementary Fig. 6. (A) Comparison between predicted and measured MFPTs for the 4D gene regulatory network example
after adding 46 extra dimensions of Gaussian noise, to bring the total number of dimensions to 50 (the results without
this noise are shown in Fig. 3C). The MFPTs are captured robustly in 50D. The main practical difficulty in the higher
number of dimensions is choosing appropriate initial conditions for the expectation maximum algorithm when fitting a GMM.
Although in theory it is possible to estimate the mixture parameters directly from the high-dimensional data given a sufficient
number of samples15, we found that the most robust way is to identify the means in the four dimensions that separate the
Gaussians (which can be identified using e.g. PCA in situations where they are not known beforehand); this suggests that it is
useful to identify a lower dimensional subspace in which metastable states are separated when fitting high-dimensional energy
landscapes. (B) Comparison between predicted and measured MFPTs in 4D for the gene regulatory network example after
adding measurement noise of the type encountered in single-cell sequencing. Because technical noise in single-cell sequencing
with unique molecular identifiers can mostly be attributed to undersampling copies within a cell16, for each entry in the copy
number matrix we sampled from a binomial distribution with n independent trials, where n is the protein copy number, with
probability p, which was a variable parameter. For p > 0.75, the predicted MFPTS are preserved robustly when compared
to measured MFPTs, although some of the higher energy metastable states on the energy landscape disappear. Because n is
relatively low in our simulations (Fig. 3A), for lower values of p more of the high energy minima on the landscape are lost and
the predicted MFPTs became more inaccurate. This suggests that the sequencing depth needed to preserve minima on a GRN
energy landscape may depend on the typical protein copy number, as well as the energy and proximity of the minima in gene
expression space.
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Supplementary Fig. 7. Comparison between predicted and measured MFPTs for a 5D asymmetric gene regulatory network
(shown inset), which was also used in Ref. 16. Simulations were performed as described in Section IV, and the parameters were
chosen such that deterministic simulations found a single steady state; a full list of reactions and parameters can be found in
the simulation code available from Github (https://github.com/philip-pearce/learning-dynamical). The population landscape
was fit to the data as described in Section I.
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