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S-1 CORRELATION AND DEPENDENCIES AMONG K SMALLEST P-VALUES

The complexity of analytic forms of the RTP distribution is due to dependency introduced by ordering of
P-values. Although order statistics are correlated, products and sums are oblivious to the order of the terms,
therefore for the case when k = L, the statistic Tk follows the gamma distribution with the shape parameter
equal to L, and the unit scale, i.e., TL ∼ Gamma(L, 1). This is essentially the same as the Fisher combined
P-value, where the statistic is 2TL, distributed as the chi-square with 2L degrees of freedom. However, for
1 ≤ k < L, the k smallest P-values remain dependent even if these k values are not sorted (e.g., randomly
shuffled). The dependency is induced through P(k+1) being a random variable: when P(k+1) happens to be
relatively small, the k P-values have to squeeze into a relatively small interval from zero to that value. This
induces a positive correlation between random sets of k smallest P-values, similar to the clustering effect in
the random effects models.

The k smallest unordered P-values are equicorrelated and also have the same marginal distribution, which
can be obtained as a permutation distribution of the first k uniform order statistics. Assuming independence
of L P-values and their uniform distribution under the null hypothesis, we can derive the correlation
between any pair of unordered k smallest P-values as ρ(k, L) = 3(L − k)/(2 + k(L − 2) + 5L). As L
increases, the correlation approaches the limit that no longer depends on L: limL→∞ ρ(k, L) = 3/(k + 5).
The correlation can be substantial for small k and cannot be ignored. There is a very simple transformation
that makes a set of k P-values uncorrelated. All that is needed to decorrelate these P-values is to scale the
largest of them:

X1 = P(1)

X2 = P(2)

...

Xk−1 = P(k−1)

Xk = σP(k),

where

σ =
2L− k + 3 +

√
(k + 1)(L+ 1)(L− k + 1)

4 + 2L
,

and then randomly shuffle the set X1, . . . Xk. This scale factor σ can be derived by solving the mixture
covariance linear equations induced by the permutation distribution of the first k order statistics. The
decorrelated values can be further transformed so that each has the uniform (0,1) distribution marginally:

Uj =
1

k

k∑
i=1

Beta(Xj ; i, L− i+ 1), j = 1, . . . , k − 1 (S-1)

Uk =
1

k

k∑
i=1

Beta(Xk/σ; i, L− i+ 1), (S-2)
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where Beta(x; a, b) is the CDF of a beta(a, b) distribution evaluated at x. Although the scaling and
subsequent shuffle removes the correlation, the values remain dependent, as illustrated in Figure 1.

S-2 DERIVATION OF THE RTP DISTRIBUTION

An intuitive way to understand our derivation of the RTP distribution is through references to simulations.
The simplest, brute-force algorithm to obtain the RTP combined P-value is by simulating its distribution
directly. If wk is the product of k actual P-values, one can repeatedly (B times) simulate L Uniform(0,1)
random variables Ui, sort them, take the product of k smallest values, and compare the resulting product
to wk. As the number of simulations, B, increases, the proportion of times that simulated values will be
smaller than wk converges to the true combined RTP P-value.

There are several ways to optimize the above simulation scenario with respect to computational complexity.
For instance, sets of ordered uniform P-values can be simulated directly using well-known results from
the theory of order statistics. Despite the fact that the marginal distribution of ith ordered value is
Beta(i, L − i + 1), to create the necessary dependency between the ordered P-values, sets of k values
have to be simulated in a step-wise, conditional fashion. The minimum value, P(1), can be sampled
from Beta(1, L) distribution. Alternatively, using the relationship between beta and Uniform(0,1) random
variables, it can be sampled as P(1) = 1 − U

1/L
1 . Next, since the value P(2) cannot be smaller than

P(1) = p(1), conditionally on the obtained value, it has to be generated from a truncated beta distribution.
The third smallest value should be sampled conditionally on the second one, and so on (Balakrishnan and
Rao (1998)). Therefore, the sequence and the product wk can be obtained by simulating k ordered P-values,
rather then all L unsorted values.

P(1) = 1− U
1
L
1

P(2) = 1− u
1
L
1 U

1
L−1
2

P(3) = 1− u
1
L
1 u

1
L−1
2 U

1
L−2
3

...

P(k) = 1− u
1
L
1 u

1
L−1
2 . . . U

1
L−k+1

k .

(S-3)

Further optimization of the simulation algorithm is illustrative because it provides intuition for theoretical
derivation of the RTP distribution. This optimization is achieved by using the Markov property of order
statistics. Specifically, the unordered set {P1, P2, . . . , Pk | P(k+1) = p(k+1)} behaves as a sample of
k independent variables, identically distributed as Uniform

(
0, p(k+1)

)
. This is a usual step in analytic

derivations of product truncated distributions, and it follows by averaging over the density of P(k+1). This
approach was employed earlier by Dudbridge and Koeleman (2003) and our derivation of an alternative
form of the RTP distributions follows this conditioning idea. After re-scaling,{

P1

p(k+1)
,

P2

p(k+1)
, . . . ,

Pk
p(k+1)

}
∼ Unif(0, 1). (S-4)

The capital Pi notation is used here to emphasize the fact that the variable is random, while the lowercase
p(k+1) refers to a realized value of a random variable, P(k+1) = p(k+1). Next, given that P(k+1) ∼
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Beta(k + 1, L− k), minus log of the product of independent conditional uniform random variables will
follow a gamma distribution. Specifically,

− ln
k∏
i=1

Pi
p(k+1)

= k ln p(k+1) −
k∑
i=1

lnPi,

and treating p(k+1) as a constant,

− ln
k∏
i=1

Pi
p(k+1)

∼ 1

2
χ2

2k = Gamma(k, 1).

The above manipulations reduce the set of k random variables to a set of just two variables: a gamma and a
beta. Therefore, the combined RTP P-value can be evaluated numerically by simulating only pairs of beta-
and gamma-distributed random variables as follows. We note that

− ln

(
k∏
i=1

P(i)

)
= − ln

(
k∏
i=1

Pi
p(k+1)

)
− k ln p(k+1), (S-5)

and define

X = P(k+1) ∼ Beta(k + 1, L− k) (S-6)

Y | X = − ln

(
k∏
i=1

Pi
p(k+1)

)
∼ Gamma(k, 1). (S-7)

The empirical distribution of the product of k values under H0 can then be obtained by repeatedly
simulating X and Y , and comparing the observed value of − ln(wk) to Z = Y − k ln(X) in every
simulation. PRTP would then be defined as the proportion of times simulated values of Z were larger than
− ln(wk). Surprisingly, one can simultaneously evaluate probabilities for two consequtive partial products,

Pr(Wk ≤ w), and

Pr(Wk+1 ≤ w),

by reusing the same pair of random numbers, which follows from the fact that

− ln

(
k+1∏
i=1

P(i)

)
= − ln

(
k∏
i=1

Pi
p(k+1)

)
− (k + 1) ln p(k+1). (S-8)

In the latter case, − ln(w) is compared to Z = Y − (k + 1) ln(X). This simulation method is very fast
and approaches the exact solution as the number of simulated pairs increases. Moreover, through these
simulation experiments it becomes clear that once one conditions on the observed value of p(k+1), the test
statistic is formed as a product/sum of independent random variables. Specifically, Gamma distribution for
the Y variable in Eq. (S-7) appears to be conditional on the observed X = p(k+1) when the pairs (X, Y )
are simulated. Alternatively, one can first simulate X = p(k+1) and then generate a test statistic using k
uniform random variables, U1, U2, . . . , Uk, on (0, p(k+1)) interval.
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We just described a way to evaluate the RTP distribution by repeated sampling of two random variables
to elucidate the idea that the combined RTP P-value can be obtained by integrating out the random upper
bound P(k+1) over its probability density function. Random P(k+1) has to be at least as large as p(k)

but smaller than one, p(k) ≤ P(k+1) ≤ 1. After re-expressing p(k) in terms of the observed product
w =

∏k
i=1 p(i), it becomes evident that w1/k ≤ P(k+1) ≤ 1 because the product is maximized if p(i) = p(k)

for all i = 1, . . . , k, so the observed p(k) can be at most w1/k. Now, integrating over the Beta density, f(·)
with parameters k + 1, L− k, of a single variable P(k+1), we will treat w as a constant:

Pr(Wk ≤ w) = 1−
∫ 1

w1/k
Gk

{
ln

(
tk

w

)}
f(t)dt. (S-9)

Next, following a transformation, we can express the integral as an expectation and make the integration
limits to be 0 to 1, and thus, independent of k:

PRTP(k) = Pr(Wk ≤ w) = 1−
∫ 1

0
Gk

ln

[B−1
k+1(u)

]k
w

 du, (S-10)

where B−1
k+1(·) is inverse CDF of Beta(k + 1, L − k) distribution, and Gk(·) is CDF of Gamma(k, 1).

PRTP(k) is the combined RTP P-value. Also note that two partial products can be evaluated at the same
time,

Pr(Wk+1 ≤ w) = 1−
∫ 1

0
Gk

ln

[B−1
k+1(u)

]k+1

w

 du. (S-11)

We have now derived simple expressions that involve only a single integral where the integration limits
(Eq. (S-10)) no longer involve a product value w and are conveniently bounded within zero to one interval.
Eq. (S-10) illustrates that the RTP distribution can be viewed as the expectation of a function of a uniform

random variable, U ∼Uniform(0,1). If we let H(u | k, w) = Gk

(
ln

(
[B−1

k+1(u)]
k

w

))
, the unconditional

distribution of Wk is

Pr(Wk ≤ w) = 1−
∫ 1

0
H(u | k, w)du = 1− E {H(U | k, w)} .

Therefore, to evaluate PRTP(k) numerically, one can simply sample a large number of uniform random
numbers, U , apply the function 1−H(U) and then take the mean. The corresponding R code using one
million random numbers is:

mean(1-pgamma(log(qbeta(runif(1e6),k+1,L-k))*k+z,k))

where z = − ln(w). Using the integration explicitly, the R code is:

integrate(function(x,w,k,L) 1-pgamma(log(qbeta(x,k+1,L-k))*k+w,k),0,1,z,k,L)$va.
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S-3 R CODE EXAMPLE FOR COMPUTATION OF ART AND PRTP

In the code below, ART and PRTP are computed for a vector of six P-values with k = 4, lW=
∑k−1

i=1 ln(P(i))
and Pk= P(k):

Art <- function(lW, Pk, k, L) {
d = (k-1)*(digamma(L+1) - digamma(k))
ak = (k-1)*log(Pk) - lW + qgamma(1-pbeta(Pk, k, L-k+1), shape=d)
1 - pgamma(ak, shape=k+d-1)

}
P = sort(c(0.7, 0.07, 0.15, 0.12, 0.08, 0.09))
L = length(P)
k = 4
Z = sum(-log(P[1:k]))
lW = sum(log(P[1:(k-1)]))
P.rtp = integrate(function(x,y,m,n) 1-pgamma(log(qbeta(x,m+1,n-m))*m+y,m),0,1,Z,k,L)$va
P.ak = Art(lW, P[k], k, L)

The resulting combined P-values are ART=0.045 and PRTP=0.047. Note that all six original P-values are
larger than the combined ART and RTP. This example demonstrates that weak signals can form a much
stronger one after they are combined.

S-4 DERIVATION OF THE ART-A DISTRIBUTION

As we discussed, ordered P-values can be represented as functions of the same number of independent
uniform random variables (Eq. S-3). This reveals that the jth value, p(j), is a function of all p(i<j) and
that in a given set of k variables (i.e., conditionally) all information is contained in k independent random
variables, U1, U2, . . . , Uk. These independent components can be extracted and utilized. Specifically, by
using the conditional distribution of Wi, which only depends on the two preceding partial products, Wi−1

and Wi−2, we define independent variables Zi’s as Zi = Pr(Wi > wi | Wi−1,Wi−2). Successive partial
products relate to one another as:

Wk = Wk−1 −Wk−1

(
1− Wk−1

Wk−2

)
U

1
L−k+1

k .

Since U
1

L−k+1 ∼ Beta(L − k + 1, 1), the conditional density and the CDF for the product are found as
follows:

f(Wk = x | Wk−1 = tk−1,Wk−2 = tk−2) =
(tk−1 − x)L−k

B(L− k + 1, 1)
(
tk−1(1− tk−1

tk−2
)
)L−k+1

.

Let

1− Zi = Pr (Wi < wi | Wk−1 = tk−1,Wk−2 = tk−2)

= Pr

(
ti−1 − ti−1

(
1− ti−1

ti−2

)
U

1
L−i+1
i < wi | Wi−1 = ti−1,Wi−2 = ti−2

)
= Pr

(
− lnUi < −(L− i+ 1) ln

(
1− p(i)

1− p(i−1)

))
.
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Then,

Pr(Wk ≤ x | Wk−1 = tk−1,Wk−2 = tk−2) =

∫ x

t2k−1/tk−2

f(Wk = x | Wk−1 = tk−1,Wk−2)dx

=
1

B(L− k + 1, 1)
(
tk−1

(
1− tk−1

tk−2

))
×

∫ x

t2k−1/tk−2

(tk−1 − x)L−kdx

= 1−

 tk−1 − x

tk−1

(
1− tk−1

tk−2

)
L−k+1

= 1−

(
1− p(k)

1− p(k−1)

)L−k+1

.

We now obtained a transformation to a new set of independent uniform (0− 1) random variables.

Zi =

(
1− p(i)

1− p(i−1)

)L−i+1

,

with
Z1 =

(
1− p(1)

)L
.

Next, define Y =
∑k

i=1G
−1
λi

(1 − Zi), where G−1
λi

is the inverse gamma CDF with the shape λi and the

scale 1. Under H0, Y has a gamma distribution with the shape equal to the sum:
∑k

i=1 λi. The combined
P-value is now obtained as:

1−G∑k
i=1 λi

(
k∑
i=1

G−1
λi

(1− Zi)

)
. (S-12)

When λi is large, the gamma CDF approaches the standard normal CDF, which motivates the inverse
normal transformation. The quantiles will be calculated by using λiΦ−1(1− Zi), as an approximation to
G−1
λi

(1− Zi) for large k. The inverse normal method is useful for the reason that the joint distribution of
the partial sums can be derived in a standard way to evaluate the adaptive ART (ART-A) P-value. For the
ART-A, we define partial sums as:

Sk =
k∑
i=1

λiΦ
−1(1− Zi),

where Φ−1(·) is inverse CDF of the standard normal distribution. Then, under the null hypothesis,
S = (S1, S2, ..., Sk)

T follows a multiviate normal distribution, MVN(0,Σ), with Σ = FWFT and
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F =


1 0 · · · 0 0
1 1 · · · 0 0
...

... . . . ...
...

1 1 · · · 1 0
1 1 · · · 1 1

 , diag(W) =


λ2

1

λ2
2

. . .
λ2
k

 ,
where λ are weights. In our simulation experiments, we set all λi = 1, however one may take advantage
of some information about the effect size distribution, if that is available. If power is high, but the signal
is sparse, it would be expected that true signals may tend to rank among the smallest P-values. In this
case, one possible sequence of weights is λ2

k−i+1 = k
k−i+1 . Such weights that emphasize partial sums with

few terms can also be used in certain situations where P-value distribution is expected to be skewed from
the uniform (e.g., due to discreteness of a test statistic), with many P-values being close to one. Finally,
the vector S can be standardized as Ti = Si/σi, where σi are the diagonal elements of Σ, then T ∼
MVN(0,R), Rij =

Σij√
ΣiiΣjj

. The null distribution of T is used to evaluate ART-A by using Pr(Si/σi > si)

probabilities and to obtain quantiles (significance thresholds) using commonly available MVN distribution
functions (e.g., mvtnorm R package) (Mi et al. (2009)).

S-5 SIMULATION SETUP

We performed B=100,000 simulations to evaluate the Type I error rate and power of the proposed methods.
To study performance of combination methods for independent P-values, in each simulation, we generated
L normally distributed statistics, X ∼ N(µ, 1). The squared values of X follow the chi-square distribution
with one degree of freedom and noncentrality parameter µ2, X2 ∼ χ2

(1,µ2)
. P-values were obtained as one

minus the CDF of the noncentral chi-square evaluated at X2, or as P = 2−Φ (|X|+ |µ|)−Φ (|X| − |µ|)
in terms of the normal CDF. P-values generated from normal statistics (without squaring them) were also
considered, but these results are omitted for brevity, because the resulting ranking of the methods by power
was found to be similar. Under H0, L P-values were sampled from the uniform (0, 1) distribution, which is
equivalent to setting µ to zero.

To study non-independent P-values, we simulated L statistics from a mutivariate normal distribution
MVN (µ,Σ) and decorrelated them by eigendecomposition as described in “Methods” section. In each
simulation, a correlation matrix Σ was generated randomly by perturbing an equicorrelated matrix D.
Specifically, we added perturbation to equicorrelated matrix D with off-diagonal elements ρ = 0.5 as:

R = D + uuT , (S-13)

where u is random vector (Bartlett (1951)). Then, R was converted to a correlation matrix Σ with off-
diagonal elements ρij =

Rij√
RiiRjj

=
ρ+uiuj√

1+u2i

√
1+u2j

. The amount of “jiggle” in R depends on the variability

of elements in u. If elements of u are generated in the range between −δ and δ, the value of δ would
represent the upper bound for the amount of jiggle allowed between pairwise correlations in Σ. In our
simulations, we set δ = 1, allowing for a mix of positive and negative values of ρij in Σ.

In addition, we evaluated power of the methods by using correlation due to linkage disequilibrium (LD)
in real data (Table (S1). The 11 ×11 correlation matrix was estimated from previously reported haplotype
frequencies of eleven SNPs in the µ-opioid receptor (MOR) gene (Shabalina et al. (2008); Kuo et al. (2014)).
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The pairwise LD correlations within MOR were generally high and ranged from -0.82 to 0.99. In this set of
simulations, we used effect sizes sampled uniformly in the interval from -0.5 to 0.2.

The Type I error rate and power performance were computed based on two B × k matrices of P-values,
P0 and PA, every row of which contained k smallest sorted P-values out of L tests across B simulations
(L − k P-values were discarded). P0 stored simulated P-values under H0 and PA under the alternative
hypothesis, HA. Taking the product of P-values in each row, we obtain two B × 1 vectors, w0, wA. RTP
P-values were computed based on the empirical CDF (eCDF) of w0 evaluated at B values of wA. Power
was calculated as the proportion of P-values that were smaller than the significance threshold, α.

L = 11, mean |ρ| = 0.55
k: 5 6 7 9 11

RTP 0.07 0.06 0.06 0.05 0.05
RTP(decorr) 0.85 0.87 0.87 0.87 0.87
ART(decorr) 0.85 0.87 0.87 0.87 0.87

aRTP 0.07 0.07 0.06 0.06 0.06
ART-A(decorr) 0.85 0.85 0.85 0.84 0.83

Simes 0.78 0.78 0.78 0.78 0.79
Table S1. Power at α = 0.05 for P-values correlated according to the LD structure in the µ-opioid gene, with effect sizes randomly sampled in the interval
from -0.5 to 0.2.
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