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Supplementary Figure 1 (a) Representative gating strategy used in the manuscript for 
identifying CD4+ T cell memory subsets. (b) The contribution of each memory CD4+ T cell 
subset to the reservoir size is indicated. CD4+ T cells from virally suppressed individuals were 
sorted into TCM, TTM and TEM subsets, and integrated HIV DNA was quantified (Fig 1b). The 
contribution of each subset is expressed as the frequency of integrated HIV DNA by the 
proportion of cells present in each subset in the total population. p values are indicated (each 
circle represents a unique participant; Wilcoxon rank sum test; n=18). (c) CD4+ T cells from 
virally suppressed individuals were sorted into TCM, TTM and TEM subsets using the gating 
strategy in Supplemental Fig. 1a, and integrated HIV DNA in each subset was quantified. (Bars 
indicate mean with SD, Wilcoxon matched-pairs signed rank test, p values are indicated. n=11.).
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Supplementary Figure 2. (a) Hierarchical clustering on the pathways differentially expressed
in the TCM subset upon exposure to PMA plus ionomycin compared to their unstimulated
controls (at p-value < 0.05). The pathway expression was assessed in the TCM subset and in
the unstimulated TEM subset (b) Heatmap of the pathways differentially expressed upon
exposure to LRAs (bryostatin and PMA plus ionomycin) compared to unstimulated controls in
the TEM subset (p-value < 0.05). Rows represent the pathway and columns represent samples.
The color gradient represents the z-score of the pathway per sample calculated by SLEA. (c)
Heatmap of the pathways differentially expressed upon exposure to PMA and ionomycin,
compared to unstimulated controls in the TTM subset (p-value < 0.05). Rows represent the
pathway and columns represent samples. The color gradient represents the z-score of the
pathway per sample calculated by SLEA.
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Supplementary Figure 3 (a/b) The cross validated mean square error plot obtained by
optimization of the LASSO regression model that tested the combination of activation markers
(as independent variables) that best predicted the frequency of cells expressing inducible
msHIV RNA (as the dependent variable) in TCM (a) and TEM (b) respectively. The blue dotted line
indicates the least cross-validated mean square error (0.37 for TCM, and 0.32 for TEM) for the
models.
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Supplementary Figure 4 (a) Conditioned medium from the H-80 cell line was analyzed using
Luminex for markers of immune regulation. The pg/mL concentration of each cytokine is
indicated by bars, error bars indicate SD. (b). The TEM subset distribution was monitored on day
0, 6 and 13 in LARA culture. The proportion of the population in Treg (olive), TH1 (teal), TH2
(aqua), TH17 (orange), and Tfh (green) subsets are indicated in each pie slice; n=5. (c) Cytokine
omission experiments in LARA. The induction of latency reversal (%CD4-Gag+ cells) in 20 ng/mL
TGF-β and 40 ng/mL IL-7 standard LARA conditions are compared to 0 ng/mL TGF-β / 0 ng/mL
IL-7, 0 ng/mL TGF-β plus 40 ng/mL IL-7 or 20 ng/mL TGF-β plus 0 ng/mL IL-7. On day 13, cells
were activated with aCD3/CD28 (black bars) or left untreated (grey bars) in the presence of
ARVs and then monitored for the frequency of %CD4-Gag+ cells (n=3).
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Supplementary Figure 5 (a) Determining the differential expressed genes (DEGs) between
day 0 and day 14 culture conditions in each of the memory subsets, and identifying the
pathways enriched among the DEGs. Stacked bar plot of the number of pathways showing
significant changes (p-value < 5%) in expression between day 0 and day 14 (grey proportion),
and the number of pathways that do not show significant changes in expression between day 0
and day 14 (black proportion) in each memory subset. Y-axis represents the number of
Genesets / pathways in the Hallmark pathway database. 76% of pathways were similar in their
expression when comparing day 0 and day 14 culture in TCM, 74% in TTM and 92% in TEM (b-d)
Heatmap of the pathways that do not show significant differences (p-value > 5%) between
LARA in vitro conditions and CD4+ T cell ex vivo subsets in TCM, TTM and TEM respectively.
Expression of each pathway is represented by their z-score calculated using SLEA. Rows
represent pathways and columns represent samples.
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Supplementary Figure 6 (a) On day 13 of LARA, the frequency of integrated HIV DNA was
determined prior to viral reactivation (right axis; n=5; each colored circle represents a unique donor
in LARA). Subsequently, infected cells were cultured for 72 hours with aCD3/CD28 antibodies or
left unstimulated, both in the presence of anti-retroviral compounds and the frequency of %CD4-
p24+ cells was quantified by flow cytometry (left axis; p values from paired t test are indicated). (b)
The frequency of integrated HIV DNA from ex vivo CD4+ T cells was determined prior to TILDA
(right axis; n=4; each colored circle represents a unique participant). TILDA positive control (PMA
plus ionomycin) compared to the negative control (unstimulated) is shown (left axis; p values from
paired t test are indicated). (c) We examined the responsiveness of latently infected cells
generated in LARA to different classes of anti-latency compounds using commonly reported
concentrations. LRA concentrations shown in the figure- 50 nM bryostatin (maroon bar), 500 nM
SAHA (olive bar), 20 nM panobinostat (green bar), 20 nM romidepsin (blue bar), 100 ng/mL IL-15
(orange bar). CD4-Gag+ signal from each LRA was normalized to the positive control 1 µg/mL
αCD3/CD28. P values are shown, error bars indicate SD; n=5 independent LARA donors. (d)
Induction of multi-spliced HIV RNA virally suppressed HIV-infected individuals using the same
compounds at the same concentrations as in (a) was assessed using TILDA(27). This assay
measures the frequency of cells producing tat/rev multiply spliced HIV RNA using quantitative RT-
PCR. Frequency of multi-spliced HIV RNA induction was normalized to the positive control for
TILDA (100 ng/mL PMA and 1 µg/mL ionomycin). P values are shown, error bars denote SD, n=4
independent participants from Table 1.


