Supplementary Information for

A rotary plasmonic nanoclock

Xin et al.

Correspondence to: na.liu@kip.uni-heidelberg.de

Supplementary Figure 1 Strand routing diagram of the DNA origami structure for the stepwise plasmonic nanoclock. Staples for two foot strands (green), 16 footholds (red), 20 capture strands (violet).

Supplementary Figure 2 | Structural details of the stepwise plasmonic nanoclock. a, Top and b, Side views of the plasmonic nanoclock at position 3-3'. Three grey dots under the blue ring in the top view represent the positions of the three pairs of adjacent crossovers with 6 unpaired bases to connect the lower surface of the 6-helix ring and the upper surface of the single-layer plate. The grey dot in the center of the circle represents the position of 2 adjacent scaffold crossovers with 30 unpaired bases used to connect the centers of the 10-helix bundle and the single-layer plate, which are not shown in the side view. The orange dot is the center of the capturing strands extended from the bottom of the plate for attaching the stator AuNR. The orange dot and grey dot don't coincide with each other (the lateral distance between them is ~ 2.3 nm), meaning the two AuNRs are not coaxial. The four circles in the top view represent the positions of the different helices in the ring. The crossovers used to immobilize the ring on the plate are distributed on helix 2 and the footholds are extended from helix 4. Both helices are along the blue circle in the top view. The origami bundle is about 10 nm in width and 52 nm in length. The two black dots along the diagonal direction of the rotor represent the two feet and coincide with the two small blue dots at position 3-3', meaning the two feet are bound to fh_3 and $fh_{3'}$, respectively. The rotor is fixed at position 3-3'. c, Enlarged view of connections between ring track, rotor and plate. Scaffold crossovers are used to immobilize the rotor and ring on the plate. Meanwhile, the rotor and ring track are linked via foot-foothold interaction.

Supplementary Figure 3 Schematic illustration of the stepwise rotation from position 1-1' to position 2-2'. Each pair of the colored foothold strands on the ring track has a specific sequence. The two feet at the ends of the DNA bundle interact with a given pair of the footholds to determine the rotor position. For example, at the initial state the rotor is fixed at position 1-1'. At this state, the feet are bound to the red foothold pair (fh₁ and fh₁) and all other footholds are blocked. (**a-c**) R₂ is first added to activate position 2-2'. B₂ is dissociated by R₂ through branch migration, triggered by top domain of B₂, and the green pair of the footholds (fh₂ and fh₂) is activated. (**d-f**) Next, B₁ is added to block position 1-1'. Fh₁ and fh₁, are deactivated by B₁ mediated through toehold domains on fh₁ and fh₁. (**g**) Two feet are free for capturing fh₂ and fh₂, and driving the rotor to position 2-2'. As a result, one step of the clockwise rotation is accomplished.

Supplementary Figure 4 | TEM image of the stepwise plasmonic nanoclocks at position 1-1'.

Theoretical calculations were performed using commercial software COMSOL Multiphysics based on a finite element method. The origin of the bisignate CD is a consequence of Coulomb interaction between the dipoles of the two AuNRs. The CD signal was calculated as a difference in extinction for the left- and right-circularly polarized light. Since the plasmonic assemblies were dispersed in a solution, we carried out orientational averaging. Averaging over all possible orientations at defined light incidence is equivalent to averaging over all incident directions of light for a nanostructure with defined orientation. It has been demonstrated both analytically and numerically that averaging over six orthogonal directions of light incidence is sufficient to give accurate CD. In order to account for the inhomogeneous broadening due to the polydispersity of the AuNRs, the experimental dielectric function of Au was modified by including an additional term:

$$\varepsilon_{\text{effective}}(\omega) = \varepsilon_{\text{bulk}}(\omega) + \varepsilon_{\text{correction}}(\omega)$$
(1)

where the dielectric function of bulk Au, $\varepsilon_{\text{bulk}}$ is from the Johnson and Christy values, and the correction term is introduced following a standard approach:

$$\varepsilon_{\text{correction}}(\omega) = \frac{\omega_{\text{p}}^2}{\omega^2 + i\omega\gamma} - \frac{\omega_{\text{p}}^2}{\omega^2 + i\omega\Gamma_{\text{broad}}}$$
(2)

 $\omega_p = 8.754 \text{ eV}$ and $\gamma = 0.0724 \text{ eV}$ are the Drude parameters, respectively. Γ_{broad} is 0.362 eV.

Supplementary Figure 5 Theoretical results for the 16 states of the plasmonic nanoclock. **a**, Calculated CD spectra at different rotation angles. **b**, CD intensity at 732 nm as a function of the rotation angle θ .

Supplementary Figure 6 Kinetics of the stepwise rotations driven by corresponding DNA fuels. The concentration of the AuNRs is about 1.2 nM. This result also indicates that the plasmonic nanoclock can perform stepwise rotations from any starting position.

Supplementary Figure 7 Structural details of the autonomous plasmonic nanoclock. Top-view of the plasmonic nanoclock with track arrangement of 1-2-3-4-5-6-7 at **a**, position 1-1' and **b**, position 3-3'. Substrates (purple dots) as footholds are arranged on helix 4 (blue circle). Fh₁ and fh_{1'} are working as lower locking strands (red dots). **a**, Two brown dots along the diagonal direction of the rotor represent that the DNAzyme feet are blocked. Two black dots next to the blocked feet represent the upper locking strands. They coincide with the red dots, which means the rotor is fixed at position 1-1' through hybridization between the upper and lower locking strands. **b**, Two green dots represent the positions of the substrates at fh₃ and fh_{3'}, and the rotor is fixed at position 3-3'. **c**, Side-view of the plasmonic nanoclock with track arrangement of 1-2-3-4-5-6-7 at position 1-1' and the feet are blocked. The distance between the two upper locking strands is about 32.3 nm. **d**, Enlarged view of connection between ring track and rotor by the locking strands on helix 62 and 4. The foot strand (green) on helix 61 is blocked by blocking strand b (brown).

Supplementary Figure 8 | TEM image of the autonomous plasmonic nanoclocks at position 1-1'.

Supplementary Figure 9 Schematic illustration of the autonomous rotation from position 1-1' to position 3-3'. Before rotation, feet (green) are blocked by blocking strand b (brown). Each substrate (purple strand) contains a ribonucleotide (purple dot) in sequence at the 8 base from 5' end. Two upper locking strands (black) next to feet hybridize with fh_1 and $fh_{1'}$ to fix the rotor at position 1-1'. The autonomous rotation is actuated through two sets of toehold-mediated strand displacement reactions. (**a-c**) Addition of removal strand r (brown), the feet are activated to interact with substrates at fh_2 and $fh_{2'}$. (**d-f**) B_1 is added to break the interactions between the locking strands and free the rotor for autonomous rotation. (**g-j**) In the presence of Mg^{2+} , the 8-17 DNAzyme in the foot strands catalyze the hydrolysis of the substrate at the RNA base (rA). The substrates are cut into two short segments (8-nt free segment and 17-nt staple extension). As the free segments diffuse in the solution, the adjacent pair of the intact substrates at fh_3 and $fh_{3'}$ are able to interact with the foot strands. Subsequently, the feet will move forward to position 3-3'. The processive rotation is therefore based on the burnt-bridge mechanism.

Supplementary Figure 10 Visionary scheme of a dynamic optical metasurface, on which the DNAassembled rotary AuNRs work as individual plasmonic pixels to dynamically shape the wavefront of light. The orientations of these AuNRs could be independently controlled by DNA nanotechnology. For instance, with a linear phase gradient distribution (\mathbf{a}), anomalous refraction by the metasurface (\mathbf{b}) could be achieved.

Supplementary Figure 11 Strand routing diagram of the DNA origami structure for the autonomous plasmonic nanoclock. Staples for two foot strands (green), two upper locking strands (magenta), 16 footholds (positions for lower locking strands and substrates, red) and 20 capture strands (violet). Two blue strands represent the staples revised in the autonomous design.

Supplementary Figure 12 Characterization and purification of the DNA origami structures by agarose gel electrophoresis. **a**, DNA origami for assembly of the stepwise plasmonic nanoclocks. **b**, DNA origami for assembly of the autonomous plasmonic nanoclocks.

Supplementary Figure 13 Characterization and purification of the plasmonic nanoclocks by agarose gel electrophoresis. **a**, Stepwise plasmonic nanoclocks. **b**, Autonomous plasmonic nanoclocks. PCs: plasmonic nanoclocks

Unmodified staples	Sequence (5'-3')
2[135]	CAAGAGAATCGATGAAGTTTA
1[270]	ATTCTTACCAGTATAAAGACC
57[151]	CCAGACGTCGGTGCGGTTTCT
35[99]	AATAAAGGAACCCATGTACCGAACGCCT
41[119]	TCACCCTAGGAAGTTTCCATTACTCATC
39[98]	GTTGAAACCATCGCCCACGCAGGAGTTA
41[203]	CTTGACAGGAACCGAACTGACAAATCCG
43[182]	GATAAATTGTGTCGCAACTTTTCATCAA
37[203]	CACATTCGGGAAGAAAATCTATCATTG
37[140]	AAAGTTTTCTGTATGGGATTTCCTTTAA
37[98]	GTAGCATGAGTGAGAATAGAATTTTCAC
29[140]	GTAAAACCGCCACGGGAACGGCAGAAAC
27[119]	ATCGCACCTGTTGGGAAGGGCACGCCAG
39[140]	TTGTATCTAAACAGCTTGATAGAAAGAC
27[203]	AAATACAAACCGAGGAAACGCTCTTACC
39[182]	TAATTTCGACGAGAAACACCAAGGCTGG
41[140]	AGCATCGAGGACTAAAGACTTATTATAC
29[182]	AATAGCACAAGAATTGAGTGAGAATA
35[182]	ATTACCGCTCATCGAGAACAAAGATTCA
26[118]	TGGGATAGGTCACGTTCGCGTAAAATTC
23[98]	AAGAGAAGCATTAAATTTTTGGCCATCA
31[98]	GTGGTGATAAAAGTTTGAGTAAGAAGGA
25[98]	AAAATAATTGGTGTAGATGGGGGGACGAC
27[182]	CAGTATGACGGAATACCCAAAACAATGA
25[140]	ACATTAAGTGGGAACAAACGGAGCTTTC
37[182]	TCAGTTGTAAAACGAACTAACGATGGTT
41[98]	AAGGCCGTAAAATACGTAATGGGCAAAA

Supplementary Table 1 | Sequences of the stepwise plasmonic nanoclocks.

29[119]	GGTTTTCCACCGGAAACAATCGCTCTCA	
25[182]	GACATTCCAATAGAAAATTCATATTACG	
41[182]	CTGACCTGAAAGAGGACAGATATCGCCT	
60[174]	GTCAATACGATGCTAGAATGCCAACGGC	
2[9]	TAGCTTTACCCTGACGAAGCAAACTCCC	
27[140]	CGGCACCTTCGCCATTCAGGCCGACGTT	
39[203]	TGAATTATCAGTGAATAAGGCGAGTAAT	
27[98]	GACAGTAGCGGGCCTCTTCGCGCAAGGC	
25[203]	GGGAAGGATAAGTTTATTTTGACGTAGA	
23[182]	CCGGAAATTAGAGCCAGCAAAAAAGGGC	
20[202]	CCACCAGGGAACCGCCTCCCTGTCAGAC	
29[98]	GATTAAGCGTACAGCGCCATGTTTCTCC	
33[98]	GCGGAATATAATGGAAGGGTTAAACAGA	
2[324]	ACCATAAATCAAAAACATAAAGAAAATTA	
2[240]	CACTGCGGAATCGTGGATAAATGGGGGCGC	
2[93]	AATACAAAGGCTATATTAATGGTAGCTCA	
2[261]	CAGTATTCATTGAATAGCCTTGCATCAATT	
2[219]	AGAACTGGATAGCGTCTCATAACCTGTTTA	
2[156]	GTTGAGAGGCTTTTGAAAGGCTGATTCCCA	
2[30]	ATCAGTCAGAAGCAACTTCAATAATTGCTC	
2[282]	CTCCAAATGCTTTAATGTAATAAGCATTAA	
2[303]	CACCAGAAAACGAGAACCAAATACAGGCAA	
2[51]	AATTGCATCAAAAAGATATCGCTCATTTTT	
2[114]	AATATTGCCTGAGAGCAACCGTGCAACTAA	
2[177]	CCAAAGTTTTGCCAGTAAAGATTAGATTTA	
64[223]	CACACGATGATAGCACCACCAGCAGAAGTCA	
5[87]	GAATATCCAATCCAATAAACAACATGTTGTC	
5[22]	TAGAGAAAATTTAATTTCGAGCCAGTAAGTGT	
5[169]	ATTCTGCAATAGTGTTACGAGCATGTAGAATT	

63[203]	TTTAATGCGCGAACCCAGTAAGTCAAAGTTGC	
5[316]	GGCAAATAAGAATAATCGCCATATTTAACAGA	
5[127]	AGTACGCCTCCGGCACAATAGATAAGTCCTAA	
58[230]	ACGTGCCGGCGCTTTCCGCCGGGGCGCGGGGGGGG	
5[232]	GCTATACGCTATTAGAATTACCTTTTTAATTT	
5[43]	CTTTTGTTAGTTAATATAAAGTACCGACACCAA	
1[144]	CAAGAGACTACCTTTTTAAGTGTCTGGTCAATAT	
5[211]	CAAATGAATCCTTGAATTACATTTAACAAAAGA	
1[60]	GTATTTTTCAAATATATTATAAGAGGGTTTTAA	
5[148]	TTCCATAAGGTCTGAGAAAAATAATATCCCCCCTC	
5[190]	GTTTGACTTAGATTACAATAATCGGGAAAACAAA	
5[295]	CATCCAATTACTAGATCAACAGTAGGGCTTCCGC	
5[64]	GCGGATGGAGAAAACAAGTAATTCTGTCCAGGTT	
5[106]	ACATGTTAACTATATATGCAGAACGCGCCTCGGT	
1[186]	AATAGACGCTGAGAAGAGTCGAACGAGTCAAAAG	
1[249]	AAATGCTTCTGTAAATCGTTTTTCATTAATTTTT	
5[253]	GAGCTGAAATAACCTCAGTACATAAATCAACGCG	
1[39]	GAATTTCATCTTCTGACCTGTACCTTAGCGAACC	
1[102]	CTAGTAAATGCTGATGCAAATAATGCTCCGGAGA	
1[228]	TTTATTAATTTTCCCTTAGGTCAATATATTTTAA	
1[333]	CCATAAATAAGGCGTTAAAGAATTAGCCTAAATC	
1[81]	CGAGCAAGACAAAGAACGCGCTTAGACGAAAGAC	
1[291]	CGCAAAAGCCTGTTTAGTAATAGTAGTCTTTTGC	
1[123]	TCATTAGGTTGGGTTATATTTAAATATTCTAGCT	
1[207]	ATTAAAACATAGCGATAGCCATTAGAAGTAATGT	
22[202]	TGTAGCGAATGAAACCATCGACCGACTTGAGCCAT	
1[165]	TAATAATTTATCAAAATCATTAACAGTCGGAGACA	
61[147]	CGTTGGCCGCACAGGCGGCCAGCCCGAGGATTGCC	
23[105]	GGATTAGCTGCCTATTTTGATCCTCATTAAAGCCA	

34[195]	TGCGGGAGCCTAATAAATGAAAACAGGGAAGCGCA			
1[312]	GAGAAACACCGGAATCATAATAAATCAAACATTAT			
35[203]	CAAATCAAGAGCAACACTAAGTACCGCACGCCCAA			
59[98]	AGTTGAGAATTCCATGGTTCCGGTCCACGCTGGTT			
59[217]	GCTGGCAGCCTCCGTGAGGAAAACCGTCCACCAGT			
43[203]	CGACCTGCTCCATGTCATAAGAGAACCGTGCTCAT			
29[203]	GAAGCCCGCTAATATCAGAGAGATAACCATAGCTA			
59[147]	GTGATGAGCGGCGGGCCGTTTTGGTGCTCATCCCT			
40[195]	TTGCCCTAACTTTAACGTTAAAGATTTAGGAATAC			
39[112]	AAAAAAGGCTCCATTGCGCCGACAATGGGGATCG			
5[0]	AGCAATAACCGTGTGAACATGTAATTTAGGCGGTT			
2[202]	CAACTTAATAGTAAAATATGCCTGTACATTTCG			
28[195]	AATAATATTAGCAATCACAATAACCGATTGAGGGA			
57[126]	GCCTGTGCACTCTGTCACGGTAATCATGGTCTTTA			
1[18]	GCATTGGTTTGAAATACCGAAGCAACAGGTCAGGAT			
62[121]	CTGGTATTGGGCGCCAGGCCTGGCAAATCAAGTGTGTT			
55[95]	TGGCACAACAAAGCATAAAGTGTATTAATGAGCGCGGG			
58[114]	CAGGGGTACCGAGCTCGGTGAAATCCCTTATCCTGAGA			
55[221]	AAAGGTTATCATATCTGGTCAGTTCGAACGACCTAAAA			
60[128]	TGTAATTCGTCATACCGGGGGTTTACTGCGCCAGCAAA			
60[191]	ACTCAAACGCGTCTGGTCAGCAGCAGCTTACCTGCGGC			
2[72]	GATAGGAAGCTTTGAGAGATCTCATATGTACCCCGACGA			
63[147]	TCACCAGTGAGATAACGCTGAGACGCTCACTGCCCTTTCTTT			
34[139]	CAATATACAGATGAATATACAAACGGATTCGCCTGACGATCT			
29[210]	TTTTTAAAGAAGGATACATAACCACGGATAAATATTGACGGA			
20[181]	CCGCCGCACCGGAACCAGAGCATCGGCATTTTCGGAGCAAGG			
24[132]	TGTAAACTGCTCAGCGTATAACTGGTAAGATATTCACAAACA			
38[153]	TGAATTTTGTCGTCAAACAATGTAACAGTTGCACCCAGCTAT			
21[140]	TAACGGGGTCAGGCGCAGGTCAGACGATTGGCCTTTAAGTTT			

63[161]	AGAATACGTGGCACTTCTGACGTTTGGAGGGTAAACATCCCA			
58[160]	AGCACATAGGGTAAAGTTAAAGATAATATGTTCCACTGAAAG			
30[132]	ATAACCTCCAGTCATGCGCAATCCAGCCCGGATTGGCCAGCT			
20[160]	GGTTGAGCATCTTTTCATAATCCCCTTATTAGCGTCGAGAGG			
20[118]	AATAAATGATACAGGAGTGTAACAGTTAATGCCCCGATTAGC			
43[140]	CAAGCGCGAAACAAGGCTTTGGAACGAGAATTTCTGGTTTAT			
41[168]	GGCGCATGAACGAGTAGTATTCGAGGTGGGTAGCAACGACCA			
39[168]	GGCTTGAGGAACAACATTAGTTAGTAAACAGCTTGCTAATTG			
63[182]	ATTTTTGAATGGCTTGGCCAATTAAAGATGTTGCCGGCTGGA			
22[139]	CAGTGCCTACCAGGCGGATAAGCAAATATTTAAATTTCATCA			
43[98]	GAATACACTAAAACAAACGGGCTTTTGCACAACAAATCTCCA			
20[97]	GAATGGAGCGTCATACATGGCTTTCGGAACCTATTACTCCTC			
23[161]	GTACCATTACCATTTCATAGCCAAAATCCAGCATTGACAGGA			
39[210]	CCTTATGGGACGTTAACTAATCATAGTAGATATAGAAGGCTT			
37[168]	GGTAGAAGCAAGCCGTTTTCATCGGGAGTTTCCAGACTTACA			
43[168]	TTGTATCGAACGGTGTACAGGCTACAGAAGTACAACGGAGAT			
25[161]	CAGCGCCAAAGACAATCACCAGTAGCTGATATAATCGAGTAA			
24[195]	TTGGGAACGTCACCCGTTTTCCACCACCAACCACCAGAG			
34[223]	GCGAGGCGTTTTAGATAAACACGATTTTGGAGAATATTGAGC			
27[161]	AAATTAAGACTCCTTATGGTTTACCAACCCGTCGGGTGCCGG			
23[119]	GGGGTTTGTTAATATTTTGTTCTGGCCTTCCTGTAACCGTAA			
35[119]	TTCAGGTTGAATACCAAGTGCACAGCCCTCATAGTCAACTTT			
29[161]	AGTAAGAGCAAGAAAGAACTGGCATGACCAGGCAAAGTGCCA			
5[274]	CTACTATCATATGCGTTATATGTGAGTGAAAGGTGTATTTCAA			
63[105]	GAGAGGCAGCAAGCGAAATCGCGGCATCTCCAGCGCAGTGTCCTGC			
32[111]	TTAATTTAGGGATAGGCGAAATTGGGTAGATCGGTTCGGCCTCAGGAAG			
38[118]	CAACAGTTTCAGCGTCCACAGCCAATAGAAATTGCCTTCTGATATCATC			
57[196]	GGTGTCCGGTGCTGGGTCCGTTTTTCGTCTTTAGCTCCAACTAAAAGG			
57[175]	CGCAACCAACCGCAGATTGCCGTTCCGGAATAGATTCCACTACAGAGAT			

24[223]	AATTATCACCGTCATAGCAGCCTTTAGCCAGAGCCCACCCTCAGAGCCG			
37[126]	TAGCGTAATTGCTTTTAACGTATCCTGACAGATGAAAATCCTAGAGACG			
64[90]	TGCCCCAATCCTGTCTGCAGCGGTGCCCCCTGCATCTTCGCGTCCTCAC			
43[119]	TTTGACCCCCAGCGTTTCATGCAGCAGCCCGATAGAAAGGAGTGCTAAA			
35[168]	TCATCGTAAATCAAGCTAACGCAGCCAGCAGTTGGGCGGTCATGAATCT			
28[153]	AGCGCCAGCTTCTGATTCTCCATGTGAGTGTATAAGTGCCGTTTTGCCTTGAGTAA			
Capture strands	Sequence (5'-3')			
31[119]	AAAAAAAA CGGAAAATTGCCCGAACGTTAATATTCC			
31[140]	AAAAAAAA AGCGGATCGACAACTCGTATTTGGCAAT			
31[161]	AAAAAAAA TGCTCATTTGCCGATAAGCCCAATAACTTTCAGAGAAATTTC			
31[182]	AAAAAAAA ACATAAAAATAGCAGCCTTTAAGCGTCT			
31[203]	AAAAAAAA TTAGACGTTGTTTAACGTCAATTGCCAG			
33[119]	AAAAAAAA TGATTATTTGTTTGGATTATAGTAGATT			
33[140]	AAAAAAAA TCACAATTTTATCCAACAATTCAAACTTGTGGAGCGACGGCC			
33[161]	AAAAAAAA TACCAACGATTAGTTGCTATTTACCTTTTATATTT			
33[182]	AAAAAAAA TTCCAGAGGTTTTGAAGCCTTAGGAATC			
33[203]	AAAAAAAA TTACAAACGAACCTCCCGACTTAGCAAG			
56[118]	AAAAAAAA TCGTTAAGCAAAATTGTTATCGGGTGCCTAATGAGAAAC			
56[139]	AAAAAAAA TACACTGAAGAATATAGCTGTACTCACATTAATTG			
56[160]	AAAAAAAA TTGCTCGTGAGTGTAAAAAGCCAGCAGCAAATGAACAGTGCC			
56[181]	AAAAAAAA TGGTAATACAAGAGTAGAGCCAAGCATCACCTTGCCAGTATT			
56[202]	AAAAAAAA GGGTCACACGTGGAGAGCACTCAAATATCAAACCCATAAAAC			
64[118]	AAAAAAAA GAGTTGCGGTTTGCTCGTGCCAGCTGCAAAGCCTGCGCTCACGATC			
64[139]	AAAAAAAA CTTCACCGGTGGTTGCTTTCCAGTCGGGTGAGCTATTCC			
64[160]	AAAAAAAA CGCGGGCAACAGCTATAGGGTTCATAAAGCGG			
64[181]	AAAAAAAA AGAACCCAGACAATAACACCGCCTGCAAAAATCTA			
64[202]	AAAAAAAA GACATTCATTAGTCAGAGGTGAGGCGGTTGAACCTAACA			
Footholds	Sequence (5'-3')			
4[5] fh _{3'}	TCTGAATGCTGGATCTC TCAGAGTCAGGTTACCGCCACCCTCAACG			

4[26] fh _{4'}	TCTGAATGCGACTCTAA AGACCGTATTATACCGTACTCAGGAAGAG			
4[47] fh _{5'}	TCTGAATGCGACGAGTT TTCGAGAGCGGAACGCCCGGAATAGTAAGA			
4[68] fh _{6'}	TCTGAATGCGGTCTAAT TTCAAATTAAGAATCAGAAAAGCCAAAG			
4[89] fh _{7'}	TCTGAATGCTAGAAGTC GGGTAGCTATTCGCTTAATTGCT			
4[110] fh _{8'}	TCTGAATGCAATAGTCC GATAACAGGTCCGTAAAACTAGCATCAG			
4[131] fh ₁	TCTGAATGC <mark>GAACTGGT</mark> GATATTTCTGGAGCAAAAAACCAAATCACCAAAGTTTCA			
4[152] fh ₂	TCTGAATGCACGCAAGG GTCAAAATAGCTACCAGACGACGATGAA			
4[173] fh ₃	TCTGAATGCTGGATCTC GGTGAGCAAAAGAGAACGGGTATTCATCC			
4[194] fh ₄	TCTGAATGCGACTCTAA GTAGGAGGGGGGGGTCTTTCCTTATCAACC			
4[215] fh ₅	TCTGAATGCCACGAGTT ATGCAGTTTAGTGATGAAACAAACAT			
4[236] fh ₆	TCTGAATGCGGTCTAAT AGAACCCCAATAATTACCTGAGCAATTTCA			
4[257] fh ₇	TCTGAATGCTAGAAGTC CGCAACATAAAAGGCGAATTATTCATGG			
4[278] fh ₈	TCTGAATGCAATAGTCC GGGAGACCCCCTATTTTCAGGGAATTACAA			
4[299] fh _{1'}	TCTGAATGCGAACTGGT GACCCACAGTTCCTCAGAGCCACCCCAA			
4[320] fh _{2'}	TCTGAATGCACGCAAGG GGTTGTATGACCGCCACCCTCAGAAAATT			
Feet	Sequence (5'-3')			
59[109]F1N	GCATTCAGATTT CCCCACGCGTGCCTGTTCAGACGAAGATGCCGGGTTACTTGA			
61[213]F2N	GCATTCAGATTT ATCATAAAATATCTCGTCTAGAACGTCAGCGTAGCATCAATGAGCC			
Blocking strands	Sequence (5'-3')			
B ₁	ACCAGTTCGCATTCTCTAGCTTACT			
B ₂	CCTTGCGTGCATTCTCCCTTATCG			
B ₃	GAGATCCAGCATTCTTTGTACGAAC			
B4	TTAGAGTCGCATTCTATTAGCAACG			
B 5	AACTCGTCGCATTCTCACTAATT			
B ₆	ATTAGACCGCATTCTTTGAGTTCCG			
B ₇	GACTTCTAGCATTCCTTCACTTTCA			
B ₈	GGACTATTGCATTCGTTGTAGATCC			
Removal strands	Sequence (5'-3')			
R ₁	AGTAAGCTAGAGAATGCGAACTGGT			

R ₂	CGATAAGGAGAGAATGCACGCAAGG			
R ₃	GTTCGTACAAAGAATGCTGGATCTC			
R ₄	CGTTGCTAATAGAATGCGACTCTAA			
R 5	AATTAGTGAGAGAATGCGACGAGTT			
R ₆	CGGAACTCAAAGAATGCGGTCTAAT			
R ₇	TGAAAGTGAAGGAATGCTAGAAGTC			
R ₈	GGATCTACAACGAATGCAATAGTCC			

Steps	Strands added	Steps	Strands added
$1 \rightarrow 2$	0.4 μL B_1 and 0.4 μL R_2	$1' \rightarrow 2'$	1.2 μL B_1 and 0.8 μL R_2
$2 \rightarrow 3$	0.8 μL B ₂ and 0.4 μL R ₃	$2' \rightarrow 3'$	1.2 μL B_2 and 0.8 μL R_3
$3 \rightarrow 4$	0.8 μL B ₃ and 0.4 μL R ₄	$3' \rightarrow 4'$	1.2 μL B_3 and 0.8 μL R_4
$4 \rightarrow 5$	0.8 μL B4 and 0.4 μL R5	$4' \rightarrow 5'$	$1.2\mu L$ B_4 and $0.8\mu L$ R_5
$5 \rightarrow 6$	0.8 μL B5 and 0.4 μL R6	$5' \rightarrow 6'$	$1.2\mu L$ B_5 and $0.8\mu L$ R_6
$6 \rightarrow 7$	0.8 μL B ₆ and 0.4 μL R ₇	$6' \rightarrow 7'$	$1.2\mu L~B_6$ and $0.8\mu L~R_7$
$7 \rightarrow 8$	0.8 μL B7 and 0.4 μL R8	$7' \rightarrow 8'$	$1.2\mu L$ B_7 and $0.8\mu L$ R_8
$8 \rightarrow 1'$	0.8 μL B_8 and 0.8 μL R_1	$8' \rightarrow 1$	$1.2\mu L~B_8$ and $1.2\mu L~R_1$

Supplementary Table 2 Additions of blocking and removal strands for a full-turn clockwise rotation. All the fuel strands have a concentration of 250μ M. So do those in Supplementary Table 3 and 4.

Supplementary Table 3 Additions of blocking and removal strands for the plasmonic nanoclock from position 5-5' to position 5'-5 during the time-course CD measurements.

Steps	Strands added
$5 \rightarrow 6$	0.4 μL B5 and 0.4 μL R6
$6 \rightarrow 7$	0.8 μL B ₆ and 0.4 μL R ₇
$7 \rightarrow 8$	0.8 μ L B ₇ and 0.4 μ L R ₈
$8 \rightarrow 1'$	0.8 μ L B ₈ and 0.4 μ L R ₁
$1' \rightarrow 2'$	0.8 μ L B ₁ and 0.4 μ L R ₂
$2' \rightarrow 3'$	0.8 μ L B ₂ and 0.4 μ L R ₃
$3' \rightarrow 4'$	0.8 μ L B ₃ and 0.4 μ L R ₄
$4' \rightarrow 5'$	0.8 μL B4 and 0.8 μL R5

Counterclockwise Steps	Strands added	Clockwise Steps	Strands added
$1 \rightarrow 8'$	0.4 μL B ₁ and 0.4 μL R ₈	$2 \rightarrow 3$	1.2 μL B ₂ and 1.6 μL R ₃
$8' \rightarrow 7'$	0.8 μL B ₈ and 0.4 μL R ₇	$3 \rightarrow 4$	$2\mu L~B_3$ and $1.6\mu L~R_4$
$7' \rightarrow 6'$	0.8 μL B7 and 0.4 μL R6	$4 \rightarrow 5$	$2\mu LB_4$ and 1.6 μLR_5
$6' \rightarrow 5'$	0.8 μL B ₆ and 0.4 μL R ₅	$5 \rightarrow 6$	$2\mu LB_5$ and $1.6\mu LR_6$
$5' \rightarrow 4'$	0.8 μL B5 and 0.4 μL R4	$6 \rightarrow 7$	$2 \ \mu L \ B_6$ and $1.6 \ \mu L \ R_7$
$4' \rightarrow 3'$	0.8 μL B ₄ and 0.4 μL R ₃	$7 \rightarrow 8$	$2\mu L~B_7$ and $1.6\mu L~R_8$
$3' \rightarrow 2'$	0.8 μL B ₃ and 0.4 μL R ₂	$8 \rightarrow 1'$	$2\mu LB_8$ and 1.6 μLR_1
$2' \rightarrow 1'$	0.8 μ L B ₂ and 0.8 μ L R ₁	$1' \rightarrow 2'$	$2 \ \mu L \ B_1$ and $1.6 \ \mu L \ R_2$
$1' \rightarrow 8$	1.2 μ L B ₁ and 0.8 μ L R ₈	$2' \rightarrow 3'$	2 μ L B ₂ and 2.4 μ L R ₃
$8 \rightarrow 7$	1.2 μ L B ₈ and 0.8 μ L R ₇		
$7 \rightarrow 6$	1.2 μ L B ₇ and 0.8 μ L R ₆		
$6 \rightarrow 5$	1.2 μ L B ₆ and 0.8 μ L R ₅		
$5 \rightarrow 4$	1.2 μL B5 and 0.8 μL R4		
$4 \rightarrow 3$	1.2 μ L B ₄ and 0.8 μ L R ₃		
$3 \rightarrow 2$	1.2 μL B ₃ and 0.8 μL R ₂		

Supplementary Table 4 Additions of blocking and removal strands for a 15-step counterclockwise rotation followed by a 9-step clockwise rotation.

	Locking strands	Substrates
Position 1–2	fh_1 and $fh_{1'}$	@ fh ₂ and fh _{2'}
Position 1–2–3	fh_1 and $fh_{1'}$	@ fh ₂ -fh ₃ and fh ₂ -fh _{3'}
Position 1–2–3–4	fh_1 and $fh_{1'}$	@ fh ₂ -fh ₄ and fh ₂ -fh _{4'}
Position 1–2–3–4–5	fh_1 and $fh_{1'}$	@ fh ₂ -fh ₅ and fh ₂ -fh ₅ '
Position 1–2–3–4–5–6	fh_1 and $fh_{1'}$	@ fh ₂ -fh ₆ and fh ₂ -fh _{6'}
Position 1–2–3–4–5–6–7	fh_1 and $fh_{1'}$	@ fh ₂ fh ₇ and fh ₂ fh ₇

Supplementary Table 5 | Track arrangements of the autonomous plasmonic nanoclocks for clockwise rotation.

Supplementary Table 6 | Track arrangements of the autonomous plasmonic nanoclocks with open sites.

	Locking strands	Substrates
Position 1–2–3–x–5	fh_1 and $fh_{1'}$	@ fh ₂ -fh ₃ , fh ₅ and fh ₂ -fh ₃ , fh ₅
Position 1–2–x–x–5	fh_1 and $fh_{1'}$	@ fh ₂ , fh ₅ and fh ₂ ', fh ₅ '

Supplementary Table 7 Track arrangements of the autonomous plasmonic nanoclocks for counterclockwise rotation.

	Locking strands	Substrates
Position 1–8'	fh_1 and $fh_{1'}$	@ fh ₈ and fh _{8'}
Position 1–8'–7'	fh_1 and $fh_{1'}$	@ fh ₈ fh ₇ and fh ₈ fh _{7'}
Position 1–8'–7'–6'	fh_1 and $fh_{1'}$	@ fh ₈ -fh ₆ and fh ₈ -fh _{6'}
Position 1–8'–7'–6'–5'	fh_1 and $fh_{1'}$	@ fh ₈ -fh ₅ and fh ₈ -fh _{5'}
Position 1-8'-7'-6'-5'-4'	fh_1 and $fh_{1'}$	@ fh ₈ -fh ₄ and fh ₈ -fh _{4'}
Position 1-8'-7'-6'-5'-4'-3'	fh_1 and $fh_{1'}$	@ fh ₈ -fh ₃ and fh ₈ -fh _{3'}

Substrate_footholds	Sequence (5'-3')
4[5] Sub _{3'}	GAGTTGG rA TAGGTTATGAGATTGTT TCAGAGTCAGGTTACCGCCACCCTCAACG
4[26] Sub _{4'}	GAGTTGG rA TAGGTTATGAGATTGTT AGACCGTATTATACCGTACTCAGGAAGAG
4[47] Sub _{5'}	GAGTTGG rA TAGGTTATGAGATTGTT TTCGAGAGCGGAACGCCCGGAATAGTAAGA
4[68] Sub _{6'}	GAGTTGG rA TAGGTTATGAGATTGTT TTCAAATTAAGAATCAGAAAAGCCAAAG
4[89] Sub _{7'}	GAGTTGG rA TAGGTTATGAGATTGTT GGGTAGCTATTCGCTTAATTGCT
4[110] Sub _{8'}	GAGTTGG rA TAGGTTATGAGATTGTT GATAACAGGTCCGTAAAACTAGCATCAG
4[152] Sub ₂	GAGTTGG rA TAGGTTATGAGATTGTT GTCAAAATAGCTACCAGACGACGATGAA
4[173] Sub ₃	GAGTTGG rA TAGGTTATGAGATTGTT GGTGAGCAAAAGAGAACGGGTATTCATCC
4[194] Sub ₄	GAGTTGG rA TAGGTTATGAGATTGTT GTAGGAGGGGGGGTCTTTCCTTATCAACC
4[215] Sub ₅	GAGTTGG rA TAGGTTATGAGATTGTT ATGCAGTTTAGTGATGAAACAAACAT
4[236] Sub ₆	GAGTTGG rA TAGGTTATGAGATTGTT AGAACCCCAATAATTACCTGAGCAATTTCA
4[257] Sub ₇	GAGTTGG rA TAGGTTATGAGATTGTT CGCAACATAAAAGGCGAATTATTCATGG
4[278] Sub ₈	GAGTTGG rA TAGGTTATGAGATTGTT GGGAGACCCCCTATTTTCAGGGAATTACAA
4[320] Sub _{2'}	GAGTTGG rA TAGGTTATGAGATTGTT GGTTGTATGACCGCCACCCTCAGAAAATT
DNAzyme_feet	Sequence (5'-3')
59[109]	CATAACCTA CCGAGCCGGTCGAATCAACTC TCTT
	CCCCACGCGTGCCTGTTCAGACGAAGATGCC
61[213]	CATAACCTA CCGAGCCGGTCGAATCAACTC TCTT
58[114]locking?	
(2)[206]]a shin s1	
62[206]IOCKINg1	
Removal strand r	GTATCTGTCGT ACCTACCGAGCCGGTCGAA
Blocking strand b	TTGATTCGACCGGCTCGGTAGGT ACGACAGATAC
Revised staples	Sequence (5'-3')
56[97]	GGGTTACTTGATGGCACAACAAAGCATAAAGTGTATTAATGAGCGCGGG
57[206]	ATCAATGAGCCGGGTCACACGTGGAGAGCACTCAAATATCAAACCCATA
56[212]	AAAAAAAA GGTGCGGGGTCATTGCAGGACTTG

Supplementary Table 8 | Sequences of the functional strands for autonomous rotation.

Supplementary Table 9 Additions of the trigger strands to actuate the autonomous plasmonic nanoclocks.

Steps	Strands added	
1	100 μ M 1 μ L removal strand r	
2	250 μM 0.5 μL B ₁	