Supporting Information

Facile synthesis and evaluation of electron transport and photophysical

properties of photoluminescent PDI derivatives

Samya Naqvi,^a Mahesh Kumar^b and Rachana Kumar^{a*}

Advanced Materials and Devices Metrology Division ^aPhotovoltaic Metrology Group ^bPhotonics Materials Metrology Group CSIR-National Physical Laboratory Dr. K. S. Krishnan Marg, New Delhi India-110012

*Corresponding Author Advanced Materials and Devices Metrology Division Photovoltaic Metrology Group CSIR-National Physical Laboratory Dr. K. S. Krishnan Marg, New Delhi India-110012 E-mail: rachanak.npl@nic.in, rachanasinghchem@gmail.com Tel:+91-11-4560-8577 Fax : +91-11-4560-9310

Contents	Page No.
1. Figure S1. FTIR of PTCDA	S3
2. Figure S2. FTIR spectra of (A) iPrP-PDI and (B) NO2P-PDI	S4
3. Figure S3. FTIR spectra of (A) DPM-PDI and (B) PFP-PDI	S5
4. Figure S4. (A) ¹ H NMR, and (B) HR-MS spectra of <i>i</i> PrP-PDI	S6-S7
5. Figure S5. (A) ¹ H NMR and (B) HR-MS spectra of NO ₂ P-PDI	S8-S9
6. Figure S6. (A) ¹ H NMR, and (B) HR-MS spectra of DPM-PDI	S10-S11
7. Figure S7. (A) ¹ H NMR, and (B) HR-MS spectra of PFP-PDI	S12-S13
8. Figure S8. Concentration variable absorption spectra of PDIs in toluene	S14
9. Figure S9. Comparative $A(0-1)/A(0-0)$ transition with change in concentration for PDIs	
	S14
10. Figure S10. Comparative absorption emission spectra of the PDIs in chloroform solution	
	S15
11. Figure S11. Temperature variable (20-80 °C) absorption spectra of PDI derivatoluene solution (diluted)	atives in S16-17
12. Figure S12. Temperature variable (20-80 °C) fluorescence spectra of PDI deri toluene solution (0.5 mM) using 450 nm excitation wavelength	vatives in S18-19
13. Figure S13. TGA of <i>i</i> PrP-PDI, NO2P-PDI, DPM-PDI and PFP-PDI under N2 flow of 20mL min-1 at 10 °C min-1 temperature rampingS20	
14. Figure S14. Electrical conductivity data (A) I vs V (B) Electrical conductivity temperatures for all the four PDIs	at different S21
15. Figure S15. Electron transport J-V plots for all the four PDIs with slope	S22
16. Figure S16. P3HT TAS spectra using 480 nm pump wavelength in visible and NIR region	
	S23
7. Figure S17. TAS spectra of P3HT mixture with (a) <i>i</i> PrP-PDL (b) NO ₂ P-PDL (c) DPM-	

17. Figure S17. TAS spectra of P3HT mixture with (a) *i*PrP-PDI, (b) NO2P-PDI, (c) DPM-PDI and (d) PFP-PDI for NIR region using 480 nm pump wavelength. Inset shows the decayof ~1140 nm transient absorption for P3HT singlet excited stateS24-25

Figure S1. FT-IR spectra of Perylene-3,4,9,10 tetracarboxyilic dianhydride (PTCDA).

Figure S2. FT-IR spectra of (A) *i*PrP-PDI (1) and (B) NO₂P-PDI (2).

Figure S3. FT-IR spectra of (A) DPM-PDI (3) and (B) PFP-PDI (4).

S6

Figure S4. (A) ¹H NMR, and (B) HR-MS spectra of *i*PrP-PDI.

Figure S5. (A) ¹H NMR and (B) HR-MS spectra of NO₂P-PDI.

Figure S6. (A) ¹H NMR, and (B) HR-MS spectra of DPM-PDI.

Figure S7. (A) ¹H NMR, and (B) HR-MS spectra of PFP-PDI.

Figure S8. Concentration variable absorption spectra of PDIs in toluene.

Figure S9. Comparative $A_{(0-1)}/A_{(0-0)}$ transition with change in concentration for PDIs.

Figure S10. Comparative absorption emission spectra of the PDIs in chloroform solution.

Figure S11. Temperature variable (20-80 °C) absorption spectra of PDI derivatives in toluene solution (diluted).

Figure S12. Temperature variable (20-80 °C) fluorescence spectra of PDI derivatives in toluene solution (0.5 mM) using 450 nm excitation wavelength.

Figure S13. TGA of *i*PrP-PDI (1), NO₂P-PDI (2), DPM-PDI (3) and PFP-PDI (4) under N₂ flow of 20 mL min⁻¹ at 10 °C min⁻¹ temperature ramping.

Figure S14. Electrical conductivity data (A) I vs V (B) Electrical conductivity at different temperatures for all the four PDIs.

Figure S15. Electron transport J-V plots for (A) *i*PrP-PDI, (B) NO₂P-PDI, (C) DPM-PDI and (D) PFP-PDI with slope.

Figure S16. P3HT TAS spectra using 480 nm pump wavelength in visible and NIR region.

Figure S17. TAS spectra of P3HT mixture with (a) *i*PrP-PDI, (b) NO₂P-PDI, (c) DPM-PDI and (d) PFP-PDI for NIR region using 480 nm pump wavelength. Inset shows the decay of \sim 1140 nm transient absorption for P3HT singlet excited state.