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I. INTRODUCTION OF THE TWO-PHASE MODEL

Cells utilize different mechanisms to migrate under different physical environments. Actin-
driven cell migration is characterized by actin polymerization (depolymerization) at the cell leading
(trailing) edge and the formation of focal adhesion between the actin network and the substrate.
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Water-driven cell migration is characterized by water permeation which drives membrane extension
(retraction) at the cell leading (trailing) edge.

Here we describe a two-phase model with solute diffusion to unify the two distinct mechanisms
of cell migration. One phase is the solvent phase, which represents the cytosol (mostly water)
inside the cell and the culture medium outside of the cell. The second phase is the actin network
phase which only exists inside the cell. The two phases interact with each other as well as with
the physical environments. This model satisfies an energy identity and thus serves as a useful tool
to study energy consumption during cell migration.

Water permeation is mainly driven by the transmembrane difference in osmotic pressure, which
is determined by polarized active solute pumping on the cell membrane. In the model, when actin-
driven cell migration is studied, we have chosen to mute active solute pumping. Likewise, when
water-driven cell migration is studied, actin (de)polymerization is muted. The model, however, is
capable of accommodating mixed modes of migration in which both mechanisms are active.

The model specifically considers the impact of the strength of focal adhesion and the coefficient
of hydraulic resistance from the environments. We study the velocity of cell migration and energy
consumption under these conditions.

Below, we introduce the 1D and 2D versions of the cell movement model. The simplicity of the
1D model allows for detailed theoretical investigations and extensive parameter studies, whereas
the 2D model is more realistic in certain respects and allows for the exploration of fluid flow and
cell shape on cell movement.

II. ONE-DIMENSIONAL MODEL

We begin with a representative 1D volume element in a moving cell. For example, for cells in
3D collagen matrices, the thin protrusions can be regarded as 1D structures (Fig. S1a). For cells
on 2D substrates, a 1D strip of a cell can be modeled if velocities and forces are perpendicular to
the cell leading edge. For cells in a confined space, the entire system can be modeled in 1D. Within
the 1D framework, the cell boundary is reduced to a front (f) and a back (b). The schematics of
the 1D model and its environment are shown in Fig. S1b.

A. Model Description

1. Governing Equations

The cell occupies a one dimensional interval on the real line, with front position given by
x = xf(t) and the back position by x = xb(t). All functions of x to follow are thus defined for
xb(t) < x < xf(t). The two phases being considered is the cytosol (‘c’) and the actin network
(‘n’). Let θn be the concentration of the actin network. Let θ∗ be the network concentration under
balance and θn satisfies ∫ xf

xb

θndx = Lθ∗ , (II.1)

where L = xf − xb is the length of the cell. The conservation of mass equations for the two phases
are

∂vc

∂x
= 0, (II.2)

∂θn

∂t
+

∂

∂x
(θnvn) = 0, (II.3)
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FIG. S1. Schematics of the model of cell migration. (a) Schematics of a cell in a 3D space, where the thin
protrusion can be regarded as a 1D structure; a cell on a 2D substrate, where a 1D strip may be identified.
(b) Diagram of a cell in a confined channel, the external fluid flow in the channel, and the relevant forces
associated with cell migration. vn,c are the F-actin network and cytosol velocities, respectively. The actin
network form focal adhesion with the environment via transmembrane proteins, resulting in frictional drag
force, −ηstvn. Membrane movement relative to the environment also generates frictional force, −ξv0. Solutes
diffuse in the cell and also being transported across the cell membrane. As the cell displaces the external
water, the hydraulic pressure at the front is related to dfg(v0 − J f

water), where v0 is the velocity of cell
migration. Quantities associated with the front of the cell are denoted by a superscript ‘f’. Quantities
associated with the back of the cell are not drawn.

where vc,n are the cytosolic and network velocities. We have made the approximation that the
actin network occupies no volume. Note that (II.2) implies that vc must be constant in space,
which makes it difficult in the 1D setting to study effects of fluid flow. The boundary conditions
for Eq. (II.2) and (II.3) are:

vc = ẋf(t) + jf
water , at x = xf(t), (II.4)

vc = ẋb(t)− jb
water , at x = xb(t), (II.5)

θnvn = θnẋf(t) + jf
actin , at x = xf(t), (II.6)

θnvn = θcẋb(t)− jb
actin , at x = xb(t). (II.7)

In the above, ẋf,b denotes the time derivative and jf,b
water is the water flux at the front and back

and jf,b
actin is the actin polymerization rate at the front and back respectively. Both jf,b

water and jf,b
actin

are defined positive outward. We assume that we are at steady state, so that the cell is moving
at a constant speed ẋf = ẋb = v0, and that the state of the cell is stationary with respect to the
coordinate system moving at speed v0. From this, we see that equations (II.2) and (II.3) can be
written as:

∂

∂x
(vc − v0) = 0, (II.8)

∂

∂x
(θn(vn − v0)) = 0, (II.9)

and the boundary conditions above can be written as:

(vc − v0)|xf = jf
water = −jwater = −jb

water = (vc − v0)|xb , (II.10)

θn(vn − v0)|xf = jf
actin = −jactin = −jb

actin = θn(vn − v0)|xb . (II.11)
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We now turn to force balance. This is written as:

−∂p
∂x
− ηθn(vc − vn) = 0, (II.12)

−∂σ
∂x

+ ηθn(vc − vn)− ηstθnvn = 0. (II.13)

where σ is the pressure generated by the cytoskeletal network. η is the coefficient of the interface
drag between the actin network and the cytosol. ηst is the coefficient of the focal adhesion depending
on the stiffness of substrate [1, 2] and the size [3] and density [4] of adhesions. We have neglected the
shear viscous term within each phase because these are much smaller than the interface drag. The
two fluids may also experience drags from the nucleus when cells are confined in narrow channels.
These drags can be incorporated into the model if needed.

The network pressure has a passive component, σn(θn), coming from the constitutive relation of
the network and an active component, σa, coming from the myosin contraction within the network,
i.e.,

σ = σn(θn) + σa. (II.14)

In all simulation results in this paper, σa is set to 0. We shall nonetheless retain this term in the
theoretical calculations as it leads to some additional insight. We use an uni-axial swelling model
[5] for the passive stress,

σn = −RTρn

(
θ0

θn
− θn

2θ0

)
, (II.15)

where R is the ideal gas constant, T is the absolute temperature, ρn is the actin molar density, and
θ0 = θ∗/

√
2 is a constant such that σn = 0 when θn = θ∗.

The boundary conditions for the above force balance equations are given by:

b[pf
∗ − (σ + p)] = −2τ f + bf f

ext , at x = xf(t) , (II.16)

b[pb
∗ − (σ + p)] = −2τb + bfb

ext , at x = xb(t) , (II.17)

where b is the width of the cell strip, pf,b
∗ are the pressures of the fluid just outside of the cell at

xf,b, τ f,b are tensions of the membrane at xf,b, and f f,b
ext are the externally applied forces at the

front and back defined positive in the positive norm direction of the cell boundary. The expressions
for pf,b

∗ are

pf
∗ = pf

∞ + df
g(v0 − jwater), p

b
∗ = pb

∞ − db
g(v0 − jwater), (II.18)

where pf,b
∞ are the pressures of the fluid at x = ±∞ respectively and df,b

g is the coefficient of
hydraulic resistance due to the outside fluid flow. We note that this term linear in v0 − jwater is
an approximation at best; indeed, in a 1D model, the outside fluid has no flow field structure. A
proper treatment of hydraulic resistance, therefore, requires a 2D model, which we discuss later.
Finally, we have the following equation for force balance of the membrane (which we have assumed
is moving at velocity v0):

2(τ f − τb) = 2ξLv0. (II.19)

We next consider the solute diffusion part which is linked to the osmolarity of the system. For
simplicity, we consider only one solute species. We have:

∂c

∂t
+

∂

∂x
(vcc) =

∂

∂x

(
D
∂c

∂x

)
, (II.20)
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where c is the molar concentration of the solute and D is the diffusion constant. Given our
assumption on stationarity, we have:

∂

∂x
((vc − v0)c) =

∂

∂x

(
D
∂c

∂x

)
. (II.21)

As for boundary conditions, we have:(
(vc − v0)c−D ∂c

∂x

)∣∣∣∣
xf

= jf
sol , (II.22)(

(vc − v0)c−D ∂c

∂x

)∣∣∣∣
xb

= −jb
sol , (II.23)

where jf,b
sol is the transmembrane solute flux and we have assumed that fluxes are positive outward.

By (II.21), we must have:

− jf
sol = jb

sol ≡ jsol. (II.24)

We may specify jf,b
sol as follows:

jf
sol = kf

sol4cf + ifsol, j
b
sol = kb

sol4cb + ibsol , 4cf,b = cf,b − cf,b
∞ , (II.25)

where jsol is written as a sum of the passive solute flux, proportional to the difference in concentra-
tions across the membrane and isol which is the actively generated pump flux. The concentration
cf,b denotes the (intracellular) concentration c at x = xf,b and cf,b

∞ is the extracellular concentration
just outside x = xf,b. We have here assumed that the solute concentration is spatially uniform in
the extracellular space. The expression of water flux is given by

jf
water = αf4ψf , jb

water = αb4ψb, 4ψf,b = 4pf,b −RT4cf,b, 4pf,b = p|xf,b − p
f,b
∗ (II.26)

where RT is the product of the ideal gas constant and the absolute temperature and p|xf,b denote

the intracellular pressures at the front and back of the cell respectively. The quantity 4ψf,b is the
difference in water potential across the membrane.

The primary variables to the system are p, vc, vn, θn, c, and v0. The equations used to solve these
variables are Eqs. (II.8), (II.9), (II.12), (II.13), (II.21), and (II.29). The boundary conditions for
Eqs. (II.8), (II.9), (II.12), (II.13) are Eqs. (II.1), (II.4), (II.6), and (II.10); the boundary conditions
for Eq. (II.21) are Eqs. (II.22) and (II.23). The above will give us a full solution to the problem.
In a later section (Sec. II A 3) we will discuss a linearized solution.

The basic parameters for the model are listed in Tab. S1. Unless otherwise specified, these
parameters are used throughout the paper.

2. Cell velocity v0 as a function of jwater and jactin

We next derive the dependence of v0 on jactin and jwater. Adding (II.12), (II.13) and integrating
the sum from xb to xf , we have,

(−σ − p)|xfxb −
∫ xf

xb

ηstθnvndx = 0. (II.27)

Combining this with (II.19), we have:

2(τ f − τb) + b (−σ − p)|xfxb − b
∫ xf

xb

ηstθnvndx− 2ξLv0 = 0 , (II.28)
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TABLE S1. Parameters used in the 1D model. These are the default parameters unless otherwise specified.

Parameters Description Values Sources

R (J/mol K) Ideal gas constant 8.31451 Constant

T (K) Absolute temperature 300 Room temperature

kB (J/K) Boltzmann constant 1.38× 10−23 Constant

NA (1/mol) Avogadios number 6.02× 1023 Constant

L (µm) Cell length 50 Generic

b (µm) Cell width 3 Generic

w (µm) Cell height 10 Generic

h (µm) membrane thickness 0.5 Ref. [6]

η (Pa·s/µm2 ) Drag coefficient between two phases 1 Ref. [7]

ξ (Pa·s/µm) Coefficient of friction of the channel wall 1 Based on Ref. [8]

ηst (Pa·s/µm2) Coefficient of drag from focal adhesion 1× 104 Based on Ref. [9]

dg (Pa·s/µm) Coefficient of hydraulic pressure 1× 103 Ref. [8]

D (µm2/s) Diffusion coefficient of solute 1 Ref. [8]

kfsol (µm/s) Passive channel coefficient at the front 50 Assumed

kbsol (µm/s) Passive channel coefficient at the back 50 Assumed

ifsol (mol/m2·s) Active solute flux at the front 6.25× 10−7 Assumed

ibsol (mol/m2·s) Active solute flux at the back 6.25× 10−7 Assumed

f fext (Pa) External force per unit area at the front 0 Generic

fbext (Pa) External force per unit area at the back 0 Generic

αf (µm/(Pa·s)) Water permeability constant at the front 1.0× 10−4 Ref. [8]

αb (µm/(Pa·s)) Water permeability constant at the back 1.0× 10−4 Ref. [8]

θ∗ Average concentration of the actin phase 0.02 Based on Ref. [10]

ρn (mM) Molar density of the actin network 3.4 Based on Ref. [11]

jactin (nm/s) Actin flux at the two boundaries 10θ∗ Assumed

pf∞ (Pa) extracellular hydrostatic pressure at the front 0 Generic

pb∞ (Pa) extracellular hydrostatic pressure at the back 0 Generic

cf∞ (mM) extracellular ion concentration at the front 340 Ref. [8]

cb∞ (mM) extracellular ion concentration at the back 340 Ref. [8]

AF (nm2) Cross sectional area of one actin filament 25 Based on Ref. [12]

δ (nm) Effective length of each G-actin 3 Based on Ref. [13]

GATP (J) Energy consumption of each ATP 25kBT ≈ 100 pN·nm Ref. [14]

na Number of ATPs each G-actin assembling takes 1 Scaled

nc Number of ATPs each pumped ion takes 1 Scaled

where ξ is the coefficient of membrane friction with the surroundings. Using (II.16) and (II.17),
we thus have

b (fext − p∗)|xfxb = b

∫ xf

xb

ηstθnvndx+ 2ξLv0 . (II.29)

In the case of fext = 0 and pf
∞ = pb

∞, we then have,

− bdg(v0 − jwater) = b

∫ xf

xb

ηstθnvndx+ 2ξLv0 , (II.30)
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where dg = df
g + db

g is the effective, total coefficient of external hydraulic resistance. According to
(II.11), we get

v0 =
ηst

θ∗ηst + 2ξ̂ + d̂g
jactin +

d̂g

θ∗ηst + 2ξ̂ + d̂g
jwater, ξ̂ =

ξ

b
, d̂g =

dg
L
. (II.31)

This is an exact expression as no approximation is introduced during the derivation. If water flux is
known a priori, the cell velocity can be estimated accordingly, but the solutions to other variables
remain unknown.

Equation (II.31) shows that cell migration can be actin-driven (the fist term) or water-driven
(the second term). The cell velocity v0 is a linear function of jactin and jwater, with each coefficient
being a nonlinear function in both ηst and dg. The jactin term dominates when ηst is large; and
the jwater term dominates when dg is large. The actin-driven velocity attains its maximum at
v0 = jactin/θ∗ and the water-driven velocity attains its maximum at v0 = jwater.

3. Linearization

Let us now solve the full equations in Sec. II A 1 for small velocity. We shall henceforth assume
that the external force fext is equal to 0, active stress σa = 0 and in (II.18) and (II.25), we set

pf
∞ = pb

∞ , df
g = db

g =
dg
2
, cf

∞ = cb
∞ . (II.32)

We first consider the resting state when isol and jactin are equal to 0. In this case, we should have:

vn = vc = v0 = 0. (II.33)

From (II.12), p is constant in space, whose value we shall call pr. From (II.13), we then have that
σ must be equal to a constant. Let us assume that σ is an increasing function of θn. This will then
imply that θn is also constant, which we denote by θn,r. θn,r = θ∗ by definition.

Let us now linearize, assuming the input, jwater and jactin are small. Equations (II.10) and
(II.11) yield:

(vc − v0) = −jwater, θn,r(vn − v0) = −jactin . (II.34)

The term jwater is given as in (II.26). Consider the case when

αf = αb = α. (II.35)

In addition, in equation (II.25) we let:

kf,b
sol = ksol, −ifsol = isol = ibsol. (II.36)

Note first that, when isol = 0, by (II.26) and (II.25), we must have:

pr = pf,b
∞ , c = cr = cf,b

∞ . (II.37)

We now seek to express v0 in terms of isol and jactin. To do so, first note that (II.12), to leading
order, gives:

− ∂p

∂x
− ηθn,r(vc − vn) = 0. (II.38)
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Substituting (II.34) into the above, we have:

∂p

∂x
= η̃jwater − ηjactin ≡ Ap, η̃ = ηθn,r. (II.39)

From this, we see that:

p(x) = Bp +Ap

(
x− xf + xb

2

)
. (II.40)

To determine Bp, we may argue as follows. Using (II.35), we find that:

−4pf = 4pb. (II.41)

With (II.37), we find:

pf − (pr + df
g(v0 − jwater) = −

(
pb − (pr − db

g(v0 − jwater))
)
. (II.42)

We have:

1

2
(pf + pb) = pr. (II.43)

Thus, Bp = pr and

pf = pr +
ApL

2
, pb = pr −

ApL

2
. (II.44)

Using (II.22) and (II.23), we have:

∂c

∂x
=

1

D
(−jwaterc+ jsol) ≡ Ac. (II.45)

Using (II.25), we have:

Ac =
1

D

(
−jwatercr −

ksolL

2
Ac + isol

)
. (II.46)

Thus,

Ac =
1

D + ksolL/2
(−jwatercr + isol). (II.47)

Combining this with (II.39), we have:

Ap −RTAc = (η̃ + ζcr)jwater − ηjactin − ζisol, ζ =
RT

D + ksolL/2
, (II.48)

From (II.26), we have:

jwater = −α
(

(Ap −RTAc)L
2

− dg
2

(v0 − jwater)

)
. (II.49)

Using (II.48), we have:

(2 + α̂ (dg + (η̃ + ζcr))) jwater = α̂
(
d̂gv0 + ηjactin + ζisol

)
, α̂ = αL . (II.50)
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We may now plug this into (II.31) to obtain the cell velocity under linearization,

v0,L =
1

Kc

((
ηst +

ηα̂d̂g

2 + α̂(d̂g + η̃ + ζcr)

)
jactin +

ζα̂d̂g

2 + α̂(d̂g + η̃ + ζcr)
isol

)
,

Kc =

(
θ∗ηst + 2ξ̂ + d̂g

)(
2 + α̂(d̂g + η̃ + ζcr)

)
− α̂d̂g

2

2 + α̂(d̂g + η̃ + ζcr)
.

(II.51)

A comparison of the predicted cell velocity from the numerical simulations of the model in Sec. II A 1
and Eq. (II.51) is shown in Fig. S2. We can see that the results are almost identical, demonstrating
that the regime over which the linear approximation is valid is quite broad.

(a) (b)

(c) (d)

FIG. S2. Comparison of the predicted cell velocity from the full model and the model of linearization. The
contours of (v0 − v0,L)/v0 are plotted to indicate the relative difference between the two computational
schemes. (a) dg = 0 and ifsol = −ibsol = 0. (b) ηst = 103 Pa·s/µm2 and ifsol = −ibsol = 0. (c) jactin = 0,
ifsol = −ibsol = isol, and ηst = 103 Pa·s/µm2. (d) jactin = 0, ifsol = −ibsol = isol, and dg = 102 Pa·s/µm.

Equation (II.51) shows that an increase in α generally leads to an increase in the speed. The
parameters associated with water flux and hydraulic resistance, i.e., α and dg, enter into the
jactin term, suggesting that when αdg 6= 0, the flow dynamics affects the contribution of actin
polymerization on cell migration. In particular, in an environment where focal adhesion is not
available and cells do not generate active solute pumping, i.e., ηst = 0 and isol = 0, cells may still
be able to migrate through actin polymerization alone, i.e.,

v0,L =

 ηθ∗α̂d̂g

2ξ̂
(

2 + α̂(d̂g + ηθ∗ + ζcr)
)

+ d̂g (2 + α̂ (ηθ∗ + ζcr))

 jactin

θ∗
. (II.52)

We can see that the coefficient of jactin/θ∗ in the brackets is always less than 1, meaning that without
focal adhesion, cells cannot attain the maximum velocity set by the rate of actin polymerization
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(compare to Eq. II.31). This coefficient increases with increasing η, α̂, d̂g, or ksol. For example,
figure S3 shows the contour of the coefficient as η and α vary. We can see that at extreme high η,
which is the drag coefficient between the actin network and the cytosol, the cells can reach more
than 20% of the velocity from jactin/θ∗. Although such a high η may not be realistic since we do
not expect the friction between actin and cytosol being similar to that from focal adhesion, we
would like to point out that water permeation induced by actin polymerization is also a possible
mechanism of cell migration.

100 101 102 103 104

f,b ( m/Pa/s)

100

101

102

103

104

 (
P

a 
s/

m
2 )

0.05

0.1

0.15

0.2

FIG. S3. The contour of the coefficient of jactin/θ∗ in Eq. II.52 (the expression within the brackets) as η
and α vary. Here ηst = 0 and isol = 0, other parameters are listed in Tab. S1.

B. Free Energy Identities

Recall that the passive actin network pressure, σ, has two components, σ = σn(θn) + σa, where
σn is given by Eq. (II.15). We first define the energy density en associated with the passive actin
network pressure σn. as satisfying the following differential equation:

θn
den

dθn
− en = θ2

n

d

dθn

(
en

θn

)
= σn(θn). (II.53)

The energy density en can be solved from Eq. (II.53) with Eq. (II.15). It is easily checked that en

must be a convex function of θn. The constant of integration is determined by

den

dθn

∣∣∣∣
θn=θ∗

= 0 , (II.54)

such that the convex function en reaches its minimum at θn = θ∗. With Eq. (II.53) we have:

∂σn

∂x
= θn

∂

∂x

(
den

dθn

)
, (II.55)

which will be used in the energy identities derived below.

We now compute the energy relation satisfied by the model. Multiply (II.12) by vc and (II.13)
by vn and integrate from xb to xf , and add the two resulting expressions. We have:∫ xf

xb

(
−vc

∂p

∂x
− vn

∂σn

∂x

)
dx−

∫ xf

xb

(
ηθn(vc − vn)2 + ηstθnv

2
n

)
dx = 0 (II.56)
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Consider the first integral. We have:∫ xf

xb

(
−vc

∂p

∂x
− vn

(
θn

∂

∂x

(
den

dθn

)
+
∂σa

∂x

))
dx

=

(
−pvc −

(
θn
den

dθn
+ σa

)
vn

)∣∣∣∣xf
xb

+

∫ xf

xb

(
p
∂vc

∂x
+
den

dθn

∂(θnvn)

∂x
+ σa

∂vn

∂x

)
dx

=

(
−pvc −

(
θn
den

dθn
+ σa

)
vn + env0

)∣∣∣∣xf
xb

+

∫ xf

xb

σa
∂vn

∂x
dx,

(II.57)

where we integrated by parts in the first equality and used (II.8) and (II.9) in the second equality.
Let us consider the boundary term in the last line above. The boundary term at xf may be
evaluated as follows:

− pvc −
(
θn
den

dθn
+ σa

)
vn + env0 = −pv0 − pjf

water −
(
θn
den

dθn
+ σa

)
jf
actin

θn
− σv0

=

(
−2τ f

b
− pf
∗ + f f

ext

)
v0 − pjf

water −
(
den

dθn
− σa

θn

)
jf
actin

=

(
−2τ f

b
+ f f

ext

)
v0 − pf

∗(v0 + jf
water)− (p− pf

∗)j
f
water −

(
den

dθn
+
σa

θn

)
jf
actin.

(II.58)

In the above, we used (II.10) and (II.11) in the first equality and (II.16) in the second equality.
We have retained the superscript f in jwater and jactin for later convenience. At xb, we obtain, in
the same way, the following expression:

− pvc −
(
θn
den

dθn
+ σa

)
vn + env0

=

(
−2τb

b
+ fb

ext

)
v0 − pb

∗(v0 − jb
water) + (p− pb

∗)j
b
water +

(
den

dθn
+
σa

θn

)
jb
actin.

(II.59)

Combining the above expressions, we have:(
−pvc −

(
θn
den

dθn
+ σa

)
vn + env0

)∣∣∣∣xf
xb

=

(
−2(τ f − τb)

b
+ f f

ext − fb
ext

)
v0

− (pf
∗ − pb

∗)(v0 − jwater)−4pfjf
water −4pbjb

water +

(
den

dθn
+
σa

θn

)∣∣∣∣xf
xb

jactin.

(II.60)

Equations (II.19), (II.56), (II.57) and (II.60) together yields:

b
((
f f

ext − fb
ext

)
v0 − (pf

∗ − pb
∗)(v0 − jwater)

)
+ b

(
−4pfjf

water −4pbjb
water +

(
den

dθn
+
σa

θn

)∣∣∣∣xf
xb

jactin +

∫ xf

xb

σa
∂vn

∂x
dx

)

=b

∫ xf

xb

(
ηθn(vc − vn)2 + ηstθnv

2
n

)
dx+ 2ξLv2

0.

(II.61)

Multiply (II.21) by ln c and integrate from xb to xf :∫ xf

xb

ln c
∂

∂x

(
−(vc − v0)c+D

∂c

∂x

)
dx

=−
(
jf
sol ln cf + jb

sol ln cb
)

+

∫ xf

xb

(
(vc − v0)

∂c

∂x
−Dc

(
∂

∂x
ln c

)2
)
dx

=−
(
jf
sol ln cf + jb

sol ln cb
)
− jwater(c

f − cb)−
∫ xf

xb

Dc

(
∂

∂x
ln c

)2

dx = 0,

(II.62)
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where we used (II.22) and (II.23) in the first equality and (II.10) in the second equality. Multiply
the above by bRT and add to (II.61):

b
((
f f

ext − fb
ext

)
v0 − (pf

∗ − pb
∗)(v0 − jwater)−RT4c∞jwater −RT

(
jf
sol ln cf + jb

sol ln cb
))

+ b

(
−4ψfjf

water −4ψbjb
water +

(
den

dθn
+
σa

θn

)∣∣∣∣xf
xb

jactin +

∫ xf

xb

σa
∂vn

∂x
dx

)

=b

∫ xf

xb

(
ηθn(vc − vn)2 + ηstθnv

2
n

)
dx+ 2ξLv2

0 + bRT

∫ xf

xb

Dc

(
∂

∂x
ln c

)2

dx,

(II.63)

where 4c∞ = cf
∞ − cb

∞. Note that:

jf
sol ln cf = jf

sol ln cf
∞ + jsol ln

(
cf

cf
∞

)
= jf

sol ln cf
∞ +

(
kf

sol4cf + ifsol

)
ln

(
cf

cf
∞

)
. (II.64)

Working likewise on at xb and combining this with the above, we have:

jf
sol ln cf + jb

sol ln cb =− jsol ln

(
cf
∞
cb
∞

)
+ ifsol ln

(
cf

cf
∞

)
+ ibsol ln

(
cb

cb
∞

)
+ kf

sol4cf ln

(
cf

cf
∞

)
+ kb

sol4cb ln

(
cb

cb
∞

) (II.65)

where we used (II.24). Using (II.65) and (II.26) in (II.63), we obtain:

Iext + Icell = Dfric +Dflow +Dsol, (II.66)

Iext =bw
((
f f

ext − fb
ext

)
v0 −4p∞v0 +4ψ∞jwater +4µ∞jsol

)
, (II.67)

Icell =bw

(
−4µfifsol −4µbibsol +

(
den

dθn
+
σa

θn

)∣∣∣∣xf
xb

jactin +

∫ xf

xb

σa
∂vn

∂x
dx

)
, (II.68)

Dfric =bw

∫ xf

xb

(
ηθn(vc − vn)2 + ηstθnv

2
n

)
dx+ 2ξLwv2

0, (II.69)

Dflow =bw
(
αf(4ψf)2 + αb(4ψb)2 + dg(v0 − jwater)

2
)
, (II.70)

Dsol =bw

(
kf

sol4cf4µf + kb
sol4cb4µb +RT

∫ xf

xb

Dc

(
∂

∂x
ln c

)2

dx

)
, (II.71)

where w is the height of the cell and

4ψ∞ = 4p∞ −RT4c∞,

4µ∞ = RT ln

(
cf
∞
cb
∞

)
, 4µf,b = RT ln

(
cf,b

cf,b
∞

)
.

(II.72)

The above is the energy relation for the model. The term Iext is energy input due to external
environmental or experimental manipulation. The term Icell is the energy input from mechanisms
that the cell controls, including the solute pumps, actin polymerization, and cytoskeletal force
generation. Since we are at steady state, all energy input is dissipated. This dissipation is given
as three terms Dfric, Dflow, and Dsol. All of the three dissipation terms are positive (4cf,b and
4µf,b always have the same sign). The dissipation Dfric comes from the various friction forces;
Dflow comes from the passive transmembrane water flux and dissipation in the exterior fluid; Dsol

is the solute diffusive dissipation inside the cell and at the membrane.
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We may check that the above energy relation does not change upon adding an arbitrary constant
to the pressure p, since, in all places where the pressure appears, it appears in the form of differences.
It is to be emphasized that an arbitrarily written model does not satisfy an energy identity of the
above type, in which the dissipation is demonstrably positive. For example, our prescription of
(II.18) is the only possible linear relation for p∗ − p∞ if we want the external fluid to have a
dissipative effect.

The mechanical power dissipation derived in Eqs. (II.69)–(II.71) can be individually analyzed.
For example, under actin-driven cell migration, where there is no water flow across the cell mem-
brane, we can calculate the power dissipation through the interface (the first term in Eq. II.69),
the focal adhesion (the second term in Eq. II.69), and the membrane friction (the third term in
Eq. II.69).

(a) (b)

(c) (d)

FIG. S4. Power dissipation of actin-driven cell migration through various frictional terms, including (a) the
power dissipation through the interface (the first term in Eq. II.69), (b) the focal adhesion (the second term
in Eq. II.69), (c) the membrane friction (the third term in Eq. II.69, and (d) the total friction as a sum of the
above three (Eq. II.69). Each term is plotted as a function of v0 for different rates of actin polymerization.
The velocity field is extracted from Fig. 1c. Different lines represent different jactin/θ∗ ranging linearly from
1 nm/s to 5 nm/s, as indicted in Fig. 1c. Darker lines represent higher rates of actin polymerization. Within
each line, ηst increases from left to right. In (c), all the lines overlap. The lines for lower values of jactin/θ∗
are shorter and closer to the original point.

We next examine the contribution of each power term in Eq. II.66 to the total power consump-
tion. In actin-driven cell migration (represented by Fig. 1c) without water flux, the power is almost
solely dissipated through the friction, Dfric, and the amount of dissipation increases with v0 through
increasing ηst (Fig. S5a, where the lines for the total dissipation and Dfric overlap). In water-driven
cell migration (represented by Fig. 1e) without actin polymerization, 80–90% of the total power is
dissipated through the solute/ion diffusion at the membrane and within the cell, Dsol (Fig. S5b).
The passive water flux through the cell membrane and the dissipation through the external fluid,
Dflow, contributes 10–20% of the total power dissipation and the dissipation through the friction,
Dfric, is negligible (Fig. S5b). The total power generation and dissipation increase with increasing
ifsol but are almost constant in v0, which is determined by dg in this case.
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(a) (b)

FIG. S5. Mechanical Power Dissipation. (a) Power dissipation of actin-driven cell migration as v0 increases
with ηst. jactin/θ∗ = 25.5 nm/s and isol = 0. The velocities are extracted from Fig. 1(c). (b) Power
dissipation of water-driven cell migration as v0 increases with dg. ifsol = 3.16×10−5 mol/m2·s and jactin = 0.

C. Minimum ATP Power Estimation

The driving mechanism for cell migration are actin polymerization and water flux; the latter
mainly comes from active solute pumping across the cell. The minimum ATP power consumption
associated with actin polymerization and solute pumping can be calculated. Denote GATP as the
hydrolysis energy for one ATP.

In actin polymerization, the effective velocity of actin polymerization at the cell front is jactin/θ
f
n,

where θf
n is the volume occupation of the actin network at the front of the cell. The number of

ATP needed to sustain such velocity per second per F-actin filament is najactin/θ
f
nδ, where δ is

the length of a G-actin monomer and na is the number of ATP needed to complete one G-actin-
to-F-actin assembling. The number of F-actin filament at the cell front can be estimated from
its concentration. Denote A = bw as the cross-sectional area of a 1D cell and AF as the cross-
sectional area of one F-actin filament. We then have NF = Aθf

n/AF number of F-actin filament
at the polymerizing front of the cell. We can write out the ATP power associated with actin
polymerization as

Pactin = NF
jactin

θf
nδ

GATPna , (II.73)

which is a linear function in jactin (Fig. S6a).

In active solute pumping, the flux, isol, is in the unit of molar per meter squared per second.
To convert solute flux into the number of solutes, we will need the cross-sectional area of the cell
and the Avogadro’s number NA. The ATP power associated with active solute pumping is

Psol = ANAncGATP(|ibsol|+ |ifsol|) , (II.74)

which is a linear function in |ibsol| + |ifsol| (Fig. S6b). nc is the average number of ATP needed to
pump one solute across the cell membrane. Living cells continuously use ATPs to pump solutes.
When cells are not polarized and ibsol = ifsol, Psol can be very large but there is no water flux comes
directly from solute pumping. Hence, Psol does not always imply cell migration. To investigate the
ATP power of solute pumping that directly results in cell migration, we only consider the minimum
Psol needed to generate solute concentration that leads to water flux. As a convention, in this work
Psol = 0 means no minimum asymmetric active pumping that generates water flux.

We next analyze the ATP power consumption of cell migration by using the linearized cell
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(a) (b)

FIG. S6. ATP power consumption for actin polymerization (a) is about four order of magnitudes smaller
than the power consumption of active solute pump (b). Scaled by na = 1 and nc = 1. In (b), we vary ifsol
from 6.25× 10−7 mM·m/s to 6.25× 10−5 mM·m/s and keep ibsol = 0.

velocity. Substituting (II.73) and (II.74) into (II.51) gives

v0,L =

(
ηst + ηλ

Kc

)
AF δ

AGATPna
Pactin +

(
ζcrλ

Kc

)
1

2NAcrAGATPnc
Psol , (II.75)

λ =
α̂d̂g

2 + α̂(d̂g + ηθ∗ + ζcr)
,

which tells us how much Pactin or Psol is needed to achieve some v0 because the coefficients before
Pactin and Psol determine the corresponding power needed to generate v0. Based on the parameters
in Tab. S1, we can estimate the orders of magnitude as follows.

In Eq. (II.75), both AF δ and NAcr are close to the order of 10 nm3 so the factors outside the
brackets are of the same dimension and order of magnitude for the two terms. Therefore, only the
coefficients in the brackets in (II.75) determines the relative contribution of Pactin and Psol to the
cell velocity. For values in Tab. S1, D � ksolL so that ζ ≈ 2RT/ksolL by (II.48) is on the order of
1 J·s/µm2·mol. ζcr is thus on the order of 100 Pa·s/µm2, which is much larger than ηθ∗. In this
case, (II.75) can be reduced to

v0,L =
1

Kc

ηst +
ηα̂d̂g

2 + α̂(d̂g + ζcr)︸ ︷︷ ︸
term1

 AF δ

AGATPna
Pactin +

1

Kc

 ζcrα̂d̂g

2 + α̂(d̂g + ζcr)︸ ︷︷ ︸
term2

 1

2NAcrAGATPnc
Psol ,

(II.76)

where Kc is also reduced to

Kc =

(
θ∗ηst + 2ξ̂ + d̂g

)(
2 + α̂(d̂g + ζcr)

)
− α̂d̂g

2

2 + α̂(d̂g + ζcr)
=
(
θ∗ηst + 2ξ̂

)
+

2d̂g (1 + α̂ζcr)

2 + α̂(d̂g + ζcr)
. (II.77)

When dg < 1 Pa·s/µm, ηst, which varies from 1 to 104 Pa·s/µm2, is up to four orders larger than
ζcrλ (see Fig. S7a). In this case, a much smaller Pactin than Psol is needed to generate a non-trivial
v0. When dg increases, ζcrλ may become comparable to ηst, depending on the ηst. On the other
hand, the denominator Kc increases almost linearly with dg up to dg ∼ 106 Pa·s/µm (see Fig. S7b),
which means the attainable v0 reduces with increasing dg so that moderate Pactin can no longer
generate the same v0. When dg is large, a commensurate increase in Psol is necessary to compensate
for the reduced attainable v0. For parameter values used above, the maximum values of the term 2
does not exceed the maximum value of ηst (see Fig. S7a), the ATP power consumption from active
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FIG. S7. Variation of some coefficients. (a) The variations of term 1 and term 2 in Eq. II.76 as functions of
dg. (b) Contour of log10Kc as ηst and dg vary. Kc is in the unit of Pa·s/µm2.

solute pumping is always higher than that of actin polymerization. We do note, however, that this
ratio is highly dependent on the choice of ksol, which could be different, or indeed controlled by
the cell. A lower ksol can make the water-driven mechanism more efficient.

The picture that emerges is as follows. From Eq. (II.75) we can see that ηst is the effective
force coefficient acting on the actin network and ζcrλ is the effective force coefficient acting on the
solute. The effectiveness of the two mechanisms depend largely on the relative magnitude of these
two numbers. For low hydraulic resistance, the effective drag on the solute is lower than that on the
actin network, making actin polymerization more effective for cell migration. For high hydraulic
resistance, the effective drag ζcrλ on the solute increases, making water driven cell migration more
effective. The overall attainable velocity decreases, however, because of the increasing frictional
factor represented by Kc.

III. TWO-DIMENSIONAL MODEL

The basic physical picture behind the 2D model is the same as the 1D model, although the
formulations of the equations are somewhat more involved. The model and numerical method
presented here is a direct outgrowth of [15]. The novelty in relation to [15] is the addition of actin
network dynamics.

A. Model Description

We consider a 2D computational domain Ω that is separated into intracellular and extracellular
regions Ωi and Ωe by the cell membrane Γ (Fig. S8a, a top view of the cell sitting on a 2D substrate).
The cell membrane position is given by x = X(s, t), where s ∈ R/(2πZ) is the material coordinate
and t is time. We denote the intracellular side of the membrane Γ as Γi and the extracellular side
as Γe. On Γ the unit normal is n, pointing outward from the Γi side to the Γe side. The unknown
functions are the membrane position X, the fluid velocity vc, pressure p and solute concentration
c defined in Ω, and the actin network velocity, vn, and concentration, θn, both defined inside the
intracellular space Ωi.

On the inlet and outlet of the computational domain, periodic boundary conditions are enforced
for vc, p, and c. On the channel walls of the computational domain, non-slip boundary condition
is enforced for vc; zero-gradient boundary condition is enforced for p, and non-flux boundary
condition is enforced for c.
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FIG. S8. (a) Schematics of the 2D computational domain from a top view. Γ represents the cell membrane
that separates the intracellular domain Ωi and the extracellular domain Ωe. (b) Schematics of the distribution
of actin polymerization and depolymerization on the cell membrane. (c) Schematics of the distribution,
strength, and direction of the active solute pumps on the cell membrane. (d) Schematics showing the shape
factor of the the 2D cell.

The solvent velocity vc satisfies the Stokes equation with friction forces with the actin network:

∇ · Σm(vc, p)− ηθn(vc − vn) = 0, ∇ · vc = 0,

Σm(vc, p) = ν
[
∇vc + (∇vc)

T
]
− pI ,

(III.1)

where vn is the velocity of the actin-network, ν is the dynamics viscosity of the solvent, η is the
coefficient of friction between the actin network phase and the cytosol phase, and I is the identity
matrix. The above equations are the 2D version of equation (II.12) and (II.2), the main difference
being that we have viscous stresses. The friction force is present only in the Ωi and is set to 0 in
Ωe. The velocity of the solvent across the cell boundary satisfy [vc] = 0. The boundary condition
for vc is

vc −
∂X

∂t
= jwatern , on Γ , (III.2)

where jwater is the water flux across the cell membrane. The above is the 2D version of (II.10).
Transmembrane water flux jwater is given by:

jwater = α[ψ], ψ = −RTc− n · Σm(vc, p)n, (III.3)

where R is the ideal gas constant and T is the absolute temperature. The above expression should
be compared with (II.26) and (II.18) of the 1D model. Note that, in the 1D model, a hydraulic
resistance term involving the coefficient dg had to be introduced to incorporate the effect of the
external flow field. In the 2D model, this is naturally accounted for given that the external flow
field is computed as part of the problem. The force balance along membrane is

[Σm(vc, p)n] = σn+ Fmem

∣∣∣∣∂X∂s
∣∣∣∣−1

, (III.4)



18

where σ is the pressure within the actin network defined in (III.6), and Fmem is the membrane
force defined in (III.7). The above is the 2D version of (II.16) and (II.17).

The force balance for the actin network (2D version of (II.13)) is

−∇σ − ηθn(vn − vc)− ηstθnvn = 0, (III.5)

where ηst is the coefficient for focal adhesion and the stress σ in actin network can be divided into
a passive part σn and an active part σa,

σ = σn(θn) + σa. (III.6)

We henceforth set σa = 0. For σn, we use (II.15) as in the 1D case. The membrane elastic force
takes the form

Fmem = kelas
∂

∂s

(∣∣∣∣∂X∂s − ∂Xr

∂s

∣∣∣∣ τ) , τ =
∂X/∂s

|∂X/∂s|
(III.7)

where Xr is a target cell shape to be specified later (see (III.19)) and kelas is the elastic modulus
of the membrane. When kelas is set to be sufficiently large, X will assume the shape traced by Xr.

The volume concentration of the actin network, θn, inside intracellular space, Ωi, satisfies the
conservation relation (2D version of (II.3))

∂θn

∂t
+∇ · (vnθn) = 0, (III.8)

with boundary condition along the interior side of cell membrane (2D version of (II.11))

θn

(∂X
∂t
− vn

)
· n = jactin , on Γi , (III.9)

where jactin describes actin polymerization and depolymerization along cell membrane. We pre-
scribe jactin as

jactin = kj(s)

∣∣∣∣∂X0

∂s

∣∣∣∣ ∣∣∣∣∂X∂s
∣∣∣∣−1

, (III.10)

where kj(s) is the strength function given by

kj(s) =

{
0 , if s ∈ (αh, π − αt) ∪ (π + αt, 2π − αh)

k0
j (s) , if otherwise

, (III.11)

where αh and αt are the angular span of the regime of actin polymerization at the cell leading edge
and depolymerization at the cell trailing edge, respectively (Fig. S8b), and

k0
j (s) = kjh

[
e−s

2/h2jl + e−(s−2π)2/h2jl
]
− kjte−(s−π)2/t2jl . (III.12)

where kjh (kjt) scales the rate of actin polymerization (depolymerization) at the leading (trailing)
edge of the cell membrane; hjl and tjl are the angular factors of the actin dynamics. In the model,
we let hjl = αh and tjl = αt. The total actin network within the cell is conserved by enforcing∫

Γ
jactin(s)ds = 0. (III.13)
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For solute with concentration c over the entire domain, we have (2D version of (II.21), except
in the 2D case, we also consider the dynamics of the solute outside the cell):

∂c

∂t
+∇ · (vcc) = ∇ · (D∇c) , (III.14)

where D is the diffusion coefficient of the solute. The boundary condition for c is (2D version of
(II.22), (II.23))

(vcc−D∇c) · n = c
∂X

∂t
· n+ jsol + isol , on Γi or Γe , (III.15)

where jsol = ksol[c] and isol are passive and active flux of solute cross the membrane, respectively.
The active flux, isol, is specified as

isol = kp(s)

∣∣∣∣∂X0

∂s

∣∣∣∣ ∣∣∣∣∂X∂s
∣∣∣∣−1

·H(s), (III.16)

where X0 is a circle with perimeter equal to the length of the cell, and

kp(s) = −kph
[
e−s

2/h2pl + e−(s−2π)2/h2pl
]

+ kpte
−(s−π)2/t2pl , (III.17)

H(s) =

{
ci , if kp(s) ≥ 0,

ce , if kp(s) < 0,
(III.18)

where kph and kpt describe the strength of the active pumps at the leading and trailing edge of
the cell, respectively; hpl and tpl are the angular factors of the active pumps. The direction of the
active solute pumping is determined by the sign of kp (Eq. III.18), which effectively pumps solute
into (outside of) the cell and the leading (trailing) edge (Fig. S8c).

We use a circular cell to study the impact of the physical environment on 2D cell migration
(Fig. 1g in the main text). When we study the effect of cell morphology on cell migration (Fig. 4
in the main text), we fix the physical environment and vary the shape factor of the cell (Fig. S8d).
In particular, we set:

Xr(s) =

(
x0

y0

)
+ kscale

(
cos s+ a cos2 s

sin s

)
(III.19)

where (x0, y0) is the center of the cell, a > 0 measures the deviation of the cell leading edge or the
trailing edge away from a circular cell and kscale is s suitable scale factor. For cells with different
shape factors, we maintain the same effective strength of actin polymerization or active solute
pumping by prescribing these strength profiles on the material coordinate (Eqs. III.10 and III.16).

The 2D system is time dependent but steady-state can be achieved shortly after the onset of
the simulation for a fixed set of parameters. We can therefore obtain a constant cell velocity for a
given set of physical environment and input mechanism.

The default parameters used in the 2D model is listed in Tab. S2 unless otherwise speci-
fied. These parameters are based on the the 1D whenever applicable and are adjusted to the
2D scheme when needed. Below if a list of additional or alternative parameters. In Fig. 4(b–e),
ηst = 2 (Pa·s/µ2m), ksol = 10 µm/s, kjh = kjt = 3.4×103 µm/s, kph = kpt = 1.2 µm/s. In Fig. 4(f),
kjh = kjt = 183.6 µm/s. In Fig. 4(g), kph = kpt = 0.172 µm/s. In Fig. 4(h), kjh = kjt = 51 µm/s.
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TABLE S2. Parameters used in the 2D model.

Parameters Description Values

α (µm/Pa·s) Water permeability 10−7

C (mM) Initial solute concentration over entire domain 340

D (µm2/s) Diffusion coefficient of solute 100

kelas (Pa) Elastic modulus of cell membrane 0.02

ν (Pa·s) Dynamics viscosity of solvent 0.04

T (K) Absolute temperature 300

ρn (mM) Initial molar density of actin network 17

θ0 Initial concentration of actin network 0.01

η (Pa·s/µ2m) Drag coefficient between two phases 0.1

ηst (Pa·s/µ2m) Coefficient of drag from focal adhesion 102

ksol (µm/s) Coefficient of passive solute channel 1

hjl, tjl, hpl, tpl (rad) Angular factor of actin and pump activities 0.21π

L (µm) Channel length and width 100

r (µm) Radius of the cell 10

B. Numerical Algorithms

Before describing the numerical algorithm, from (II.15) and (III.8) (with σa = 0 and σ is used
for σn), we see it is possible to solve the variable σn of actin network stress instead of θn of network
concentration, by using equation (we will ignore the subscript n for the passive network stress and
use σ to denote σn in the following discussions.)

∂σ

∂t
+

η

η + ηst
vc · ∇σ =

1

η + ηst

(
dθn

dσ

)−1

∇2σ, (III.20)

and

1

θ0
θn(σ) =

1

RTρn
(σ +

√
2(RTρn)2 + σ2), and

dθn

dσ
=

θ0

RTρn
(1 +

σ√
2(RTρn)2 + σ2

). (III.21)

Also, the velocity of actin network vn can be represented by vc, as indicated in (III.5) and (III.6)

θnvn =
ηθnvc

η + ηst
− 1

η + ηst
∇σ (III.22)

And the boundary condition for θn could be converted to boundary condition for σ easily:

θn(σ)
(∂X
∂t
− η

η + ηst
vc

)
· n+

1

η + ηst
∇σ · n = jactin, (III.23)

here jactin(s) is defined as in (III.9), and will be prescribed according to model choice.
We should note that with (III.1), (III.4), and [vc] = 0, the Stokes equation in (III.1) can be

written in the immersed boundary formulation

0 = ν∆vc − ηθn(vc − vn)−∇p+ f , ∇ · vc = 0, (III.24)

f(x, t) =

∫
Γref

(σ

∣∣∣∣∂X∂s
∣∣∣∣n+ Fmem(X))δ(x−X(s, t))ds, (III.25)
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where δ is Dirac-Delta function in 2D and Fmem is given in (III.7).

So in the numerical algorithm, at time level tn, we define unknown variables for solvent velocity
vnc , pressure pn, solute concentration cn, actin network stress σn and membrane location Xn

(with discrete IB points Xn
i = (xni , y

n
i ), n = 1, 2, . . . ,nring). It should be noted σn is defined

in intracellular space Ωi only and Xn is a Lagrangian variable. Those Eulerian variables pn, σn,
and cn are defined at the center of each computational cell, and vc is arranged according to the
staggered grid setup. To facilitate the computation of discretized equations for all the unknowns,
and better enforce boundary conditions for variable σ and c, we introduce auxiliary variables for
both of them on either side of the elastic cell membrane (whenever it could be defined) at the
places, as referred as grid crossings, where the cell membrane is intersecting the connections of
neighboring computational cell centers where those two variables are defined. So we will have σb

i

and cb
i,e at grid crossings. Also noted is the computational cell centers next to cell membrane will

be referred as irregular cell centers to distinguish with those cell centers (referred as regular) that
do not have any neighbors on the other side of the cell membrane.

The outline of the overall algorithm is very similar to [15], especially the parts dealing with fluid
structure interaction and solute concentration. There are modifications and new features added to
account for actin network stress and are described in the following. In each time step, we first carry
out the fluid-structure interaction substep, and then proceed to solve the solute concentration and
network stress in two substeps sequentially.

Substep 1: Given un, vn, pn, θn(σn) and Xn, use the IB method to compute un+1, vn+1 and
pn+1 with a discretization of (III.24), (III.25) and (III.7). Computations of (III.25) and

(III.7) is performed using Xn. Once this is found, use Xn, cb,n
i,e σb,n

i as well as the newly

found un+1, vn+1 to discretize (III.2) to obtain the new IB locations Xn+1. Equation (III.2)
requires solute concentration values and network stress at IB locations, which we denote by
cIB,n

i,e and σIB,n
i , respectively. They are obtained by interpolating the concentration values

cb,n
i,e and σb,n

i defined at grid crossings.

Substep 2: Given our new IB point locations Xn+1 and the fluid velocity (un+1, vn+1), solve

moving boundary advection diffusion problem for the concentration cn+1 and cb,n+1
i,e . At

irregular cell centers discretization of equations (III.14) requires care. This is especially the
case for freshly cleared points, which are computational cell centers that were located in Ωi

in the previous time step but are now in Ωe or vice versa. Boundary conditions (III.15) are
enforced at grid crossing with the help of the auxiliary concentration variables cb

i,e. A linear

system for cn+1 and cb,n+1
i,e is obtained and solved using an iterative method.

Substep 3: Given all updated variables Xn+1, the fluid velocity (un+1, vn+1), solute cn+1 and

cb,n+1
i,e , solve moving boundary nonlinear advection diffusion problem for the network stress

σn+1 and σb,n+1
i . At irregular cell centers and freshly cleared points, discretization of equa-

tions (III.20) requires same care as in substep 2. Boundary conditions (III.23) are enforced
at grid crossing with the help of the auxiliary variable σb

i . A linear system for σn+1 and

σb,n+1
i , which is smaller than the one obtained in substep 2, is obtained and solved using an

iterative method.

We note in both substep 2 and 3, to enforce boundary conditions, ∂X/∂t could be replaced by
vc in (III.2) to increase computational stability. Now we discuss each computational substep in
detail.
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1. Fluid structure interaction substep

As we mentioned before, the pressure p is defined at cell centers and the velocity field vc is
defined at the horizontal (u) and vertical (v) cell faces. Define the following differencing operators
for any grid function w, where wnα,β denotes the value of w at (x, y) = (αh, βh) at time t = n4t:

D±x wα,β = ±
wα±1,β − wα,β

h
, D±y wα,β = ±

wα,β±1 − wα,β
h

,

Lwα,β = D+
x D−x wα,β +D+

y D−y wα,β

=
wα+1,β + wα,β+1 + wα−1,β + wα,β−1 − 4wα,β

h2
,

(III.26)

Let vc = (u, v), vn = (ũ, ṽ), and f = (f, g), equation (III.24) is then

D−x pn+1
i+ 1

2
,j+ 1

2

= νLun+1
i,j+ 1

2

+ ηθn,i,j+ 1
2
(un
i,j+ 1

2

− ũn
i,j+ 1

2

) + fn
i,j+ 1

2

,

D−y pn+1
i+ 1

2
,j+ 1

2

= νLvn+1
i+ 1

2
,j

+ ηθn,i,j+ 1
2
(vn
i+ 1

2
,j
− ṽn

i+ 1
2
,j

) + gn
i+ 1

2
,j
,

0 = D−x un+1
i+1,j+ 1

2

+D−y vn+1
i+ 1

2
,j+1

.

(III.27)

As we assume periodic boundary condition for vc and p on the left and right edge of the com-
putational domain, and homogeneous Dirichlet boundary condition for u on the top and bottom
edges, we can solve (u, v) and p from linear system (III.27) by using FFT along x direction, which
will result in block diagonal linear system to solve at each xi, and can be solved efficiently using a
direct solver.

We turn to the determination of the body forces f = (f, g). Let Fmem = (Fx, Fy), n = (nx, ny)
and the IB point positions X = (X,Y ). For a quantity W defined on the immersed boundary grid
parametrized by s, we let Wk denote the value of W at point s = sk = k4s, where 4s is the grid
spacing in s. Equation (III.25) for f = (f, g) are discretized as follows

fn
i,j+ 1

2

=

Nring∑
k=1

(σnnnx

∣∣∣∣∂Xn

∂s

∣∣∣∣+ Fnx,k)δh(xi −Xn
k )δh(yj+ 1

2
− Y n

k )4s

gn
i+ 1

2
,j

=

Nring∑
k=1

(σnnny

∣∣∣∣∂Xn

∂s

∣∣∣∣+ Fny,k)δh(xi+ 1
2
−Xn

k )δh(yj − Y n
k )4s

(III.28)

where δh(r) is a regularized discrete delta function. In this paper, we use the one in [15]. To
compute the membrane force Fmem let us first introduce the following differencing operators acting
on functions W defined on the IB grid:

D±s Wk = ±Wk±1 −Wk

4s
, LsWk = D+

s D−s Wk. (III.29)

Using these operators, we discretize (III.25) as follows:

F n
mem,k = kelasD+

s

((
1− `

∣∣D−s Xn
k

∣∣−1
)
D−s Xn

k

)
− kbendLsLsXn

k , (III.30)

where the differencing operators above act component-wise.
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2. Semi-implicit update of IB locations

We turn to the update of the IB point locations. In the discretization of equation (III.2), we
employ the following scheme:

D−t X
n+1
k = Un+1

k − jnwater, j
n
water = −α

([
cIB,n
k

]
+ σIB,n

k + F̂ n+1
mem,k · n

n
)
, Uk = (Uk, Vk),

F̂ n+1
mem,k = F n+1

mem,k

1

2

(∣∣D+
s X

n
∣∣−1

+
∣∣D−s Xn

∣∣−1
)
,

Unk =
∑
i,j

un
i,j+ 1

2

δh(xi −Xn
k )δh(yj+ 1

2
− Y n

k )h2,

V n
k =

∑
i,j

vn
i+ 1

2
,j
δh(xi+ 1

2
−Xn

k )δh(yj − Y n
k )h2,

(III.31)

where F n+1
mem,k is specified as in (III.30), and

D−t (·)n =
(·)n − (·)n−1

4t
(III.32)

The values cIB,n
i,e,k are the intracellular and extracellular concentrations at the IB point k at time

n4t, and is evaluated by interpolating the membrane concentration values at grid crossings cb,n
i,e .

Similar is done for σIB,n
k . The jump

[
cIB,n
k

]
is equal to cIB,n

i,k − c
IB,n
e,k . In the right hand side of the

first equation, all terms except for Fmem,k are known quantities. This is thus a nonlinear equation
for Xn+1, which is solved using a Newton iteration. We have found that the implicit treatment of
Fmem,k lead to better stability properties.

3. Chemical concentration substep

We will describe the solute concentration substep in detail as the method presented here will
be used for computing network stress again.

The regular cell centers have no neighboring grid cell centers on the other side of the membrane
Γn+1, the immersed boundary defined by the IB point locations Xn+1.

At any regular Cartesian cell center, we use a standard implicit Euler discretization of the
(III.14):

D−t c
n+1
i+ 1

2
,j+ 1

2

+D−x
(
un+1
i+1,j+ 1

2

A+
x c

n+1
i+ 1

2
j+ 1

2

)
+D−y

(
vn+1
i+ 1

2
,j+1
A+
y c

n+1
i+ 1

2
j+ 1

2

)
= DLcn+1

i+ 1
2
,j+ 1

2

, (III.33)

in which, for any quantity w on the Cartesian grid,

A+
xwα,β =

1

2
(wα+1,β + wα,β) , A+

y wα,β =
1

2
(wα,β+1 + wα,β) , (III.34)

where α, β are integer or half integer. Note here that the velocity field (un+1, vn+1) have been
determined at the fluid structure interaction substep.

For solutes at irregular cell centers, we use (III.48) but with the following modifications. Suppose
we try to update the solute cn+1

A defined at cell center A (contained in Ωi) in left panel of the
Figure S9 using (III.48). The difference operators require solute concentration variables at p1 and
p3. We obtain an expression for the concentration at these two points (called ghost cells) with an
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FIG. S9. Treatment of freshly cleared grid

extrapolation procedure using concentration variables at the cell centers and grid crossings in Ωi

(where point A is located).
The extrapolation scheme for ghost cell solutes is adopted from [16]. At point p1, in left panel

of Fig. S9, we use

cp1 =
2(1− ω)

2 + ω
cp6 −

3(1− ω)

1 + ω
cp5 +

6

(1 + ω)(2 + ω)
cb

i , (III.35)

where ω is the ratio of distance from the grid crossing (xb
1 , y

b
1 ) to A and distance from p1 to A

(grid spacing in the y direction), cp6 and cp5 are solutes at p6 and p5 respectively, and cb
i is the

auxiliary intracellular solute concentration defined at grid crossing (xb
1 , y

b
1 ). A similar procedure is

performed in the x direction to obtain an extrapolation formula at point p3.
Equation (III.35) uses two grid point locations p5 and p6, and in exceptional cases depending

on the geometry of Γ relative to the Cartesian grid, two such grid points may not be available.
When only one such point is available, we use the formula:

cp1 =
−(1− ω)

1 + ω
cp5 +

2

(1 + ω)
cb

i . (III.36)

In the extreme case when no such grid locations are available, we set cp1 = cb
i . The use of these lower

order extrapolation procedures (as opposed to (III.35)) will in general lead to order 1 consistency
errors at these grid points. However, the points at which such errors are committed remains a
small fraction of cell centers (the proportion should become smaller with finer grid spacing), and
thus does not affect the order of convergence, as is documented in [16] and demonstrated below.

These extrapolation formulae are substituted into the corresponding terms in (III.48) to produce
the spatial stencil at the irregular cell centers. The stencil at the irregular stencils, therefore, depend
not only on concentration values at cell centers but also at grid crossings cb

i or cb
e .

4. Time discretization at freshly cleared cell

At a freshly cleared cell we must modify the time discretization. Such modifications are discussed
in [17, 18]. Here, we propose new procedure which is simple to implement with good stability
properties.

Consider the point F in the right panel of Figure S9. It is a freshly cleared point that was in
Ωi at time t = n4t but is in Ωe at t = (n + 1)4t. In evaluating the time differencing term in



25

(III.48) at this point, cnF has to be available. Since point F was not in Ωe at time level n, cnF is
not available. A standard way to obtain this value is to extrapolate the t = n4t level solutes at
neighbor cell centers, at p1 and p2, say, on the intracellular side, to F . This extrapolation could
lead to large numerical errors especially in extreme geometric situations. Here we propose a new
scheme for the discretization of the time derivative.

First we find the point pF = (x∗F , y
∗
F ) ∈ Γn that is closest to the point F = (xF , yF ). The solute

concentration at point pF at time t = n4t (on the extracellular side, which we call cne,pF ) may be

obtained by interpolating the solute concentration values at grid crossings cb,n
e at time t = n4t.

A (seemingly) reasonable approximation to the partial time derivative at point F would be:

cn+1
F − cne,pF
4t

. (III.37)

The above expression, however, will not be a consistent discretization because this differencing
corresponds to an “advective” derivative. The velocity of this advection is given by:

(ũF , ṽF ) =

(
xF − x∗F
4t

,
yF − y∗F
4t

)
. (III.38)

Therefore, (III.37) must be corrected to remove the advective component resulting from the above
velocity. The following is thus a consistent discretization of the time derivative of concentration
cF at point F :

∂cF
∂t

∣∣∣∣
t=n4t

≈
cn+1
F − cne,pF
4t

− ũFD0
xc
n+1
F − ṽFD0

yc
n+1
F . (III.39)

where

D0
x,yw =

1

2

(
D+
x,yw +D−x,yw

)
. (III.40)

At freshly cleared points, expression (III.39) is used in place of the D−t c term in (III.48). The
above spatial differencing in many cases involves ghost cell locations. In such cases, extrapolation
formulae discussed in previous subsection are used.

5. Enforcing solute boundary condition with auxiliary variables

The solute boundary conditions (III.15) are enforced along the membrane Γi,e, with the help
of the auxiliary solutes defined at grid crossings on both sides of the interface. We first rewrite
boundary condition (III.15) using (III.2) and (III.16):

jwc−D∇c · n = ksol[c] + k̂pH(s, ci, ce). (III.41)

Let us consider grid crossing (xb
1 , y

b
1 ) as in the left panel of Figure S9. The above boundary

condition is satisfied on both sides of the membrane. We consider the Ωi side of the membrane.
Our discretization of (III.41) is:

jnwc
n
i −DN (cb,n+1

i , cn+1) = ksol[c
b,n+1] + k̂pH(s, cni , c

n
e ). (III.42)

The diffusive flux term and the passive membrane flux term are treated implicitly at time t =
(n + 1)4t. This implicit treatment of the boundary condition is the key to stable computations.
Our computational experience indicates that an explicit treatment of these terms leads to persistent
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spurious oscillations of the solute concentrations near the interfacial boundary. The other terms
are evaluated at explicitly, but we point out that these values are not available at the grid crossings;
the above equations are defined on the grid crossings at t = (n + 1)4t but grid crossings change
with every time step. We compute these terms in the following fashion. We take jnwater and cn

defined at IB points (see equation (III.31)) and assign these values to the corresponding IB points
at time t = (n+ 1)4t. Then, we interpolate these values to the grid crossing locations.

We now discuss the discretization of the normal derivative (the N term in (III.42)). Our
procedure follows [16]. Taking intracellular side of the grid crossing at (xb1, y

b
1) in the left panel of

Figure S9, the treatment is illustrated as follows.
The unit normal direction n along Γ can be decomposed into two directions: along grid line va

(from point p1 to A); and off grid line vo (from boundary point (xb1, y
b
1) through grid point B and

stop on grid line between C and p7). We thus have n = aovo + aava. With these two directions,
the normal derivative ∇cb

i ·n can be decomposed as a linear combination of directional derivatives
along the vo and va directions:

∇cb
i · n = ao∇cb

i · vo + aa∇cb
i · va

=ao||vo||
∂cbi

∂(vo/||vo||)
+ aa||va||

∂cbi
∂(va/||va||)

.
(III.43)

So along vo and va, we need to approximate the partial derivatives, using solutes at cell centers
and the auxiliary variables at grid crossings. If a first order approximation is used, we will have

∇cb
i · n ≈ ao(cB − cb

i ) + aa(cp5 − cb
i ), (III.44)

where cB is the solute at point B, and cb
i is auxiliary solute at the grid crossing on intracellular

side. The direction vectors are given by

vo = (xB − xb1, yB − yb1), va = (xp5 − xb1, yp5 − yb1). (III.45)

In choosing the cell centers used for this process, we avoid using cell centers that are directly
adjacent to the grid crossing. Otherwise, vo or va can be arbitrarily small in length, and the
coefficient ao and aa can become arbitrarily large thus leading to possible numerical instabilities.

We use higher order approximations if more cell centers are available. For example if instead of
just using point B for the off grid line direction, we may use point B, C, and p7

∂cbi
∂(vo/||vo||)

≈ − 3

2||vo||
cb

i +
2

||vo||
cB −

1

2||vo||
[(1− ω)cC + ωcp7 ], (III.46)

and if we use the grid crossing, point p5 and p6, we have

∂cbi
∂(va/||va||)

≈ − 1 + ω

(2 + ω)4y
cp6 +

2 + ω

(1 + ω)4y
cp5 −

3 + 2ω

(1 + ω)(2 + ω)4y
cb

i . (III.47)

The ω here in (III.47) and (III.46) is the same as in (III.35).

6. Network stress substep

At any regular Cartesian cell center in Ωi, we use a standard implicit Euler discretization of the
(III.20):

D−t σ
n+1
i+ 1

2
,j+ 1

2

+
η

η + ηst

{
D−x

(
un+1
i+1,j+ 1

2

A+
x σ

n+1
i+ 1

2
j+ 1

2

)
+D−y

(
vn+1
i+ 1

2
,j+1
A+
y σ

n+1
i+ 1

2
j+ 1

2

)}
= D̃Lσn+1

i+ 1
2
,j+ 1

2

,

(III.48)
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where all difference operators are defined as in previous subsections, velocity field (un+1, vn+1) have
been determined at the fluid structure interaction substep, and the nonlinear diffusion coefficient
D̃ is

D̃ =
1

η + ηst

dθn(σn
i+ 1

2
j+ 1

2

)

dσ

−1

. (III.49)

We note all special cares needed for handling irregular cell centers, freshly cleared points and en-
forcing boundary conditions are discussed in previous sections for solute concentration c, especially
for c in Ωi, and here we will not put in more details. But we point out that when enforcing bound-
ary conditions using (III.2) in (III.23), [c] should use the solutes from substep 2 which are just
updated.

C. Mechanical Energy Identities

Similar to the 1D model, the 2D model satisfies energy identities,

d

dt
(Gs + En + Emem) = −(If + In + Im) + Jm, (III.50)

where

Gs =

∫
Ωi∪Ωe

ωdx, ω = RT (c ln c− c), En =

∫
Ωi

endx (III.51)

Emem =

∫
Γref

(
kelas

(∣∣∣∣∂X∂s
∣∣∣∣)2

+ kbend

∣∣∣∣∂2X

∂s2

∣∣∣∣2
)
ds, (III.52)

If =

∫
Ωi∪Ωe

(
ν
∣∣∇vc + (∇vc)

T
∣∣2 +

D

RT
c |∇µ|2

)
dx, µ = RT ln c, (III.53)

In =

∫
Ωi

(
ηθn|vc − vn|2 + ηstθn|vn|2

)
dx, Im =

∫
Γ

(
ksol[c][µ] + α[ψ]2

)
dmΓ (III.54)

Jm =

∫
Γ

(
den
dθn

jactin − [µ]isol

)
dmΓ, dmΓ =

∣∣∣∣∂X∂s
∣∣∣∣ ds, (III.55)

where the network energy density en is determined by

θn
den
dθn
− en = σn(θn). (III.56)

Under steady-state, Jm = If + In + Im. The mechanical energy consumption is calculated from
Jm when steady-state is reached. Each power consumption term is in the dimensional of Watt per
unit length. We obtain the power consumption in Watt by multiplying the terms in Eq. (III.50)
by the effective height of the cell, which is approximated as 1 µm.
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