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I. DETAILS ON DATA ACQUISITION AND ANALYSIS

A. Experimental setup

The excitation pulses are generated by sum-frequency-mixing of the fundamental (Ti:Sa,

800 nm, 1 kHz, 30 fs) and its second harmonic (400 nm) in a type-I-BBO crystal of 50 µm

thickness and subsequently compressed in a chirped-mirror assembly, reaching a pulse du-

ration of ∼ 40 fs as estimated via cross-correlation. The 1800 nm pulses are produced by

frequency up-conversion of an 800 nm seed in a commercial optical parametric amplifier

and are subsequently frequency-doubled in a 250 µm type-I-BBO crystal. The polarization

of the two orthogonally polarized pulses is converted to bi-circular using the in-line setup

(MAZEL-TOV) described in [1]. The pump beams and the bichromatic probe are focussed

into the chamber with the aid of an Al-mirror. The generated HH radiation is dispersed by

an XUV grating and detected with the aid of an MCP detector backed up with a phosphor

screen.

Typical spectrally-resolved far-field HHG images recorded in (rac)-2-iodobutane are

shown in Fig. S1. Prior to the arrival of the pump pulse (panel a), the spectrum corre-

sponds to the characteristic harmonic comb composed of pairs of neighbouring harmonics

(3q + 1 and 3q + 2, q ∈ N), whereas the harmonics of order 3q are strongly suppressed

since they are forbidden by symmetry [2]. This row of harmonics is always present and

is designated as “undiffracted” signal (m = 0). When the pump pulses overlap with the

bi-circular probe (∆t = T0, panel b), a wave-mixing pattern consisting of two vertically

displaced rows surrounding the main maxima is observed. The frequency and the direction

of emission shows that these components result from a high-order wave mixing process [3]

involving one photon from the pump pulses and are accordingly labelled as wm = ±1. Two

additional rows of much weaker emission can be discerned in panel b, above and below the

wm = ±1 signal. Using momentum- and frequency conservation laws, these emissions can

be assigned to wave mixing involving two pump photons wm = ±2 and diffraction from

the transient grating m = ±1. At positive pump probe delays (∆t � T0, panel c), only

the diffracted signal (m = ±1) persists. Under the conditions employed, diffraction leads to

an observable signal for harmonic orders H19−H34, with diffraction efficiency maximizing

around H25−H28 and progressively decreasing towards the cutoff region.
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FIG. S1: Far-field high-harmonic emission profiles generated in 2-iodobutane at different

pump-probe delays. The colormap (cp. upper right corner of panel a) has been saturated

to improve the visibility in the diffraction peaks in panel c. Panel a: High-harmonic

spectrum at negative time delays, consisting only of the undiffracted emission (m = 0); b:

wave-mixing between 266 nm, 900 nm and 1800 nm leads to additional emissions at the

position of wm = ±1 and m = ±1 spots; c: at positive time delays, after the interaction

with the pump pulse has finished, only the transient grating signal in the

m = ±1-diffraction orders persists. The off-axis peaks marked with black stars in panels a

and c correspond to the third harmonic of the 266 nm pump (13.5 eV).

The room-temperature vapor pressure of 2-iodobutane amounts to 60mbar at T = 298K,

while its (standard-pressure) boiling point lies at 391.15 K. In order to produce sufficient gas

density for stable HHG, the samples were heated up to 80◦ C. The remaining parts of the

system were kept at 100◦ C (pipeline) or 120◦ C (nozzle). The 2−C4H9I-vapour was seeded

in He at a stagnation pressure of ∼ 1 bar. A total of ∼ 0.6 mJ were available in the probe

arm (∼ 0.5 mJ in the 1800 nm-arm and ∼ 0.1 mJ in the 900 nm arm), giving an estimate of

Iω ≈ 5×1013 W/cm2 and I2ω ≈ 0.7×1013 W/cm2 for the laser intensities in the focus. Up to

harmonic order 35 of 1800 nm could be observed (∼ 24.1 eV). The synchronization between

the laser pulse and the pulse of the gas delivery valve was adjusted such that the front part
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of the supersonic expansion is probed in order to suppress the possible contributions from

clusters.

B. Characterization of the UV-induced photodissociation dynamics of 2-iodobutane

The signal extraction procedure is based upon integration over a narrow integration

window placed around each diffraction peak. As the transient-grating signal is absent prior

to the arrival of the pump pulse, the intensity in the corresponding image areas at negative

time delays was averaged and the resulting value was treated as a background contribu-

tion and subtracted from the signal. This procedure is applied for both diffraction orders

(m = ±1) and wave-mixing signals (wm = ±1). Afterwards, the main (m = 0) peaks

are normalized with respect to the average of the non-diffracted signal at negative time

delays, and the m = ±1-transients are subsequently divided by the total signal at the given

harmonic energy as a function of time, i.e. Stot = Im=−1 + Im=0 + Im=+1.

The recorded transients are fitted to the following phenomenological expression(s):

Im=±1(t) =
(
c1e
− t−T0

τ1 + c2

(
1− e

− t−T0
τ2

)
+ c3

)
Θ(t− T0) ∗ g(t− T0; τ); (1)

Im=0(t) = c′3 −
(
c′1e
− t−T0

τ ′1 + c′2

(
1− e

− t−T0
τ ′2

))
Θ(t− T0) ∗ g(t− T0; τ), (2)

with adjustable parameters c1, c2, c3, τ1 and τ2 (as well as the corresponding primed quan-

tities). In the above Θ(t) is the Heaviside function, and ∗ denotes the convolution with the

Gaussian intensity envelope g(t; τ) of pulse width τ . In practice, the last parameter is ex-

tracted from the wave-mixing peaks and τ ≈ 45fs. The time origin T0 is set at the maximum

of the wave-mixing signal. Whereas τ1 corresponds to the rapid decay of the wave-mixing

signal after the loss of the pump-probe temporal overlap, the constant τ2 ≡ τrise models the

exponential intensity build-up in the diffraction signal and as such represents a character-

istic for the reaction process. The temporal profile of the undiffracted orders is given by

an abrupt signal loss as the three pulses overlap followed by a rapid partial recovery. After

approx. 100 fs, slow exponential decay sets in, and in the long-time limit, it converges to an

asymptotic level Im=0(t � T0) � Im=0(t < T0). This behaviour is qualitatively similar for
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all resolved harmonic orders of 1800 nm.

Table I lists the fitted values of the build-up constant τrise for all harmonic orders for which

diffraction was observed (16-35). The diffracted signal level in the ”forbidden” 3q-orders is

extremely low and does not permit reliable fit results. The values in Tab. I represent an

average over multiple independent measurements, whereby the signal has been averaged over

both m = +1 and m = −1 orders.

Harmonic order τm=±1
rise / fs N

16 345± 282 2

17 246± 39 2

19 234± 48 6

20 288± 48 6

22 294± 58 9

23 311± 81 7

25 341± 63 9

26 329± 54 10

28 352± 53 11

29 362± 67 7

31 348± 48 5

32 363± 49 6

34 454± 20 2

35 527± 22 2

TABLE I: Fitted values of the build-up constant τrise, statistically averaged over multiple

measurements. The number of data sets considered for each harmonic order is denoted by

N .

C. Evaluation of the degree of CD

The quantification of the degree of circular dichroism (CD) proceeds via evaluating the

HHG intensity asymmetries between the two enantiomers as a function of the ellipticity

(resp. the QWP angle α). First, the measured traces corresponding to the two enantiomers

are normalized with respect to the signal integrated over the entire scanned range as a
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function of the QWP angle α, i.e.

IR/S(α, nω) =
ĨR/S(α, nω)∫

α
ĨR/S(α, nω)dα

, (3)

with ĨR/S(α, nω) being the signal prior to normalization. The value of the denominator in

eq. (3) does not depend on the system’s chirality.

The ellipticity-resolved CD discussed in the main text is defined as:

CD(nω, α) =
2 (IR(nω, α)− IS(nω, α))

max (IR(nω, α) + IS(nω, α))
, (4)

where max stands for the maximum with respect to α. Integration of this quantity over a

narrow QWP-range according to Eq. (1) of the main text yields the energy-dependent CD

CD
±

(ω).

II. SYNTHESIS OF 2-IODOBUTANE

The synthesis of 2-iodobutane followed the reaction scheme shown in Fig. S2. 21.2 g

triphenylphosphine (81 mmol) and 16.8 g tetraiodomethane (32 mmol) were placed in a

three-neck round bottom flask equipped with a dropping funnel, a magnetic stirring bar,

a septum, and an empty column with a P2O5-filled column on top. The column was di-

rectly connected to a cooling trap filled with liquid N2, which was connected to a vacuum

line (10−3 mbar). The vacuum line was equipped with a three-way-valve that was con-

nected to a balloon and a nitrogen supply (dried over P2O5). Through a septum, 45 ml of

tetraethylenglycole dimethylether (TEG-DME) were added with the suspension turning red.

The apparatus was evacuated to remove traces of air in the suspension. Under vacuum, 2 g

of the respective enantiopure 2-butanol ((R)- or (S)-) was placed in the dropping funnel and

added via a submerged teflon tube with the product condensing in the cooling trap. After the

addition of 2-butanol was completed, a maximum of 2 hours of condensation was performed

because of the observed decrease of the enantiomeric excess (ee) over time. In the case of

(S)-2-iodobutane the yield was 40 % (and up to 60-65 % ee), and for (R)-2-iodobutane the

yield was 57 % (and up to 60-65 % ee). All the analyses were performed with a GC-MS

System equipped with a Lipodex C column from Macherey Nagel on which (S)-2-iodobutane

and (R)-2-iodobutane have retention times of 6.7 min and 6.8 min, respectively.
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FIG. S2: Reaction scheme for the synthesis of (R)- and (S)-2-iodobutane

III. POTENTIAL ENERGY CURVES

A. Potential energy curves along the “frozen” dissociation path

The potential-energy curves required for the wavepacket propagation (s. Sec. IV) after

the 266 nm-pump-excitation step were obtained with the Molpro program package [4].

The aug-cc-pVTZ-basis set was used for C and H, whereas the aug-cc-pVQZ-PP set was

chosen for iodine. The 28 core electrons of I are approximated with the relativistic energy-

consistent ECP28MDF-effective-core potential of the Stuttgart/Cologne group [5]. As a

first step, the equilibrium geometry is optimized using second-order Møller-Plesset pertur-

bation theory (MP2). The atomic coordinates at the equilibrium position are summarized

in Tab. II. The potential energy (PE) curve corresponding to the cleavage of the C-I-bond

(with an equilibrium distance of 2.173 Å) was obtained by varying the distance of the

reaction coordinate rC−I in the range 1.8 − 6.5 Å and performing a single-point energy

calculation at each value. The positions of the remaining coordinates have been kept fixed

at their equilibrium values.

At each point of the potential energy curve, an SCF calculation is performed first, yield-

ing the energies of the 29 orbitals in the ground state. This calculation is then followed by

a state-averaged CASSCF comprising three singlet (1A) and three triplet (3A) states. The
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Atom x y z

C -3.1586 0.2329 0.02371

C -1.6402 0.1799 -0.02283

H -3.4753 1.2772 0.02545

H -3.5849 -0.2556 -0.85046

H -3.5489 -0.2494 0.91554

H -1.2092 0.6020 0.88332

C -1.0663 0.8646 -1.25381

C 0.4519 0.9960 -1.25988

H -1.5129 1.8630 -1.28130

H -1.4109 0.3384 -2.14519

H 0.7856 1.5462 -2.13660

H 0.7940 1.5318 -0.37550

H 0.9287 0.0189 -1.27048

I -1.0159 -1.8999 0.05212

TABLE II: Optimized geometry of (R)-2-iodobutane (in Ångstrom), calculated with the

MP2 method and an aug-cc-pVTZ basis set for the C and H atoms. For the iodine atom,

an aug-cc-pVQZ basis and an effective potential (ECP28MDF) were employed.

chosen active space is rather limited and comprises 6 electrons in 4 orbitals (6,4). A multi-

reference configuration-interaction (MRCI) calculation is performed subsequently, with a

reference space consisting of the CASSCF active space. These calculations are accompanied

by the corresponding spin-orbit-splitting corrections.

The cationic PE-curve was obtained in the same manner, whereby the rC−I distance was

varied and all remaining degrees of freedom were fixed at the equilibrium values of the

neutral species. The state-averaged active space (5,4) includes three doublet (2A) and four

quadruplet (4A) states.

In the remaining part, when discussing the photodissociation dynamics, the emphasis

will be placed on the 3Q1, 1Q1 and 3Q+
0 states. Whereas the 3Q1 and 1Q1 states require an

electric-dipole perpendicular transition, the 3Q+
0 state is accessible via a parallel transition.

Figure S3 shows the set of relevant neutral/cationic potential-energy curves. Although the

correct symmetry label of all electronic states is A, in what follows, we use the classification

pertaining to the C3v-PG(M) as approximated symmetry labels for clarity. The analysis
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for the cation:

full lines: with SO-interaction
dashed lines: non-relativistic

FIG. S3: Combined potential-energy curves of the neutral and the cation of 2-iodobutane

as a function of the C-I distance, maintaining the other geometric parameters fixed to their

value in the equilibrium geometry of the neutral ground state.

for the neutral is limited to the ground X̃1A1 state and the 3Q1, 1Q1 and 3Q+
0 excited

states. At the laser intensities employed (Iω ≈ 5 × 1013 W/cm2), mainly the ground (X̃+)

and the first excited (Ã+) states of the cation will be populated. The first two energy

levels of 2-C4H9I+ are close-to-degenerate and are designated as X̃+ 2E(1) and X̃+ 2E(2),

respectively. Both belong to the dissociation limit leading to 2-C4H+
9 +I2 P3/2 and split into

two Ω = 3
2
, 1

2
-components. The Ã+-state correlates to 2-C4H+

9 +I2 P1/2.

B. Potential energy curves along the “relaxed” dissociation path

In order to discriminate between the roles of the carbon-iodine bond-breaking process and

the gradual planarization of the chiral environment around the radical center in the (sec)-

butyl fragment and to obtain an estimate of the relative contributions of these processes

to the chiral response, we calculate the chiral dynamics with the aid of the 2-level model

described in Sec. V using potential energy curves and transition dipole moments obtained
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from (1): quantum chemistry calculations considering geometries where only the C-I (rC−I)

distance is varied; and (2): QC calculations where all the remaining degrees of freedom are

allowed to relax at each C-I distance. In what follows, these two sets of calculations will

be referred to as “frozen” and “relaxed” scans, respectively. The calculations constituting

the “fixed” dissociation pathway have been outlined in the preceding section (s. Sec. IIIA).

The current subsection summarizes the technical details pertaining to the calculation of

the “relaxed” geometries, the associated potential energy curves, and the corresponding

transition dipole moments.

1. Calculation of the “relaxed” potential energy curves

In order to obtain “relaxed” structures of 2-iodobutane in the 3Q+
0 state along the dissocia-

tion coordinate, we perform a geometry optimization procedure using the MP2 method, em-

ploying a full-electron cc-pVTZ basis set for the C and the H atoms and a cc-pVQZ-PP basis

set in combination with the relativistically corrected SK-MCDHF-RSC-pseudopotential [5]

for the iodine atom. The distance between the secondary carbon and the iodine is fixed at

each step, whereas the coordinates of the remaining atoms are allowed to vary.

On the basis of this new structural information, potential energy surfaces along the “re-

laxed” dissociation path were calculated for the Ã 3Q+
0 excited state of the neutral as well as

for the ground- and excited states of the cation. Thereby, the quasi-degenerate second-order

N -electron valence state perturbation (QD-NEVPT2) method was used as implemented in

the program package ORCA [6]. The resulting curves are shown as dashed lines in Figs. S4

(neutral) resp. S5 (cation). The calculations employed the aug-cc-pVTZ-DK basis for C and

H and the (all-electron) aug-cc-pVQZ-DK basis for iodine, and considered three singlet /

three triplet states as a reference space for the neutral molecule resp. three doublet / three

quadruplet states for the cation. In Figs. S4 and S5, we compare the PES along the “relaxed

path” with analogous calculations employing the “fixed” geometries for the states that are

relevant for the 2-level ODE model (s. Sec. V), i.e. the 3Q+
0 state of the neutral as well as the

two lowest states of the cation (denoted as X̃+ and Ã+, respectively). The cationic curves

were calculated under the assumption that the geometry does not change upon ionization,

which is a reasonable approximation given the short durations of the electron trajecto-

11



FIG. S4: Potential energy curves of the neutral 2-iodobutane as a function of the C-I

distance calculated with all remaining degrees of freedom kept fixed to their equilibrium

values (full lines), and after optimizing the remaining coordinates at each rC−I-step

(dashed lines).

ries (1-3 fs). Figures S4 and S5 imply that whereas relaxing the geometry has relatively

little effect on the neutral PES, it has a significantly larger influence in the case of the cation.

The modifications of the PES along the dissociation path essentially imply a modification

of the effective ionization potentials associated with the two considered cationic states,

which has an effect on the length of the electron continuum trajectories (τ). The latter

determine the propagation time in the solution of the 2-level dynamics. These changes have

been taken into account in our “relaxed” model. Overall, relaxing the geometry leads to an

increased duration of the continuum trajectory. It should be noted that for the “relaxed” CD

calculations reported in main text, a distance-to-time mapping derived from the wavepacket

calculation in Section IV has been used.

2. Transition dipole matrix elements as a function of the bond distance

One of the key quantities determining the temporal behavior of the chiral response is

the variation of the electric- and the magnetic-dipole transition matrix elements (µ̂ and

m̂) relating the ground- and the excited states of the cation as a function of the C-I bond
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FIG. S5: Selected potential energy curves of the 2-iodobutane cation as a function of the

C-I distance calculated with all remaining degrees of freedom kept fixed to their

equilibrium values (full lines), and after optimizing the remaining coordinates at each

rC−I-step (dashed lines).

distance. These quantities have been calculated with the methods described in the preceding

sections IIIA and III B 1. Figure S13 displays the variation of the electric and the magnetic

transition dipole moment for the “frozen” dissociation path separately. Figures S6 and S7

compare the absolute magnitudes as well as the individual Cartesian components of µ̂ and

m̂ in the “relaxed” vs. the “fixed”-geometry dissociation paths. Generally, the qualitative

behavior of the two sets of results is similar.

In the actual implementation of our 2-level model, we consider only 2-iodobutane

molecules with a C-I-bond aligned parallel to the laser field due to the selective excita-

tion induced by the UV-excitation pulse as explained in one of the following sections (cp.

Section VI of the SM). Therefore, it is the projection of the above transition dipoles on

the C-I-bond-vector that essentially governs the dynamics. Figures S8 a and b display the

projected electric and magnetic transition dipoles in the “fixed” vs. the “relaxed” cases. As

before, the qualitative behavior is very similar. The magnetic dipole exhibits a deviation in

terms of the absolute value, however, the variation as a function of the C-I-bond distance is

very similar. We emphasize that our model is aimed at explaining the temporal variation

of the chiral response, which is to a substantial extent dictated by the variation of the µ̂ /
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a b

FIG. S6: Absolute magnitudes of the electric (panel a) and the magnetic (panel b)

transition-dipole moments between the ground (X̃+) and the first excited (Ã+) states of

the 2-iodobutane cation as a function of the C-I distance, obtained from an all-electron

QD-NEVPT2-calculation employing the Douglas-Kroll-Hess method along the “fixed” and

the “relaxed” dissociation paths.

m̂ as a function of rC−I, and not at the absolute value of the chiral effect. Further, we note

that the dipole moment expectation values for the “relaxed” geometry entering Eq. 5 are

taken from a MRCI calculation similar to the one described in Sec. IIIA.

3. Dynamics of the chiral response in the case of the “frozen” dissociation pathway

As a final step, we combine the results outlined in the above sections and calculate the

time-dependent chiral response according to the model described in the main text and elab-

orated in Sec. V of the SM. The results obtained with the “relaxed” geometries are presented

in Fig. 5 of the main text, whereas the chiral dynamics for harmonic orders 16, 20, and 31,

calculated assuming a “frozen” dissociation path, are presented in Fig. S9 of the current text.

Apart from the short-time region, the predicted chiral response decay in the “fixed-

geometry”-case takes place on a time scale, which is almost identical to the previous the-

oretical results and also similar to the experimental results (250-300 fs). From the plots

displaying the variation of the magnitude of the magnetic moment as a function of distance,
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a b

FIG. S7: Molecular-frame components of the electric (panel a) and the magnetic (panel b)

transition-dipole moments between the ground (X̃+) and the first excited (Ã+) states of

the 2-iodobutane cation as a function of the C-I distance, obtained from an all-electron

QD-NEVPT2-calculation employing the Douglas-Kroll-Hess method along the “fixed” and

the “relaxed” dissociation paths.

one can infer that relaxing the nuclear framework leads to a slightly faster decay to the

atomic value (i.e. the Bohr magneton µB, which has been subtracted in all figures presented

in the current text). However, this effect seems to be counter-balanced by the fact that

the electron transit time is increased in the relaxed case, which leads to a more efficient

population transfer between the X̃+ and the Ã+ states.

Therefore, we conclude that the relaxation of the geometry of the 2-butyl fragment does

not significantly influence the predicted chiral dynamics. Consequently, the primary aspect

of the chiral dynamics probed by our experiment is not the planarization of the 2-butyl

radical, but instead the separation of the iodine atom from the 2-butyl radical.

IV. WAVEPACKET CALCULATIONS

The photodissociation dynamics are modelled by propagating the nuclear wavepacket

on the repulsive 3Q+
0 and 1Q1 states of 2-iodobutane using the potential energy surfaces

described in the preceding section (cp. also Fig. S3). Only the coupling between the ground

state and each of the excited states is taken into account and the corresponding transition
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a b

FIG. S8: Projections of the molecular-frame components of the electric (blue) and the

magnetic (red) transition-dipole moments between the ground (X̃+) and the first excited

(Ã+) states of the 2-iodobutane cation onto the C-I-bond vector as a function of the C-I

distance, obtained from an all-electron QD-NEVPT2-calculation employing the

Douglas-Kroll-Hess method along the “fixed” (panel a) and the “relaxed” (panel b)

dissociation paths.

dipole moments are displayed in Fig. S10. These curves were obtained with Molpro [4] (using

the MRCI method and the parameters described above).

The pump direction is set parallel to the C-I-bond (cp. Fig. S11). The time-dependent

Schrödinger equation (in one dimension) is solved with the split-operator method coupled

with the fast-Fourier transform technique. The time step was ∆t = 0.05 fs and the spatial

grid representing the rC−I-reaction coordinate consisted of 213 points extending from 1.8 Å

to 45 Å. The excitation pulse was modelled by a Gaussian pulse with a duration of 45 fs and

an intensity of 4×1012 W/cm2. An absorbing imaginary potential was employed in order to

prevent reflection from the grid boundary. Figure S12 shows the calculated time evolution

of the expectation value of the C-I-distance in each of the two excited states. Assuming that

the infinite-separation limit is effectively reached at rC−I > 8Å, the dissociation process can

be considered as completed after ≈ 160 fs.
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FIG. S9: Time-dependent chiral resonse, evaluated according to the methods presented in

Sec. V assuming a “frozen” dissociation path for harmonic orders 16, 20 an 31 of 1800 nm.

V. TWO-LEVEL MODEL OF THE LASER-INDUCED DYNAMICS IN THE 2-

IODOBUTANE CATION

Following the treatment presented in Refs. [7–10], the 2-level ordinary-differential-

equation (ODE) system is given by:

i∂tcIJ =

(
EX̃+(t) 0

0 EÃ+(t)

)
· cIJ +

(
VXX(t) VXA(t)

VAX(t) VAA(t)

)
· cIJ , (5)

where cIJ(t) is the coefficient vector corresponding to ionization into the cationic state I

and recombination with the state J . EĨ+ are the corresponding eigenenergies, whereby the

influence of the spin-orbit interaction has been neglected. The initial conditions read:

cX =

(
1

0

)
for I = X and cA =

(
0

1

)
for I = A. (6)

In the above, VIJ(t) = 〈J | Ĥint(t) |I〉. Thus, VXX and VAA are the dipole-moment expectation

values of the two states, and the cross terms correspond to the transition moments which

are related to the electric (ETDM) and the magnetic (MTDM) transition dipole moments
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FIG. S10: Components of the electric transition-dipole moments from the ground state to

each of the two excited states of neutral 2-iodobutane considered in the model, as a

function of the C-I distance. The equilibrium C-I distance is indicated as a dashed vertical

line.

FIG. S11: Definition of the molecule-fixed (Cartesian) coordinate system. In the main

text, a ”parallel” transition is defined by the transition dipole being parallel to the

C-I-bond. In the graphic, the length of the dissociating C-I-bond is set to 5 Å.

as:

VXA = V
(el)
XA + V

(mag)
XA

VAX = V
(el)
AX + V

(mag)
AX = V

(el)
XA − V

(mag)
XA . (7)

The coupling matrix elements were obtained from an all-electron calculation employing
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FIG. S12: Expectation value of the iodine-2-butyl separation as a function of time,

evaluated over each of the three potential energy surfaces considered in the main text. The

electric-field envelope with a FWHM duration of 45 fs is shown in grey.

the quasi-degenerate second-order N -electron valence state perturbation theory approach

as implemented in the software package Orca [6]. We used the aug-cc-pVTZ-DK basis for

C and H and the (all-electron) aug-cc-pVQZ-DK basis for iodine. To our knowledge, Orca

does not support calculations of the magnetic component of the transition dipole moment

that take relativistic interactions into account. For this reason, the spin-orbit splitting of

the considered cationic states has been neglected.

The interaction Hamiltonian is:

Ĥint = −F (t) · µ̂−B(t) · m̂ = −F (t) · µ̂− 1

c

(
k̂ × F (t)

)
· m̂. (8)

Thereby, F (t) denotes the electric component of the bi-circular field:

F (t) = F0

(
cos(ωt) + η cos(2ωt)

sin(ωt)− η sin(2ωt)

)
, (9)

with η being the ratio of the field strengths of the fundamental and the second harmonic and

k̂ the propagation direction of the bi-circular field. B(t) is the magnetic-field component,

and we consider one full cycle of the fundamental field in the cw-limit. We consider only

ionization events, whereby the instantaneous polarization axis of F (t) points along the C-

I bond, and average over all possible azimuthal directions. According to quantum-orbit

analysis, typical electron excursion times (τ) under the present experimental conditions
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(a) Electric TDM. (b) Magnetic TDM.

FIG. S13: Components (in the molecular frame) of the electric and the magnetic

transition-dipole moments between the ground (X̃+) and the first excited states of the

2-iodobutane cation as a function of the C-I distance, obtained from an all-electron

QD-NEVPT2-calculation employing the Douglas-Kroll-Hess method. The TDMs shown do

not include the SO-correction.

range from 1.4 to 1.8 fs. The ODE in Eq. (5) is thus propagated from an initial value of

the pump-probe delay ∆t to the instant of recombination ∆t + τΩ
IJ . The time dependence

of the potential energy curves and the matrix elements is estimated on the basis of the

quantum-mechanical calculations presented in Section III and the wavepacket analysis (s.

Section IV) using a classical trajectory treatment. Since one of the dissociation fragments is

an iodine atom in its spin-doublet ground state, the magnetic transition dipole at asymptotic

distances is dominated by the transition between the two Kramers-degenerate magnetic

sub-components, yielding an artificial contribution to the calculated chiral response. This

contribution has therefore been subtracted from the value obtained with Eq. (3) of the main

text.

VI. PUMP-INDUCED ROTATIONAL ANISOTROPY

In order to estimate the extent to which the rotational anisotropy induced by the 266 nm-

pump pulse influences the temporal profile of the chiral response, a calculation of the time

evolution of the initially created rotational alignment was performed. Two of the rotational

constants of 2-iodobutane (B and C), which itself belongs to the class of asymmetric rotors,
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A / GHz B / GHz C / GHz

3.755 1.709 1.236

Ia /
(
kg m2

)
Ib /

(
kg m2

)
Ic /

(
kg m2

)
2.235 · 10−45 4.910 · 10−45 6.788 · 10−45

TABLE III: Rotational constants and moments of inertia of 2-iodobutane.

t / ps

FIG. S14: Time evolution of the rotational anisotropy of neutral 2-iodobutane calculated

with the aid of Eq. (10) and the parameters described in the text for a range of rotational

temperatures. The anisotropy is quantified in terms of the expectation value of the degree

of alignment (〈cos2 ϑ〉) with respect to the laser polarization axis.

are comparable, enabling one to treat the molecule in the symmetric-top approximation. For

this aim, the B- and the C- constants were averaged. This simplification enables one to make

use of the theoretical framework for symmetric-top systems that was recently developed in

Refs. [11] and [12]. According to Eq. (4) in Ref. [12], the rotational distribution of excited-

state molecules is given by

〈
cos2 ϑ

〉
(t) ≡

〈
cos2 ωt

〉
=

∫ ∞
0

2aωe−aω
2

cos2 (ωt) dω (10)

for an initially randomly oriented ensemble and single-photon pump-probe processes. In

the above, ϑ denotes the angle between the polarization vector of the pump beam and the

transition dipole moment of the molecule and a = J1
2kBT

ξ2, whereby ξ =
(

1
3
(2 + χ−1)

)−1/2

and χ = J3/J1(χ ∈ [1
2
,∞]). For the (quasi)-symmetric-top molecule under consideration,

the quantities J1 and J3 correspond to the moments of inertia in the principal axis system:

J1 = Ib and J3 = Ia. The rotational constants and the moments of inertia of the 2-iodobutane

molecule obtained after the geometry optimization step are reported in Tab. III. With these

approximations, the calculated temporal evolution of the initially created transient rotational
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distribution in the excited state is plotted in Fig. S14 for a range of rotational temperatures.

VII. BARRIERS FOR THE INTERCONVERSION OF THE CONFORMERS OF

THE 2-BUTYL RADICAL

Despite being one of the structurally simplest chiral alkyl radicals, to date, both exper-

imental and theoretical studies of the 2-butyl radical have remained scarce. Due to the

steric hindrance exerted by the methyl and the ethyl substituents, the local arrangement

around the α-carbon atom is no longer planar (as in the case of the methyl radical), and

the resulting pyramidal (”tripodal”) arrangement of the bonds creates a chiral environment.

A theoretical study [13] of the structure and the rotational barriers of the 2-butyl radical

employing unrestricted Hartree-Fock theory with the 6-31G∗-basis set predicts a total of six

equilibrium structures in its electronic ground state, which can be grouped into three pairs

of enantiomeric conformations. These are depicted as insets in Fig. S15. In all of them, the

out-of-plane bending angle around the radical center is ≈ 20◦. One of the pairs (3, 3′) has

no isolated existence because of the low rotational barrier separating it from the conformer

pair (2, 2′). Of main interest for the dissociation dynamics studied in the present work is the

(relaxed) potential energy curve associated with the variation of the torsional angle δ2 along

the C2C3C4 bonds, reproduced in Fig. S15. The rotation associated with the angle δ2 is

indicated in the inset on the right-hand side of Fig. S15. Variation of δ2 connects two twisted

carbon chains possessing P - (0 ≤ δ2 < 180◦) or M - (180◦ ≤ δ2 < 360◦) axial chirality. As δ2

is varied, the radical center undergoes multiple inversions of the chiral conformation. The

stereomutation that interchanges the two chiral enantiomers belonging to the ground-state

conformation takes place via a transition-state structure with Cs-symmetry. The barrier of

this pyramidal inversion is Ebarr ≈ 0.35 kcal/mol. As the zero-point vibrational energy EZP

of the chiral conformers (1, 1′) exceeds the energy of the Cs structure, it is expected that

rapid racemization of the initially chiral 2-butyl radical as produced by the dissociation of

2-iodobutane will take place. Therefore, the reaction product can be expected to behave as

an achiral molecule. A more rigorous analysis of this aspect is presented in the next section.
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C1 C2 C3 C4

FIG. S15: Relaxed potential energy curve of the 2-butyl radical for the rotation about the

torsion angle δ2, reproduced from Ref. [13]. The dotted line indicates the inversion of the

handedness of the carbon chain (P ↔M) around 180◦. The energies of the individual

equilibrium structures (displayed in the insets) are indicated by red circles. The energy of

the Cs-symmetric transition structure interconverting isomers 1 and 1′ is denoted by the

black dot. The absolute (R/S)-configuration of all six structures is specified as a separate

label. The inset structure in the right-top part of the figure shows the rotation associated

with variation of the dihedral angle δ2, defined by the atom chain C1C2C3C4.

VIII. LARGE-AMPLITUDE INTERNAL MOTION IN THE 2-BUTYL RADICAL

The photodissociation of the carbon-iodine bond in 2-iodobutane leads to the formation

of the 2-butyl radical, whereby the non-planar configuration of the atom groups around

the radical center C2 renders the initial product chiral. One enantiomeric conformer is

converted to the other via a large-amplitude internal motion. The aim of the current section
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is to estimate the time scale of this motion in order to evaluate the implication of the

racemization dynamics on the observed degree of circular dichroism in the course of the

dissociation process.

In our analysis, the large-amplitude dynamics is conveyed by the variation of the dihedral

angle ϕD, defined as the angle formed by the C2 − H-bond and the plane defined by the C3-,

C4-, and H4-atoms, whereby H4 is one of the three equivalent H-atoms belonging to the

terminating methyl group (cp. Fig. S16 a). Further, this torsional mode is assumed to

be separable from the remaining degrees of freedom, which are treated as frozen during

the interconversion process. Following the procedure developed by Meyer and Günthard

(cp. Ref. [14]), we arrive at the following one-dimensional effective Hamiltonian:

ĤI(ϕD) = −~2

2

1

mHr2
H sin2(βH)

d2

dϕ2
D

+ V I(ϕD). (11)

In the above, mH denotes the mass of the H-atom, rH is the H− C2 bond distance, and

βH = π − αH where αH stands for the angle between the ”active” H-atom on C2 and the

C2 − C3-axis (cp. Fig. S16 a). V I(ϕD) is the effective torsional potential, which we discuss

in the following.

The effective one-dimensional torsional potential V I(ϕD) is obtained by performing a

relaxed potential energy scan by varying the dihedral angle ϕD and optimizing the geometry

of the 2-butyl radical at each point using unrestricted second-order Møller-Plesset pertur-

bation theory (UMP2) and the cc-pVTZ basis set. The equilibrium geometry obtained with

this method is reported in terms of Cartesian coordinates in Tab. IV. The values along

the resulting potential energy curves are shown as black circles in Fig. S16 b and the curve

V I(ϕD) has been shifted such that the origin of the ordinate (energy) dimension is located

at the maximum of the potential barrier. These results do not include the contribution of

the zero-point energy associated with the remaining 3N − 7 active vibrational modes. The

equilibrium value of ϕD amounts to ϕeq
D = 27.64◦ and the height of the barrier separating

the two enantiomeric conformers is V Ib = 56.84 cm−1. The zero-point vibrational energy of

the corresponding mode is EϕD

ZPE/hc = 34.89 cm−1.

The calculated one-dimensional potential in which the torsional motion takes place is
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then approximated by an analytical expression of the form:

V I(ϕD) = 2bϕ2
D +

2∑
l=1

cl

(
e−4αlϕ

2
D − 1

)
+ d, (12)

whereby the constants b, {cl}, {αl}, and d are determined via a non-linear least-squares-

fitting procedure. The fitted values are reported in Tab. V.

Atom x y z

C 1.9719 0.0451 0.0563

C 0.5725 -0.4522 -0.0221

C -0.5640 0.5065 -0.0822

C -1.9236 -0.1650 0.0707

H 2.0699 0.8233 0.8148

H 2.6753 -0.7506 0.2920

H 2.2942 0.4929 -0.8914

H 0.3955 -1.4726 -0.3331

H -0.5370 1.0541 -1.0347

H -0.4337 1.2701 0.6900

H -2.7349 0.5581 0.0108

H -2.0759 -0.9054 -0.7137

H -1.9942 -0.6762 1.0293

TABLE IV: Optimized geometry (UMP2/cc-pVTZ) of the 2-butyl radical in Cartesian

coordinates. All distances are given in Ångstroms.

The resulting ”effective” Schrödinger equation, namely:

ĤI(ϕD) = −~2

2

1

mHr2
H sin2(βH)

d2

dϕ2
D

+ 2bϕ2
D +

2∑
l=1

cl(e
−4αlϕ

2
D − 1) + d (13)

is then solved using the discrete-variable representation (DVR) method as implemented

by Colbert and Miller [15]. Thereby, a grid consisting of 5001 points spanning the range

ϕD ∈ [−60◦, 60◦] is employed. Table VI lists the eigenvalues of the first six levels supported

by V I(ϕD), referenced to the maximum of the potential energy barrier (V Ib (ϕD)). The lowest

level (EI0 ) lies 12.40 cm−1 above the barrier. Three of these eigenlevels and the associated

vibrational eigenfunctions are indicated in Fig. S16 b.
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FIG. S16: Panel a: Schematic structure of 2-iodobutane used for the treatment of the

large-amplitude motion. Panels b and c: Potential energy curves for the torsional motion

associated with the dihedral angle ϕD calculated with the UMP2/cc-pVTZ method (black

circles). The model potentials obtained by fitting Eq. (12) to these values are shown as red

curves. Panel a: potential energy curve without ZPE correction. Panel b: potential energy

curve including the ZPE contribution. The eigenvalues and the eigenfunctions associated

with the first three levels of torsional potential are given as black and blue lines,

respectively. The full/dashed curves denote the parity of the level (positive/negative).

As a further step, the influence of the zero-point vibrational motion was estimated by

calculating the zero-point energy (ZPE) EZPE contribution associated with the remaining

3N−7 vibrational modes. The ZPE-corrected potential energy curve V IZPE(ϕD) is shown next

to the uncorrected one in panel c of Fig. S16, together with the first three energy eigenvalues

and the associated eigenfunctions. The fit parameters, obtained from fitting V IZPE(ϕD) to the

expression in Eq. (12), are presented in the two rightmost columns of Tab. V, whereas the

energies of the lowest six levels are given in the bottom row of Tab. VI. The ZPE-correction

leads to the disappearance of the double-minimum structure observed in V I(ϕD). Instead,

V IZPE(ϕD) is characterized by a single minimum located at ϕD = 0◦.

The energy separation between the lowest two states of the one-dimensional potential

V I(ϕD) is 120.96 cm−1, which corresponds to a beating period τper of ≈ 275.8 fs. If pho-

todissociation creates a coherent superposition of these two states, the stereomutation from

one enantiomer to the other would proceed in τper/2 ≈ 137.9 fs. Including the zero-point-

energy contribution increases the energy separation to 175.29 cm−1, or τper ≈ 190.3 fs. This
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V I(ϕD) V IZPE(ϕD)

Parameter Fit result Parameter Fit result

b/cm−1deg−2 0.05328(18) b/cm−1deg−2 0.0548(4)

c1/cm
−1 228.9(12) c1/cm

−1 108(13)

α1/deg
−2 0.0002580(20) α1/deg

−2 0.00042(5)

c2/cm
−1 12.7(3) c2/cm

−1 -71(15)

α2/deg
−2 0.00463(24) α2/deg

−2 0.00117(12)

d/cm−1 -1.00(17) d/cm−1 3.2(3)

RMSE 1.892 · 10−6 RMSE 4.834 · 10−6

TABLE V: Parameters for the torsional model potential V I(ϕD) (left) or V IZPE(ϕD) (right)

obtained from a non-linear least-squares fit of expression (12) to the potential energy curve

along the dihedral angle ϕD calculated with the UMP2/cc-pVTZ method. The parameter

RMSE represents the root-mean square error of the fit.

Level EI0 EI1 EI2 EI3 EI4 EI5

Eigenvalue / cm−1 12.40 133.36 365.74 664.01 1048.50 1514.24

Eigenvalue (incl. ZPE) / cm−1 87.14 262.45 487.03 792.76 1174.61 1641.34

TABLE VI: Energies corresponding to the first six eigenvalues of the torsional Hamiltonian

given in Eq. (13). For V I(ϕD), the values are referenced with respect to the maximum of

the potential energy barrier, whereas in the case of V IZPE(ϕD), the reference is set at the

minimum of the potential. The bottom row contains the results obtained after taking into

account the zero-point-energy contribution.

value of τper is significantly smaller than the duration of the photodissociation dynamics as

estimated from the time constants of the diffraction signal transients (∼ 340 fs). This fact,

together with the single-minimum structure of the ZPE-corrected potential V IZPE(ϕD) with

an equilibrium position given by a planar local geometry at the C2-atom, imply that the

initially formed chiral 2-butyl conformer will be quickly converted to a racemic structure in

the course of the photodissociation reaction, i.e. the absence of coherent stereomutation,

which is consistent with the experimental results.

27



[1] O. Kfir, E. Bordo, G. Ilan Haham, O. Lahav, A. Fleischer, and O. Cohen, Applied Physics

Letters 108, 211106 (2016).

[2] H. Eichmann, A. Egbert, S. Nolte, C. Momma, B. Wellegehausen, W. Becker, S. Long, and

J. K. McIver, Phys. Rev. A 51, R3414 (1995).

[3] J. B. Bertrand, H. J. Wörner, H.-C. Bandulet, E. Bisson, M. Spanner, J.-C. Kieffer, D. M.

Villeneuve, and P. B. Corkum, Phys. Rev. Lett. 106, 023001 (2011).

[4] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, W. Györffy,

D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler,

R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn,

F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl,

Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura,

A. Nicklass, D. P. O’Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki,

H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, and M. Wang, “MOLPRO, version 2015.1,

a package of ab initio programs,” (2015).

[5] J. M. L. Martin and A. Sundermann, The Journal of Chemical Physics 114, 3408 (2001).

[6] F. Neese, Wiley Interdisciplinary Reviews: Computational Molecular Science 8, e1327 (2017).

[7] O. Smirnova, Y. Mairesse, and S. Patchkovskii, Journal of Physics B: Atomic, Molecular and

Optical Physics 48, 234005 (2015), arXiv:1508.02890.

[8] D. Ayuso, P. Decleva, S. Patchkovskii, and O. Smirnova, Journal of Physics B: Atomic Molec-

ular and Optical Physics 51, 06LT01 (2018).

[9] D. Ayuso, P. Decleva, S. Patchkovskii, and O. Smirnova, Journal of Physics B: Atomic,

Molecular and Optical Physics 51, 124002 (2018).

[10] D. Baykusheva and H. J. Wörner, Phys. Rev. X 8, 031060 (2018).

[11] O. Schalk and A. N. Unterreiner, Phys. Chem. Chem. Phys. 12, 655 (2010).

[12] O. Schalk and P. Hockett, Chemical Physics Letters 517, 237 (2011).

[13] Y. Chen, A. Rauk, and E. Tschuikow-Roux, The Journal of Physical Chemistry 94, 6250

(1990).

[14] R. Meyer and H. H. Günthard, The Journal of Chemical Physics 49, 1510 (1968).

[15] D. T. Colbert and W. H. Miller, Journal of Chemical Physics 96, 1982 (1992).

28


