Supplementary Information

Homogeneous cobalt-catalyzed reductive amination for synthesis of functionalized primary amines

Murugesan et al

Supplementary methods

Crystal data for complex A and complex B

Crystal data for complex A: $C_{68}H_{66}B_2CoF_8P_6$, M = 1301.57, monoclinic, space group C2/c, a = 27.9413(8), b = 21.6226(6), c = 25.4121(6) Å, $\beta = 114.9250(14)^\circ$, V = 13923.1(7) Å³, T = 150(2) K, Z = 8, 101327 reflections measured, 12330 independent reflections ($R_{int} = 0.1008$), final R values ($I > 2\sigma(I)$): $R_1 = 0.0483$, $wR_2 = 0.1182$, final R values (all data): $R_1 = 0.0656$, $wR_2 = 0.1291$, 658 parameters. Contributions of co-crystallized solvent molecules were removed from the diffraction data with PLATON/ SQUEEZE (Spek, A. L. *Acta Cryst.* **2015**, *C*71, 9).

ORTEP representation of complex A.

Displacement ellipsoids corresponds to 30% probability. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Co1-P2-2.2477(9), Co1-P1 2.2672(8), Co1-P4 2.2776(8), Co1-P5 2.2789(9), Co1-P3 2.4808(9); P2-Co1-P1 83.64(3), P2-Co1-P4 93.34(3), P1-Co1-P4 152.13(4), P2-Co1-P5 175.34(4), P1-Co1-P5 97.91(3), P4-Co1-P5 83.23(3), P2-Co1-P3 83.38(3), P1-Co1-P3 102.31(3), P4-Co1-P3 104.86(3), P5-Co1-P3 100.52(3).

HRMS for Complex A: HRMS (ESI-TOF, m/z): Calcd for C68H66CoP6 [M]²⁺ 563.6466; found 563.6453.

Supplementary Figure 1. HRMS of paramagnetic complex-A

190531.f324.10.fid Kathir KM22-446 PROTON CDCl3 {C:\Bruker\TopSpin3.6.0} 1905 24

5.30 5.25 f1 (ppm) . 5.20

. 5.35 Paramagnetic susceptibility measurement preliminary results:

Entry	Measurement	Data
1	Observed paramagnetic shift	0,088 ppm (¹ H)
2	Mass susceptibility χ_m	8,92·10 ⁻¹⁰ m ³ /kg
3	Molar susceptibility χ_M	1,16·10 ⁻⁹ m ³ /mol
4	Number of unpaired electron	1

Crystal data for complex B: $C_{70}H_{72}B_2CoF_8O_3P_6$, M = 1379.64, triclinic, space group P_1 , a = 10.8798(2), b = 14.9770(3), c = 21.8175(5) Å, $\alpha = 102.2273(9)$, $\beta = 92.1113(9)$, $\gamma = 107.3687(9)^\circ$, V = 3296.88(12) Å³, T = 150(2) K, Z = 2, 39417 reflections measured, 11604 independent reflections ($R_{int} = 0.0409$), final R values ($I > 2\sigma(I)$): $R_1 = 0.0554$, $wR_2 = 0.1488$, final R values (all data): $R_1 = 0.0631$, $wR_2 = 0.1559$, 742 parameters.

CCDC 1897492-1897493 contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.

ORTEP representation of complex B.

Displacement ellipsoids corresponds to 30% probability. Hydrogen atoms are omitted for clarity. One BF₄ anion is disordered over two sites with occupancies of 0.608(5) : 0.392(5). Lower occupancy sites are depicted with open bonds. Selected bond lengths [Å] and angles [°]: Co1-O2 2.137(2), Co1-P4 2.2507(9), Co1-P5 2.2509(8), Co1-P1 2.2732(9), Co1-P2 2.2811(8), P6-O2 1.507(2), P3-O1 1.485(3); O2-Co1-P4 97.44(8), O2-Co1-P5 90.71(6), P4-Co1-P5 82.86(3), O2-Co1-P1 96.58(7), P4-Co1-P1 165.98(4), P5-Co1-P1 97.01(3), O2-Co1-P2 89.18(6), P4-Co1-P2 96.71(3), P5-Co1-P2 179.54(3), P1-Co1-P2 83.44(3).

HRMS for Complex B: HRMS (ESI-TOF, m/z): Calcd for C68H66CoP6O2 [M]²⁺ 579.6415; found 579.6400.

Supplementary Figure 4. HRMS of complex-B

Supplementary Table 1. Reductive amination of 4-methylbenzaldehyde with cobaltphosphine complexes.

1 NH ₃	Metal salt (3 r Ligand (4 m 40 bar <mark>H₂</mark> TFE, 100 °C,	nol%) pl%) 15h 2	^{NH} ² + 3	^{он} +	'```() + ,(5 5
Entry	Ligand	Conv. (%)	Yield of 2 (%)	Yield of 3 (%)	Yield of 4 (%)	Yield of 5 (%)
1 ^a	L7	>99	96	-	2	-
2 ^b	L7	60	10	-	48	-
3 ^c	L7	90	60	-	28	-
4 ^d	L7	95	88	-	5	-
5 ^e	-	20	-	-	18	-
6 ^f	L7	-	-	-	-	-
7 ^g	L7	>99	-	98	-	-
8 ^h	-	>99	96	-	2	-
9 ⁱ	-	72	-	-	70	-

Reaction conditions: ^a0.5 mmol 4-methylbenzaldehyde, 3 mol% $Co(BF_4)_2 \cdot 6H_2O$, 4 mol% triphos (L7), 5-7 bar NH₃, 40 bar H₂, 2 mL trifluoroethanol (TFE), 100 °C, 15 h, GC yields using n-hexadecane as standard. ^bSame as 'a' with 20 bar H₂. ^cSame as 'a' at 80 °C. ^dSame as 'a' with 2 mol% of catalyst. ^eSame as 'a' without ligand (L7). ^fSame as 'a' without ammonia. ^gSame as 'a' without ammonia and using 10 mol% of *t*-BuOK. ^hSame as 'a' with 3 mol% of complex **A** instead of $Co(BF_4)_2 \cdot 6H_2O$ /triphos (L7). ⁱSame as 'a' with 3 mol% of complex **B** instead of $Co(BF_4)_2 \cdot 6H_2O$ /triphos (L7).

Supplementary Table 2. Influence of solvents in reductive amination of 4methylbenzaldehyde.

Entry	Solvent	Conv. (%)	Yield of 2 (%)	Yield of 3 (%)	Yield of 4 (%)	Yield of 5 (%)
1	Toluene	10	-	-	8	-
2	THF	20	-	-	18	-
3	t-Amyl alcohol	40	-	-	35	-
4	<i>t</i> -BuOH	2	-	-	1	-
5	IPA	80	60	-	18	-
6	MeOH	90	80	-	8	-
7	Trifluoroethanol	>99	96	-	2	-

Reaction conditions: 0.5 mmol 4-methylbenzaldehyde, 3 mol% $Co(BF_4)_2 GH_2O$, 4 mol% linear triphos (L7), 5-7 bar NH₃, 40 bar H₂, 2 mL solvent, 100 °C, 15 h, GC yields using n-hexadecane as standard.

Supplementary	⁷ Table 3. Reductive	amination of 4-methy	ylbenzaldehyde	with Co- salts.
---------------	---------------------------------	----------------------	----------------	-----------------

$\frac{\text{Metal salt (3 mol%)}}{\text{Linear triphos (L7;4 mol%)}} + \frac{\text{NH}_2}{40 \text{ bar H}_2} + \frac{\text{NH}_2}{1} + \frac{NH}_2}{1} + \frac{NH}_$									
Entry	Cobalt salt	Ligand	Conv. (%)	Yield of 2 (%)	Yield of 3 (%)	Yield of 4 (%)	Yield of 5 (%)		
1	Co ₂ (CO) ₈	L7	90	68	-	20	-		
2	Co(PPh ₃) ₃ Cl	L7	95	88	-	5	-		
3	$Co(BF_4)_2 GH_2O$	L7	>99	96	-	2	-		
4	Co(acac) ₃	L7	70	-	-	68	-		
5	Co[(NH ₃)6]Cl ₃ Werner complex	L7	10	-	-	8	-		

Reaction conditions: 0.5 mmol 4-methylbenzaldehyde, 3 mol% Cobalt salt, 4 mol% linear triphos (**L7**), 5-7 bar NH₃, 40 bar H₂, 2 mL trifluoroethanol (TFE), 100 °C, 15 h, GC yields using n-hexadecane as standard.

Catalytic poisoning test

(1)	Metal salt (3 mol%) Ligand (4 mol%) NH ₃ 40 bar H ₂ TFE, 100 °C, 15h	2	^{H2} +) ОН + 3	4	1+ 🗊	₽ 5
Entry	Catalytic poison	Conv. (%)	Yield of 2 (%)	Yield of 3 (%)	Yield of 4 (%)	Yield of 5 (%)
1 ^a	Hg (2 eq)	>99	94	-	4	-
2 ^a	PPh ₃ (50 mol%)	>99	93	-	5	-
3 ^b	Hg (2 eq)	>99	96	-	2	-
4 ^b	PPh ₃ (50 mol%)	>99	95	-	3	-

Supplementary Table 4. Catalyst poisoning experiments using Hg and PPh₃.

Reaction conditions: ^a0.5 mmol 4-methylbenzaldehyde, 3 mol% complex **A**, 5-7 bar NH₃, 40 bar H₂ 2 mL trifluoroethanol (TFE), 100 °C, 15 h, GC yields using n-hexadecane as standard. ^bsame as 'a' using 120°C for 24 h.

Comparison of activities and selective of different catalysts

Comparison reactivity and selectivity of Co-triphos system with previously reported Conanoparticles and Ru-based complexes for the reductive amination to prepare primary amines

A) This work with Co-triphos catalyst

$$R_{1} = R_{2} + NH_{3} = \frac{3 \text{ mol}\% \text{ Co}(\text{BF}_{4})_{2}.6H_{2}\text{O}}{4 \text{ mol}\% \text{ Triphos} (\text{L7})} = R_{1} + \frac{NH_{2}}{40 \text{ bar } H_{2}, \text{ TFE}} = R_{1} + R_{2}$$

B) Using previously reported Co-nanoparticles (ref: Science, 2017, 358, 326-332)

B) Using Ru and Rh-based homogeneous catalysts

1	$\begin{array}{c} O \\ R_1 \\ R_2^+ \\ R_2^+ \\ R_2^+ \\ R_2^+ \\ H_3 \\ \hline \begin{array}{c} R_1(PPh_3)_3Cl_2 \\ \hline \\ 40 \text{ bar } H_2, \\ f\text{-amyl alcohol, 130 °C} \end{array} \\ \begin{array}{c} NH_2 \\ R_1 \\ R_2 \\ \hline \\ R_1 \\ R_2 \end{array}$	Nature Commun., 2018, 9, 4123.
2	$R_{1} = R_{2} + R_{3} = R_{2} + R_{3} = R_{2} + R_{2$	Adv. Synth. Catal. 2016, 358, 358.
3	$R \frown O + Aq. NH_3 \frac{[Rh(cod)Cl]_{2,} TPPTS}{65 \text{ bar } H_2, 135 \ ^\circC,} R \frown NH_2$ THF:H ₂ O, NH ₄ OAc	Org. Lett., 2002, 12, 2055.

Supplementary Table 5. Comparison of Co-triphos with previously reported Ru-complexes.

÷ شرک	• NH ₃ Catalyst 40 bar H ₂ , 100 °C, 15h	N	Н2+ 1 он +	N C]+ ()	N N
1		2	3	4		5
Entry	Catalyst	Conv. (%)	Yield of 2 (%)	Yield of 3 (%)	Yield of 4 (%)	Yield of 5 (%)
1 ^A	Co-triphos(2019) This work	>99	96	-	2	-
2 ^B	Ru (2018) <i>Nature Commun.,</i> 2018 , 9, 4123	72	-	-	70	-
3 ^c	Ru (2016) Adv. Synth. Catal. 2016 , 358, 358	>99	30	-	68	-

Reaction conditions: ^A0.5 mmol 4-methyl benzaldehyde, 3 mol% $Co(BF_4)_2 GH_2O$, 4 mol% triphos (L7), 5-7 bar NH₃, 40 bar H₂, 2 mL trifluoroethanol (TFE), 100 °C, 15 h. ^B0.5 mmol 4-methyl benzaldehyde, 2 mol% $RuCl_2(PPh_3)_3$, 5-7 bar NH₃, 40 bar H₂, 2 mL *t*-amyl alcohol, 100 °C, 15 h. ^C0.5 mmol 4-methyl benzaldehyde, 1 mol% $Ru(Co)CIH(PPh_3)_3$, 1.1 mol% dppe (L4), Al(OTf)₃10 mol%, 5-7 bar NH₃, 40 bar H₂, 2 mL Toluene, 100 °C, 15 h GC yields using n-hexadecane as standard. Products 3 and 5 are not detected.

DFT calculation

Cationic hydride [L7CoH]⁺ as active catalyst (Supplementary Figure 5): For Ph-CH=NH hydrogenation, the hydride mechanism starting with [L7CoH]⁺ species (I) in gas phase, in TFE solution and in TFE solution including GD3BJ dispersion was computed for comparison.

Supplementary Figure 5. Proposed mechanism for Ph–CH=NH hydrogenation by using [L7CoH]⁺ as active catalyst through the *fac-* and *mer-*route.

Cationic hydride [L7CoH]⁺ catalyzed cycle in gas phase (Supplementary Figure 6): As shown in Supplementary Figure 5, the proposed active catalyst has two conformations, i.e.; *mer-I* and *fac-I*; and therefore we computed the reaction mechanisms using both conformers. In gas phase, complex *mer-I* is more stable than complex *fac-I* by 31 kJ/mol. Starting from the *mer-I*, the coordination of Ph–CH=NH to form the σ -complex is endergonic by 1 kJ/mol for *mer-II-LP*, while exergonic by 4 kJ/mol for *fac-II-LP*. The formation of π -complex *fac-II-π* is endergonic by 40 kJ/mol, while *mer-II-LP* could not be located. The Gibbs free energy barrier of Ph–CH=NH insertion into I is 112 and 39 kJ/mol for *mer-TS1* and *fac-TS1*, respectively. Thus, the Ph–CH=NH insertion into I from π -complex *fac-II-π* is barrier-less. The formation of intermediate III with agostic interaction is endergonic by 108 and 24 kJ/mol for *mer-III* and *fac-III*, respectively.

Supplementary Figure 6. Gibbs free energy surface for Ph–CH=NH hydrogenation by using [L7CoH]⁺ as catalyst through *fac-* and *mer-*route in gas phase at B3PW91/TZVP level.

In the second step, H₂ coordination to form **IV** is endergonic by 52 and 62 kJ/mol for *mer*-**IV** and *fac*-**IV**, respectively. The final step of H₂ metathesis has Gibbs free energy barrier of 138 and 96 kJ/mol for *mer*-**TS2** and *fac*-**TS2**, respectively. The formation of **V** is exergonic by 31 and 57 kJ/mol for *mer*-**V** and *fac*-**V**, respectively. The release of amine from complex *mer*-**V** and *fac*-**V** with the regeneration of *mer*-**I** is exergonic by 48 kJ/mol. The transition state of H₂ metathesis represents the highest point on the Gibbs free energy surface and is therefore rate-determining transition state. On the basis of whole Gibbs free energy surface, the apparent Gibbs free energy barrier is 96 kJ/mol and 138 kJ/mol for *fac-* and *mer*-route, respectively. Under the consideration of the isomerization of both conformers and the Curtin–Hammett principle which states that for a reaction with two active intermediate under rapid equilibrium interconversion with low barrier and each intermediate has its own rate-determining transition state, the energy difference of the two rate-determining transition states rather than the equilibrium distribution of the two intermediates determines the product distribution (or selectivity), it is therefore to conclude that the *fac*-route with lower apparent barrier is more preferred kinetically.

Cationic hydride [L7CoH]⁺ catalyzed cycle in TFE solution (Supplementary Figure 7): As shown in Supplementary Figure 7, the potential free energy surfaces in gas phase and in solution are very similar. In TFE solution, complex *mer-I* is more stable than complex *fac-I* by 33 kJ/mol. Starting from the *mer-I*, the coordination of Ph-CH=NH to form the σ -complex is endergonic by 28 and 32 kJ/mol for *mer-II-LP* and *fac-II-LP*, respectively. The formation of π -complex *fac-II-m* is endergonic by 72 kJ/mol. The Gibbs free energy barrier of Ph-CH=NH insertion into I is 130 and 71 kJ/mol for *mer-TS1* and *fac-TS1*, respectively. The formation of intermediate III with agostic interaction is endergonic by 121 and 50 kJ/mol for *mer-III* and *fac-III*, respectively.

Supplementary Figure 7. Gibbs free energy surface for Ph–CH=NH hydrogenation by using [L7CoH]⁺ as catalyst through *fac-* and *mer-*route in TFE at B3PW91-SMD/Def2-TZVP//B3PW91/TZVP level.

In the second step, H_2 coordination to form IV is exergonic by 72 and 71 kJ/mol for *mer-IV* and *fac-IV*, respectively. The final step of H2 metathsis has Gibbs free energy barrier of 149 and 108 kJ/mol for *mer-TS2* and *fac-TS2*, respectively. The formation of V is exergonic by 16 and 40 kJ/mol for *mer-V* and *fac-V*, respectively. The release of amine from complex *mer-V* and *fac-V* with the regeneration of *mer-I* is exergonic 59 kJ/mol. Similar as in gas phase, the transition state of H_2 metathesis represents the highest point on the Gibbs free energy surface and is therefore rate-determining transition state. On the basis of whole Gibbs free energy surface, the apparent Gibbs free energy barrier is 108 and 149 kJ/mol for *fac-* and *mer*-route, respectively. Therefore, the *fac-*route is more favored kinetically.

Cationic hydride [L7CoH]⁺ catalyzed cycle in TFE solution with dispersion (Supplementary Figure 8): Furthermore, the dispersion energies have been included by single point calculation. As shown in Supplementary Figure 8, the potential free energy surfaces in solution including dispersion correction shows the same trend and shape as found in gas phase and in solution, but they differ quantitatively in numbers.

It is found that the *mer-I* is more stable than the *fac-I* by 22 kJ/mol, and the *fac-*route has lower apparent barrier than *mer*-route (29 vs. 65 kJ/mol). This agrees qualitatively with the results in Supplementary Figure 6; but they differ quantitatively, especially in the rate-determining energy, i.e.; from 108 kJ/mol without dispersion correction to 29 kJ/mol with dispersion correction. On the basis of the applied reaction conditions (100-120°C, 40 bar H₂ and 15-24 h reaction time), GD3BJ correction underestimates extremely the barriers and that without dispersion correction is very reasonably.

Supplementary Figure 8. Gibbs free energy surface for Ph–CH=NH hydrogenation by using [L7CoH]⁺ as catalyst through *fac-* and *mer*-route in TFE with GD3BJ dispersion at B3PW91-SMD-D3/Def2-TZVP//B3PW91/TZVP level.

Di-cationic $[L7Co(H)_2]^{2+}$ as active catalyst: Alternatively, we computed the di-cationic complex from the dissociation of one ligand and the addition of one H₂ in gas phase, in TFE solution with and without GD3BJ dispersion. As shown in Supplementary Figure 9, the proposed active catalyst has two conformations, i.e.; *mer-I* and *fac-I*; and therefore we computed the reaction mechanisms using both conformers.

Supplementary Figure 9. Proposed reaction mechanism for for Ph–CH=NH hydrogenation by using $[L7Co(H_2)]^{2+}$ as active catalyst through the *fac* and *mer* routes.

Di-cationic $[L7Co(H)_2]^{2+}$ catalyzed cycle in gas phase (Supplementary Figure 10): Starting from *mer*-[L7Co]²⁺, H₂ coordination to form di-cationic $[L7Co(H)_2]^{2+}$ I' complex is exergonic by 24 kJ/mol for *mer*-I', while endergonic by 23 kJ/mol for *fac*-I'. Therefore, we used *mer*-I' as reference and both *fac*-I' and *mer*-I' based catalytic cycles were calculated.

Starting from the *mer*-I', the coordination of Ph-CH=NH to form the σ-complex II' is exergonic by 10 and 42 kJ/mol for *mer*-I' and *fac*-I', respectively. The Gibbs free energy barrier of Ph-CH=NH insertion into II' is 170 and 128 kJ/mol for *mer*- and *fac*-route, respectively. The formation of intermediate III' is endergonic by 76 and 104 kJ/mol for *mer*-III' and *fac*-III', respectively.

Supplementary Figure 10. Gibbs free energy surface for Ph–CH=NH hydrogenation by using [L7CoH₂]²⁺ as catalyst through *fac-* and *mer-*route in gas phase at B3PW91/TZVP level

In the second step, the PhCH₂NH₂ can be generated through either the direct route of reductive elimination or the metathesis of the second molecular of H₂. For the direct reductive elimination route, the reductive elimination through transition state of **TS2'** has an energy barrier of 86 and 128 kJ/mol for *mer* and *fac*-route, respectively. The formation of amine complex **IV'** is exergonic by 139 and 65 kJ/mol for *mer*-IV' and *fac*-IV', respectively. The release of PhCH₂NH₂ from complex **IV'** and coordination of H₂ with the regeneration of *mer*-I' is exergonic by 48 kJ/mol.

For the H₂ metathesis route, the H₂ coordination to the amine intermediate to form V' is endergonic by 101 and 120 kJ/mol for *mer*-V' and *fac*-V'. The final step of H₂ metathesis has Gibbs free energy barrier of 183 and 165 kJ/mol for *mer*-TS3' and *fac*-TS3', respectively. The formation of amine complex VI' is exergonic by 81 and 67 kJ/mol for *mer*-VI' and *fac*-VI', respectively. The release of amine from complex VI' with the regeneration of *mer*-I' is endergonic by 48 kJ/mol. Therefore, the direct reductive elimination route is more favorable than the H₂ metathesis route. The transition state of the first step represents the highest point on the Gibbs free energy surface and the apparent Gibbs free energy barrier is 170 and 128 kJ/mol for *mer*- and *fac*-route, respectively. It is noted that these barriers are much higher than those of the mono-cationic complex by 32 kJ/mol; and such di-cationic routes are unlikely.

Di-cationic $[L7Co(H_2)]^{2+}$ catalyzed cycle in TFE (Supplementary Figure 11): Nevertheless, the dicationic routes in solution have been also computed for comparison. Starting from *mer*-[L7Co]²⁺, H₂ coordination is exergonic by 5 kJ/mol for *mer*-I', while endergonic by 47 kJ/mol for *fac*-I'. Similar as in gas phase, we also use *mer*-I' as reference and both *fac*-I' and *mer*-I' based catalytic cycles were calculated.

Starting from the *mer-I*', the coordination of Ph-CH=NH to form the σ-complex **II'** is endergonic by 56 and 35 kJ/mol for *mer-II*' and *fac-II*', respectively. The Gibbs free energy barrier of Ph-CH=NH insertion into **II'** is 248 and 200 kJ/mol for *mer-* and *fac*-route, respectively. The formation of intermediate **III'** is endergonic by 144 and 176 kJ/mol for *mer-II*' and *fac-II*', respectively.

In the second step, the PhCH₂NH₂ can be directly generated through either the reductive elimination or metathesis of the second molecular of H₂. For the direct route, the reductive elimination through transition state of **TS2'** has an energy barrier of 154 and 212 kJ/mol for *mer* and *fac* route, respectively. The formation of amine complex **IV'** is exergonic by 89 and 6 kJ/mol for *mer*-**IV'** and *fac*-**IV'**, respectively. The release of PhCH₂NH₂ from complex **IV'** and coordination of H₂ with the regeneration of *mer*-**I'** is exergonic by 59 kJ/mol. For the H₂ metathesis route, the H₂ coordination to the amine intermediate to form **V'** is endergonic by 158 and 180 kJ/mol for *mer*-**V'** and *fac*-**V'**, respectively. The final step of hydrogenolysis has Gibbs free energy barrier of 242 and 236 kJ/mol for *mer*-**TS3'** and *fac*-**TS3'**, respectively. The formation of amine complex **VI'** is exergonic by 29 and 23 kJ/mol for *mer*-**VI'** and *fac*-**VI'**, respectively. The release of *mer*-**II'** is exergonic by 59 kJ/mol. In TFE solution, the direct route is more favorable than the H₂ metathesis route, and the apparent Gibbs free energy barrier is 248 and 212 kJ/mol for *mer*- and *fac*-route, respectively. It is noted that these barriers are much higher than those of the mono-cationic complex by more than 100 kJ/mol and can be ruled out.

Supplementary Figure 11. Gibbs free energy surface for Ph–CH=NH hydrogenation by using $[L7Co^{II}-H_2]^{2+}$ as catalyst through *fac-* and *mer-*route in TFE at B3PW91-SMD/Def2-TZVP//B3PW91/TZVP level.

Di-cationic [L7Co^{II}-H₂]²⁺ catalyzed cycle in TFE with GD3BJ dispersion (Supplementary Figure 12): Nevertheless, we included dispersion correction (GD3BJ) in the di-cationic cycle (Supplementary Figure 12). Although both potential energy surfaces are similar, but they differ quantitatively, especially in the apparent barriers, i.e.; dispersion correction lowers the barrier by 90 kJ/mol for *fac*-route. However, these barriers are still much higher than that of mon-ocationic route by 93 kJ/mol for *fac*-route.

Supplementary Figure 12. Gibbs free energy surface for Ph–CH=NH hydrogenation by using $[L7Co(H_2)]^{2+}$ as catalyst through *fac-* and *mer-*route in TFE with GD3BJ dispersion at B3PW91-SMD-D3/Def2-TZVP//B3PW91/TZVP level.

All these show that the di-cationic route is unlikely and can be discarded. On the basis of the applied reaction conditions (100-120°C, 40 bar H_2 and 15-24 h reaction time), the result with GD3BJ correction is extremely underestimated, and that without dispersion correction is very reasonably.

Supplementary Table 6. Computed total energies (au), enthalpy and free energy correction (au, 298 K) in gas phase at B3PW91/TZVP level as well as single-point total energies in TFE solution without (B3PW91-SMD/Def2-TZVP//B3PW91/TZVP) and with dispersion correction (B3PW91-SMD-D3/Def2-TZVP//B3PW91/TZVP)

)				
	E (B3PW91)	H (298.15)	G (298.15)	E (B3PW91 -SMD)	E(B3PW91- SMD-D3)
H ₂	-1.178635 ZEP=0.010064	-1.165267	-1.180065	-1.1760136	-1.1761507
PhCHNH	-325.672112 ZPE= 0.122318	-325.542363	-325.580491	-325.6925958	-325.7188601
PhCH ₂ NH ₂	-326.893012 ZPE= 0.145907	-326.738958	-326.778881	-326.9119766	-326.9404524
PPPh ₂ PPC Ph_2 Ph_2 H	-3722.608459 ZPE= 0.581492	-3721.989757	-3722.101071	-3722.764375	-3722.990356
$ \begin{array}{c} $	-4048.319178 ZPE= 0.706932	-4047.56758	-4047.695044	-4048.478273	-4048.760476
PPh ₂ P ⁻ -Ph NH Ph ₂ H - Ph H fac-IIπ	-4048.302943 ZPE= 0.706337	-4047.551964	-4047.678325	-4048.46373	-4048.747175
Pr-Ph Pr-Ph Ph Ph Ph2 H ⁻ C ⁻ Ph H fac-TS1	-4048.302818 NImag = 1 (-269.2732) ZPE= 0.705561	-4047.553118	-4047.678577	-4048.46391	-4048.747293
PPh ₂ P ₂ Ph P ₂ Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph	-4048.310216 ZPE= 0.708453	-4047.557395	-4047.684535	-4048.473294	-4048.753119
$PPh_{2} \rightarrow PPh_{2} Ph_{2} Ph_$	-4049.493227 ZPE= 0.726734	-4048.721026	-4048.849953	-4049.657233	-4049.937379
PPh ₂ Pr-Ph H Ph Pr-C-H Ph ₂ H-H H Ph ₂ H-H H fac-TS2	-4049.476194 NImag = 1 (-1074.276) ZPE= 0.724539	-4048.706423	-4048.83689	-4049.639005	-4049.918162
$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	-4049.539322 ZPE= 0.730649	-4048.763122	-4048.895347	-4049.700409	-4049.983921
Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph	-3722.621223 ZPE= 0.581333	-3722.003702	-3722.112995	-3722.776849	-3722.999503
Ph → PCo PCo H Ph ₂ × H Ph ₂ × H Ph ₂ × H Ph ₂ × Ph ₂ × P	-4048.313283 ZPE= 0.705403	-4047.562847	-4047.693005	-4048.476241	-4048.753658

Ph T+	-4048.276617	-4047.527011	-4047.650746	-4048.442854	-4048.72985
P PPh ₂	NImag = 1				
P H	(-550.8865)				
H ^{Pn} 2 H C-Ph	ZPE= 0.70575				
H mer-TS1					
Ph T+	-4048.278815	-4047.526748	-4047.652172	-4048.446966	-4048.73243
P PPh ₂	ZPE= 0.707909				
Ph ₂ N-C-Ph					
mer-III					
Ph H₂ □⊕	-4049.495158	-4048.723408	-4048.853718	-4049.655023	-4049.939281
	ZPE= 0.726195				
Pho N-C-Ph					
mer-IV					
Ph_H	-4049.46281	-4048.69229	-4048.821171	-4049.62604	-4049.906983
	NImag = 1				
P N C Ph	(-428.622)				
mer-TS2	ZPE= 0.725517				
Ph H □⊕	-4049.531299	-4048.755594	-4048.885368	-4049.692908	-4049.976893
P PPh ₂	ZPE= 0.730363				
Pn ₂ ¹¹² H mer-V					
►PPh _a ²⁺	-3721.687621	-3721.078652	-3721.185945	-3722.016732	-3722.237035
	ZPE= 0.573398				
E Co					
Ph ₂ fac-L					
►PPh ₂ ²⁺	-3722.893052	-3722.26431	-3722.37703	-3723.207984	-3723.438305
P,	ZPE= 0.590774				
P-Co					
Pn ₂ ¹² fac-l'					
►PPh ₂ ²⁺	-4048.622782	-4047.860737	-4047.991438	-4048.927496	-4049.207308
P, Ph	ZPE= 0.716541				
P-CoN=C H H					
Рп ₂ Н ₂ <i>fac-</i> ll'					
PPh2 2+,‡	-4048.558113	-4047.80057	-4047.926839	-4048.864612	-4049.151449
	NImag = 1				
	(-783.6629)				
''' ² □ ⁻ -H´ ¦ H	ZPE= 0.712849				
PPh. 2+	-4048 571601	-4047 80831	-4047 935861	-4048 878149	-4049 165413
	ZPE= 0.718514		-0-7.555001	-0-0.070145	10131103413
P Co-NH C Ph					
Ph ₂ H ī`H H					
DDh_ 2+.‡	-4048 55908	-4047 797497	-4047 926664	-4048 861183	-4049 152144
P_{-} -Ph	NImag = 1		1017.520004	10 10.001105	10 19 19 21 44
Co H Ph	(-1039.2811)				
Ph ₂ H ^C -H	ZPE= 0.716868				
fac-TS2'					
PPh ₂ ²⁺	-4048.640422	-4047.871356	-4048.000142	-4048.952259	-4049.238638
	ZPE= 0.723941				
P Ph ₂ C-Ph					
н ^{́н} <i>fac-</i> IV'					
	1	1	1	1	

PPh2 2+	-4049.765492	-4048.983446	-4049.10977	-4050.071271	-4050.364214
Pr-Ph H Ph Co-N-C-H	ZPE= 0.737105				
$P + H_2 + H_2$ H Ph ₂ H					
fac-V'	4040 74176	4048.05268	4040.000576	4050 042259	4050 222226
P_{-} P_{-	-4049.74176 NImag = 1	-4048.96368	-4049.092576	-4050.043258	-4050.333326
	(-1631.6038)				
fac-TS3'	ZPE= 0.733016				
PPh_2 $2+$	-4049.837067	-4049.050299	-4049.181257	-4050.148618	-4050.434024
	ZPE= 0.740871				
Ph ₂ H ₂ fac-VI'					
Ph 72+	-3721.70554	-3721.094497	-3721.205948	-3722.034983	-3722.258357
P Co P	ZPE= 0.574096				
Ph ₂					
Ph 2+	-3722.912552	-3722.283629	-3722.39503	-3723.229184	-3723.459504
	ZPE= 0.591451				
P* H ₂ Ph ₂					
mer-l'	4040 (12052	4047 054044	4047 070402	4040 022740	4040 240242
P PPh ₂	-4048.613953 7PF= 0 716863	-4047.851941	-4047.979482	-4048.922719	-4049.210212
	21 2 0.7 10000				
C-Ph					
mer-II'	4040 540004	40.47 70.4070	4047.040507	4040.046026	1010 1000 10
PPh2	-4048.542301 NImag = 1	-4047.784879	-4047.910597	-4048.846926	-4049.139242
Pr H Pha N.	(-936.241)				
H CÉPh H	ZPE= 0.713021				
<i>mer-</i> TS1' 2+	-4048 581321	-4047 818248	-4047 946711	-4048 889566	-4049 170999
P PPh2	ZPE= 0.718141	4047.010240	4047.540711	4040.005500	4045.170555
Ph ₂ N H					
H Y-Ph H					
mer-III'		4047.014012	4047.042074	4040.00470	4040 464042
P PPh2	-4048.576581	-4047.814912	-4047.942871	-4048.88478	-4049.164912
	(-743.6983)				
	ZPE= 0.716974				
H <i>mer</i> -TS2'					
	-4048.667635	-4047.898377	-4048.028576	-4048.982473	-4049.259786
	ZPE= 0.724234				
Ph ₂ H ₂ C(Ph H					
	-4040 767600		-4040 117094	-4050 074249	-4050 264229
	ZPE= 0.73514	-4040.300033	-4045.117004	-4030.074246	-4030.304338
Ph ₂ N C Ph					
™ mer-V'					
	-4049.736521	-4048.958439	-4049.085808	-4050.042746	-4050.329564
	NIMAG = 1				
Ph ₂ N H C-H	ZPE= 0.733173				
H ^{Ph}					
mer-183					

Ph2+	-4049.84419	-4049.057604	-4049.186566	-4050.152587	-4050.437748
P PPh2	ZPE= 0.74083				
Ph ₂ N_C_Ph					
H mer-VI'					

NMR Data

p-tolylmethanamine hydrochloride

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.61 (br s, 3H), 7.40 (d, *J* = 8.2 Hz, 2H), 7.20 (d, *J* = 7.6 Hz, 2H), 3.94 (s, 2H), 2.30 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 138.11 , 131.54 , 129.47 , 129.43 , 42.30 , 21.22 . White solid.

(4-(tert-butyl)phenyl)methanamine hydrochloride

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.60 (br s, 3H), 7.52 – 7.30 (m, 4H), 3.95 (s, 2H), 1.27 (s, 9H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 151.32 , 131.63 , 129.25 , 125.72 , 42.22 , 34.79 , 31.54 . White solid.

(4-methoxyphenyl)methanamine hydrochloride

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.56 (br s, 3H), 7.45 (d, *J* = 8.8 Hz, 2H), 6.95 (d, *J* = 8.7 Hz, 2H), 3.92 (s, 2H), 3.75 (s, 3H). ¹³C NMR (101 MHz, DMSO-d6) δ 159.74, 131.03, 126.47, 114.31, 55.65, 42.04. White solid.

(3,4,5-trimethoxyphenyl)methanamine hydrochloride

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.68 (br s, 3H), 6.97 (s, 2H), 3.93 (s, 2H), 3.78 (s, 6H), 3.65 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 153.22, 137.70, 130.08, 107.04, 60.46, 56.48, 42.83. Off white solid.

(4-fluorophenyl)methanamine hydrochloride

NH₃⁺Cl[−]

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.68 (br s, 3H), 7.75 – 7.44 (m, 2H), 7.41 – 7.01 (m, 2H), 3.99 (s, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.49 (d, *J* = 244.5 Hz), 131.87 (d, *J* = 8.4 Hz), 130.88 (d,

24

J = 3.1 Hz), 115.75 (d, J = 21.5 Hz), 41.78 · ¹⁹F NMR (282 MHz, DMSO- d_6) δ -113.77 · White solid.

(4-(trifluoromethyl)phenyl)methanamine hydrochloride

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.81 (br s, 3H), 7.96 – 7.56 (m, 4H), 4.13 (s, 2H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 139.30 , 130.27 , 129.26 (q, *J* = 31.9 Hz), 125.74 (q, *J* = 3.7 Hz),124.58 (q, *J* = 272.2 Hz), 41.99 . ¹⁹F NMR (282 MHz, DMSO-*d*₆) δ -61.14 .White solid.

(4-chlorophenyl)methanamine hydrochloride

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.72 (br s, 3H), 7.60 – 7.53 (m, 2H), 7.51 – 7.45 (m, 2H), 4.01 (s, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 133.59 , 133.52 , 131.50 , 128.90 , 41.81 . White solid.

(4-(trifluoromethoxy)phenyl)methanamine hydrochloride

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.70 (br s, 3H), 7.69 (d, J = 8.7 Hz, 2H), 7.41 (d, J = 7.8 Hz, 2H), 4.05 (s, 2H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 148.70 , 134.07 , 131.67 , 121.52 , 120.48 (q, J = 256.3 Hz), 41.76 . ¹⁹F NMR (282 MHz, DMSO-*d*₆) δ -56.91 . Off white solid.

naphthalen-1-ylmethanamine hydrochloride

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.79 (br s, 3H), 8.26 – 8.09 (m, 1H), 8.07 – 7.90 (m, 2H), 7.77 – 7.48 (m, 4H), 4.51 (s, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 133.65 , 131.12 , 130.46 , 129.43 , 129.08 , 127.72 , 127.19 , 126.66 , 125.81 , 123.95 , 40.61 . Pale brown solid.

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.49 (br s, 3H), 7.21 – 6.63 (m, 3H), 3.90 (s, 2H), 3.81 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 148.27, 146.87, 126.82, 120.45, 116.84, 112.51, 56.15, 42.32. Brown solid.

(4-(methylthio)phenyl)methanamine hydrochloride

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.03 (br s, 3H), 7.46 (d, *J* = 8.3 Hz, 2H), 7.27 (d, *J* = 8.3 Hz, 2H), 3.95 (s, 2H), 2.46 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 138.95 , 130.92 , 130.17 , 126.21 , 42.11 , 15.13 . Brown solid.

(E)-(4-styrylphenyl)methanamine hydrochloride

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.62 (br s, 3H), 7.72 – 7.57 (m, 4H), 7.53 (d, *J* = 7.9 Hz, 2H), 7.45 – 7.32 (m, 3H), 7.33 – 7.20 (m, 2H), 4.00 (s, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 137.59, 137.31, 133.76, 129.86, 129.45, 129.40, 129.20, 128.26, 128.22, 127.00, 42.37. Yellow solid.

(4-(benzyloxy)phenyl)methanamine hydrochloride

¹**H NMR (300 MHz, DMSO-***d*₆**)** δ 8.58 (br s, 3H), 7.48 – 7.27 (m, 7H), 7.02 (d, *J* = 8.7 Hz, 2H), 5.12 (s, 2H), 3.91 (s, 2H). ¹³**C NMR (75 MHz, DMSO-***d*₆**)** δ 158.74 , 137.41 , 131.06 , 128.90 , 128.29 , 128.08 , 126.70 , 115.23 , 69.61 , 42.03 . Off white solid.

(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)methanamine hydrochloride

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.61 (br s, 3H), 7.69 (d, *J* = 7.9 Hz, 2H), 7.52 (d, *J* = 8.0 Hz, 2H), 4.02 (s, 2H), 1.30 (s, 12H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 137.85, 134.96, 129.42, 128.77, 84.22, 42.50, 25.13. White solid.

benzo[d][1,3]dioxol-5-ylmethanamine hydrochloride

NH₃⁺Cl⁻

¹**H NMR (400 MHz, DMSO-***d*₆) δ 8.57 (s, 3H), 7.16 (dd, *J* = 1.7, 0.5 Hz, 1H), 6.98 (dd, *J* = 8.0, 1.7 Hz, 1H), 6.93 (dd, *J* = 8.0, 0.4 Hz, 1H), 6.03 (s, 2H), 3.90 (s, 2H).

 13 C NMR (101 MHz, DMSO-*d*₆) δ 147.69 , 147.67 , 128.17 , 123.35 , 109.99 , 108.65 , 101.63 , 42.37 . Off white solid.

(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methanamine hydrochloride

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.29 (br s, 3H), 7.07 (d, *J* = 2.1 Hz, 1H), 6.96 (dd, *J* = 8.3, 2.1 Hz, 1H), 6.85 (d, *J* = 8.2 Hz, 1H), 4.23 (s, 4H), 3.86 (s, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 143.91, 143.57, 127.45, 122.54, 118.40, 117.45, 64.56, 64.52, 42.05. Off white solid.

(benzo[d][1,3]dioxol-5-yl)-2-methylpropan-1-amine hydrochloride

¹H NMR (400 MHz, DMSO-*d*₆) \bar{o} 8.30 (br s, 3H), 6.88 – 6.72 (m, 2H), 6.63 (dd, *J* = 8.0, 1.6 Hz, 1H), 5.95 (s, 2H), 2.77 – 2.54 (m, 3H), 2.28 (dd, *J* = 13.5, 8.3 Hz, 1H), 2.08 – 1.96 (m, 1H), 0.85 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) \bar{o} 147.58 , 145.86 , 133.85 , 122.38 , 109.74 , 108.43 , 101.13 , 44.25 , 39.72 , 33.72 , 17.31 . Pale brown solid.

(4-((2-chloro-6-fluorobenzyl)oxy)-3-methoxyphenyl)methanamine hydrochloride

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.55 (br s, 3H), 7.56 – 7.46 (m, 1H), 7.42 (dd, J = 8.1, 1.2 Hz, 1H), 7.35 – 7.27 (m, 2H), 7.13 (d, J = 8.2 Hz, 1H), 7.03 (dd, J = 8.2, 2.0 Hz, 1H), 5.13 (s, 2H), 3.95 (s, 2H), 3.75 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 161.94 (d, J = 250.0 Hz), 149.53 , 148.10 , 136.00 (d, J = 5.2 Hz), 132.29 (d, J = 9.9 Hz), 127.92 , 126.18 (d, J = 3.2 Hz), 122.49 (d, J = 17.9 Hz), 121.85 , 115.23 (d, J = 22.4 Hz), 114.14, 113.97, 62.16 , 56.08 , 42.47 . ¹⁹F NMR (282 MHz, DMSO-*d*₆) δ -113.48 . Off white solid.

[1,1'-biphenyl]-4-ylmethanamine hydrochloride

NH₃⁺CI⁻

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.75 (br s, 3H), 7.74 – 7.61 (m, 6H), 7.50 – 7.43 (m, 2H), 7.41 – 7.33 (m, 1H), 4.06 (s, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 140.59 , 139.99 , 133.74 , 130.12 , 129.45 , 128.12 , 127.19 , 127.14 , 42.26 . Off white solid.

3-(4-(tert-butyl)phenyl)-2-methylpropan-1-amine hydrochloride

NH₃⁺Cl⁻

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.36 (br s, 3H), 7.34 (d, *J* = 8.2 Hz, 2H), 7.17 (d, *J* = 8.2 Hz, 2H), 2.85 – 2.60 (m, 3H), 2.39 (dd, *J* = 13.4, 8.3 Hz, 1H), 2.20 – 2.03 (m, 1H), 1.29 (s, 9H), 0.92 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 148.65 , 136.95 , 129.16 , 125.39 , 49.06 , 44.38 , 34.50 , 33.54 , 31.65 , 17.46 . Pale brown solid.

2-phenylpropan-1-amine hydrochloride

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.17 (br s, 3H), 7.47 – 7.03 (m, 5H), 3.71 – 3.62 (m, 1H) 2.88 – 2.74 (m, 1H), 2.74 – 2.62 (m, 1H), 1.86 (q, *J* = 7.7 Hz, 2H), 1.18 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 146.28 , 128.93 , 127.24 , 126.69 , 37.79 , 36.84 , 35.44 , 22.49 . Off white solid.

1-(3-methoxyphenyl)ethan-1- amine hydrochloride

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.35 (br s, 3H), 7.37 – 7.25 (m, 1H), 7.23 (dd, J = 2.7, 1.6 Hz, 1H), 7.14 – 7.04 (m, 1H), 6.91 (ddd, J = 8.3, 2.6, 0.9 Hz, 1H), 4.33 (q, J = 6.8 Hz, 1H), 3.77 (s, 3H), 1.52 (d, J = 6.7 Hz, 3H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 159.85 , 141.55 , 130.18 , 119.34 , 114.19 , 113.05 , 55.70 , 50.48 , 21.37 . White solid.

1-(4-fluorophenyl)ethan-1- amine hydrochloride

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.75 (br s, 3H), 7.77 – 7.47 (m, 2H), 7.37 – 7.01 (m, 2H), 4.46 – 4.35 (m, 1H), 1.52 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.34 (d, J = 244.4 Hz), 136.19 (d, J = 3.0 Hz), 129.71 (d, J = 8.3 Hz), 115.85 (d, J = 21.4 Hz), 49.80 , 21.25 . ¹⁹F NMR (282 MHz, DMSO-*d*₆) δ -113.92 . Brown solid.

1-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine hydrochloride

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.66 (br s, 3H), 7.21 (d, *J* = 1.7 Hz, 1H), 7.00 (dd, *J* = 8.1, 1.7 Hz, 1H), 6.91 (d, *J* = 8.0 Hz, 1H), 6.02 (s, 2H), 4.50 - 4.09 (m, 1H), 1.49 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 147.82, 147.53, 133.69, 121.11, 108.65, 107.85, 101.64, 50.35, 21.29. Off white solid.

1-(4-(methylthio)phenyl)ethan-1-amine hydrochloride

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.61 (br s, 3H), 7.49 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 4.53 - 4.20 (m, 1H), 2.47 (s, 3H), 1.51 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 138.87, 136.37, 128.06, 126.44, 50.09, 21.25, 15.28. Brown solid.

1-(4-(methylsulfonyl)phenyl)ethan-1-amine hydrochloride

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.87 (br s, 3H), 7.98 (d, *J* = 8.5 Hz, 2H), 7.84 (d, *J* = 8.4 Hz, 2H), 4.67 - 4.28 (m, 1H), 3.24 (s, 3H), 1.55 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 145.49 , 141.07 , 128.45 , 127.74 , 50.04 , 43.86 , 21.12 . Pale brown solid.

4-(3-aminobutyl)phenol

¹H NMR (400 MHz, DMSO-*d*₆) δ 6.98 (d, *J* = 8.4 Hz, 2H), 6.68 (d, *J* = 8.4 Hz, 2H), 6.56 – 6.30 (m, 3H), 2.97 – 2.82 (m, 1H), 2.52 – 2.49 (m, 2H), 1.81 – 1.40 (m, 2H), 1.10 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 155.87 , 132.04 , 129.44 , 115.57 , 46.57 , 39.51 , 31.07 , 21.40 . Brown solid.

4-(4-hydroxy-3-methoxyphenyl)butan-2-amine hydrochloride

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.27 (br s, 3H), 6.84 (d, *J* = 1.9 Hz, 1H), 6.78 (d, *J* = 8.0 Hz, 1H), 6.64 (dd, *J* = 8.0, 1.9 Hz, 1H), 3.79 (s, 3H), 3.26 – 2.95 (m, 1H), 2.65 – 2.57 (m, 2H), 2.07 – 1.87 (m, 1H), 1.87 – 1.60 (m, 1H), 1.28 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 147.91 , 145.12 , 132.11 , 120.71 , 115.84 , 112.93 , 56.04 , 46.87 , 36.50 , 30.86 , 18.47 . Pale yellow solid.

1-(4-hydroxy-3-methoxyphenyl)propan-2- amine hydrochloride

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.19 (br s, 3H), 6.80 (d, *J* = 2.0 Hz, 1H), 6.74 (d, *J* = 8.0 Hz, 1H), 6.60 (dd, *J* = 8.1, 2.0 Hz, 1H), 3.75 (s, 3H), 3.40 – 3.25 (m, 1H), 2.92 (dd, *J* = 13.4, 5.3 Hz, 1H), 2.57 (dd, *J* = 13.5, 8.8 Hz, 1H), 1.12 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 147.98, 145.81, 127.83, 121.92, 115.94, 113.74, 56.01, 48.66, 31.76, 18.05. Brown solid.

1-(4-amino-3,5-dichlorophenyl)ethan-1- amine hydrochloride

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.58 (br s, 3H), 7.46 (s, 2H), 4.45 – 4.09 (m, 1H), 3.83 (br s, 2H), 1.47 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 141.52 , 128.24 , 127.38 , 118.20 , 49.31 , 20.76 . Off white solid.

1-phenylpentan-1- amine hydrochloride

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.57 (br s, 3H), 7.57 – 7.47 (m, 2H), 7.46 – 7.31 (m, 3H), 4.15 (dd, J = 9.5, 5.3 Hz, 1H), 2.03 – 1.92 (m, 1H), 1.87 – 1.71 (m, 1H), 1.32 – 1.12 (m, 3H), 1.05 – 0.94 (m, 1H), 0.80 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 138.41 , 129.15 , 128.94 , 127.91 , 54.94 , 34.37 , 27.65 , 22.10 , 14.18 . Pale brown solid.

1-phenyl-2-(p-tolyl)ethan-1-amine hydrochloride

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.89 (br s, 3H), 7.49 – 7.40 (m, 2H), 7.37 – 7.27 (m, 3H), 7.03 – 6.88 (m, 4H), 4.59 – 4.26 (m, 1H), 3.42 (dd, *J* = 13.5, 5.1 Hz, 1H), 3.09 (dd, *J* = 13.4, 10.2 Hz, 1H), 2.18 (s, 3H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 137.57 , 135.97 , 133.59 , 129.56 , 129.30 , 128.88 , 128.86 , 128.39 , 56.44 , 40.25 , 21.07 . White solid.

1,3-diphenylpropan-2- amine hydrochloride

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.38 (br s, 3H), 7.44 – 7.08 (m, 10H), 3.73 – 3.51 (m, 1H), 3.04 (dd, *J* = 13.9, 6.3 Hz, 2H), 2.79 (dd, *J* = 13.9, 6.9 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 136.95, 129.83, 129.06, 127.25, 53.63, 38.14. Brown solid.

(1-hydroxycyclohexyl)(phenyl)methanamine hydrochloride

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.52 (br s, 3H), 7.52 – 7.45 (m, 2H), 7.41 – 7.34 (m, 3H), 5.04 (s, 1H), 4.11 (s, 1H), 1.87 – 0.88 (m, 10H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 135.85 , 129.40 , 128.62 , 128.37 , 71.19 , 63.23 , 34.87 , 33.02 , 25.47 , 21.47 , 21.12 . Off white solid.

4-(tert-butyl)cyclohexan-1- amine hydrochloride (diastereomeric mixture)

¹H NMR (400 MHz, DMSO-*d*₆) δ 7.73 (br s, 3H), 3.42 – 2.66 (m, 1H), 2.17 – 1.20 (m, 7H), 1.05 – 0.87 (m, 2H), 0.79 (s, 9H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 49.96 , 47.52 , 46.74 , 46.03 , 32.75 , 32.47 , 30.89 , 28.93 , 27.94 , 27.82 , 25.39 , 20.72 . Off white solid.

4-(2,6,6-trimethylcyclohex-1-en-1-yl)butan-2-amine hydrochloride

NH₃⁺CI[−]

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.11 (br s, 3H), 3.24 – 2.97 (m, 1H), 2.06 – 1.92 (m, 2H), 1.87 (t, *J* = 6.2 Hz, 2H), 1.75 – 1.60 (m, 1H), 1.56 (s, 3H), 1.54 – 1.44 (m, 3H), 1.42 – 1.33 (m, 2H), 1.22 (d, *J* = 6.5 Hz, 3H), 0.97 (s, 3H), 0.97 (s, 3H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 136.48 , 127.33 , 47.71 , 39.77 , 35.20 , 35.05 , 32.69 , 28.84 , 24.59 , 20.07 , 19.48 , 18.44 . Brown solid.

Nonan-5-amine hydrochloride

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.10 (br s, 3H), 3.08 – 2.87 (m, 1H), 1.60 – 1.42 (m, 4H), 1.36 – 1.20 (m, 8H), 0.93 – 0.73 (m, 6H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 51.10 , 31.93 , 27.02 , 22.43 , 14.19 . White solid.

6-methylhept-5-en-2-amine hydrochloride

¹H NMR (300 MHz, DMSO-*d*₆) δ 6.03 (br s, 3H), 5.19 – 5.06 (m, 1H), 3.27 – 3.00 (m, 1H), 2.22 – 1.94 (m, 2H), 1.82 – 1.59 (m, 7H), 1.58 – 1.42 (m, 1H), 1.26 (d, J = 6.4 Hz, 3H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 132.10, 123.65, 46.94, 34.88, 25.88, 24.09, 18.60, 18.04. Pale brown gum.

4-(1H-indol-3-yl)butan-2-amine hydrochloride

¹**H NMR (300 MHz, DMSO-***d*₆) δ 11.00 (s, 1H), 8.31 (br s, 3H), 7.57 (d, *J* = 7.8 Hz, 1H), 7.39 (d, *J* = 8.0 Hz, 1H), 7.22 - 7.15 (m, 1H), 7.08 (ddd, *J* = 8.1, 7.0, 1.2 Hz, 1H), 6.99 (ddd, *J* = 7.9, 6.9, 1.1 Hz, 1H), 3.29 - 3.09 (m, 1H), 2.94 - 2.65 (m, 2H), 2.21 - 1.99 (m, 1H), 1.95 - 1.68 (m, 1H), 1.30

(d, J = 6.4 Hz, 3H). ¹³C NMR (75 MHz, DMSO- d_6) δ 136.82 , 127.41 , 122.81 , 121.40 , 118.85 , 118.64 , 113.60 , 111.96 , 47.14 , 35.18 , 21.27 , 18.54 . Brown solid.

4-(6-methoxynaphthalen-2-yl)butan-2-amine hydrochloride

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.36 (br s, 3H), 7.77 (dd, *J* = 8.8, 2.7 Hz, 2H), 7.70 – 7.60 (m, 1H), 7.37 (dd, *J* = 8.4, 1.7 Hz, 1H), 7.30 (d, *J* = 2.5 Hz, 1H), 7.16 (dd, *J* = 8.9, 2.5 Hz, 1H), 3.87 (s, 3H), 3.35 – 3.12 (m, 1H), 2.96 – 2.70 (m, 2H), 2.19 – 2.01 (m, 1H), 1.95 – 1.71 (m, 1H), 1.32 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 157.27 , 136.55 , 133.26 , 129.25 , 129.03 , 128.02 , 127.31 , 126.41 , 119.00 , 106.25 , 55.60 , 46.98 , 36.21 , 31.28 , 18.51 . Off white solid.

6-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)hexan-2-amine hydrochloride

¹H NMR (300 MHz, Methanol- d_4) δ 7.91 (s, 1H), 4.83 (br s, 3H), 3.89 (s, 3H), 3.87 – 3.81 (m, 2H), 3.40 (s, 3H), 3.25 – 3.16 (m, 1H), 1.70 – 1.48 (m, 4H), 1.43 – 1.29 (m, 2H), 1.24 (d, J = 6.4 Hz, 3H). ¹³C NMR (75 MHz, Methanol- d_4) δ 154.88 , 151.34 , 147.72 , 142.33 , 107.26 , 47.55 , 40.46 , 33.88 , 32.93 , 28.96 , 27.13 , 22.29 , 17.33 . White solid.

1-(4-fluorophenyl)-4-(4-(pyridin-2-yl)piperazin-1-yl)butan-1-amine

¹H NMR (300 MHz, Chloroform-*d*) δ 8.17 – 8.01 (m, 1H), 7.45 – 7.30 (m, 1H), 7.27 – 7.21 (m, 2H), 6.99 – 6.86 (m, 2H), 6.66 – 6.31 (m, 2H), 3.99 – 3.67 (m, 1H), 3.57 – 3.33 (m, 4H), 3.32 – 3.15 (m, 2H), 2.51 – 2.33 (m, 4H), 2.29 (t, J = 7.3 Hz, 2H), 1.84 – 1.06 (m, 4H). ¹³C NMR (75 MHz, Chloroform-*d*) δ 161.92 (d, J = 245.1 Hz), 159.47, 147.90, 140.73, 137.43, 128.05 (d, J = 7.9 Hz), 115.32 (d, J = 21.2 Hz), 113.30, 107.07, 58.35, 55.45, 52.97, 45.10, 36.98, 23.70. ¹⁹F NMR (282 MHz, Chloroform-*d*) δ -114.96. Brown solid.

(8R,9S,13S,14S)-3-hydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6Hcyclopenta[a]phenanthren-17-amine hydrochloride (diastereomeric mixture)

¹H NMR (400 MHz, DMSO-*d*₆) δ 9.11 (br s, 1H), 8.27 (br s, 3H), 7.03 (d, *J* = 8.7 Hz, 1H), 6.53 (dd, *J* = 8.4, 2.6 Hz, 1H), 6.46 (d, *J* = 2.7 Hz, 1H), 3.22 – 2.91 (m, 1H), 2.86 – 2.61 (m, 2H), 2.30 – 2.00 (m, 4H), 1.85 – 1.51 (m, 4H), 1.35 – 1.20 (m, 5H), 0.75 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 155.52, 155.40, 137.43, 137.41, 130.80, 130.38, 126.54, 126.44, 115.42, 115.40, 113.26, 113.21, 59.95, 59.24, 51.27, 49.98, 47.93, 43.99, 43.86, 43.56, 43.27, 39.16, 38.66, 36.23, 29.64, 29.53, 28.38, 28.26, 27.50, 27.44, 26.71, 26.18, 26.09, 23.55, 18.35, 12.16. (traces of ethylacetate solvent peak was observed in the NMR spectra). HRMS (ESI-TOF, m/z): Calcd for C18H25NO [M+H]+ 272.2014; found 272.2013. Off white solid.

(5S,8R,9R,10S,13S,14S,17S)-17-hydroxy-10,13-dimethylhexadecahydro-1Hcyclopenta[a]phenanthren-3-amine hydrochloride (diastereomeric mixture)

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.09 (br s, 3H), 4.44 (s, 1H), 3.49 – 3.14 (m, 1H), 1.97 – 0.81 (m, 23H), 0.75 (s, 3H), 0.62 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 80.53, 80.48 , 54.08 , 53.70 , 52.94, 52.70, 51.20 , 51.01 , 49.90 , 46.68 , 44.57 , 44.02, 42.18, 43.02 , 38.44 , 37.11 , 37.05 , 36.49 , 36.00 , 35.56 , 35.48 , 32.77 , 31.61 , 31.26 , 30.99 , 30.30 , 28.44 , 28.21 , 26.32 , 26.27 , 24.29 , 23.51 , 20.79 , 20.73 , 20.40 , 12.29 , 11.81 , 11.56 . HRMS (ESI-TOF, m/z): Calcd for C19H33NO [M+H]+ 292.2640; found 292.2646. White solid.

(5S,8R,9S,10S,13S,14S,17S)-17-hydroxy-10,13,17-trimethylhexadecahydro-1Hcyclopenta[a]phenanthren-3- amine hydrochloride

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.11 (br s, 3H), 3.46 – 3.21 (m, 1H), 1.82 – 1.10 (m, 22H), 1.08 (s, 3H), 0.76 (s, 3H), 0.74 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 80.14 , 80.12 , 53.95 , 53.60 , 51.01 , 50.88 , 50.66 , 49.92 , 49.04 , 46.68 , 45.63 , 45.44 , 44.62 , 40.64 , 38.78 , 38.44 , 36.51 , 36.34 , 36.28 , 36.00 , 35.90 , 35.81 , 35.57 , 32.78 , 31.92 , 31.85 , 31.78 , 31.28 , 30.99 , 28.50 , 28.26 , 26.61 , 26.30 , 24.30 , 23.49 , 20.85 , 20.45 , 14.67 , 12.29 , 11.57 . (OH proton was not picked up in¹H NMR). HRMS (ESI-TOF, m/z): Calcd for C20H35NO [M+H]+ 360.2797; found 306.2792.

White solid.

(1S,5S,8R,9S,10S,13S,14S,17S)-17-hydroxy-1,10,13-trimethylhexadecahydro-1Hcyclopenta[a]phenanthren-3- amine hydrochloride

¹H NMR (300 MHz, DMSO-*d*₆) δ 7.50 (br s, 3H), 3.87 - 3.12 (m, 1H), 3.12 - 2.822 (m, 1H), 09 - 1.02 (m, 18H), 1.02 - 0.73 (m, 9H), 0.60 (s, 3H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 80.45 , 80.42 , 51.24 , 51.12 , 48.60 , 46.16 , 46.03 , 43.07 , 37.76 , 37.72 , 37.50 , 37.46 , 37.22 , 36.94 , 36.11 , 35.97 , 35.59 , 34.37 , 33.07 , 32.98 , 31.79 , 31.72 , 31.41 , 31.29 , 31.06 , 30.25 , 28.50 , 28.41 , 26.79 , 23.50 , 20.06 , 19.91 , 15.58 , 14.90 , 14.84 , 14.10 , 14.05 , 13.84 , 12.25 , 11.89 . (OH proton was not picked up in ¹H NMR) HRMS (ESI-TOF, m/z): Calcd for C20H35NO [M+H]+ 360.2797; found 306.2800. White solid.

NMR spectra

190107.402.10.fid Kathir KM22-115 Au1H DMSO {C:\Bruker\TopSpin3.5pl6} 1901 2

Supplementary Figure 16. ¹³C NMR (75 MHz, DMSO-*d*₆)

190107.401.10.fid Kathir KM22-113 Au1H DMSO {C:\Bruker\TopSpin3.5pl6} 1901 1

Supplementary Figure 18. ¹³C NMR (101 MHz, DMSO-*d*₆)

190107.413.10.fid Kathir KM22-277 Au1H DMSO {C:\Bruker\TopSpin3.5pl6} 1901 13

NH₃+Ct

270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Supplementary Figure 20. ¹³C NMR (101 MHz, DMSO-*d*₆) 190107.408.10.fid Kathir KM22-191 Au1H DMSO {C:\Bruker\TopSpin3.5pl6} 1901 8

NH₃⁺CI

Supplementary Figure 22. ¹³C NMR (101 MHz, DMSO-*d*₆)

190531.f315.11.fid Kathir KM22-191 19F(H-entk) DMSO {C:\Bruker\TopSpin3.6.0} 1905 15

 $\frac{1}{10}$ $\frac{1}{10}$

190107.419.10.tid Kathir KM22-338 Au1H DMSO {C:\Bruker\TopSpin3.5pl6} 1901 19

270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) Supplementary Figure 25. ¹³C NMR (101 MHz, DMSO-*d*₆) ^{190531.7316.11.tid} Kathir KM22-338 ^{19F(H-entk)} DMSO {C:\Bruker\TopSpin3.6.0} 1905 16

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210f1 (ppm)

Supplementary Figure 26. ¹⁹F NMR (282 MHz, DMSO-d₆)

190107.403.10.fid Kathir KM22-159 Au1H DMSO {C:\Bruker\TopSpin3.5pl6} 1901 3

Supplementary Figure 28. ¹³C NMR (101 MHz, DMSO-d₆)

134.07 131.67 125.58 122.18 122.18 122.18 112.72 112.73 ____41.76

____148.70

Supplementary Figure 30. ¹³C NMR (75 MHz, DMSO-d₆)

190531.1317.11.1td Kathir KM22-434 19F(H-entk) DMSO {C:\Bruker\TopSpin3.6.0} 1905 17

10 . . -90 -100 -110 f1 (ppm) -10 -20 -30 -40 -60 -50 -70 -80 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 Supplementary Figure 31. ¹⁹F NMR (282 MHz, DMSO-d₆)

190107.418.10.fid Kathir KM22-290 Au1H DMSO {C:\Bruker\TopSpin3.5pl6} 1901 18

Supplementary Figure 33. ¹³C NMR (101 MHz, DMSO-*d*₆)

270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Supplementary Figure 35. ¹³C NMR (101 MHz, DMSO-*d*₆)

Supplementary Figure 37. ¹³C NMR (101 MHz, DMSO-d₆)

190107.406.10.tid Kathir KM22-190 Au1H DMSO {C:\Bruker\TopSpin3.5pl6} 1901 6

NH₃⁺CI J

²⁷⁰ 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Supplementary Figure 39. ¹³C NMR (101 MHz, DMSO-*d*₆) 190121.323.10.fid Kathir KM22-314 Au1H DMSO {C:\Bruker\TopSpin3.6.0} 1901 23

NH₃⁺Ct Pł ſ

²⁷⁰ 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 **Supplementary Figure 41.** ¹³C NMR (**75 MHz, DMSO-***d*₆) 190124.420.10.fid Kathir KM22-387 Au1H DMSO {C:\Bruker\TopSpin3.5pl6} 1901 20

Supplementary Figure 43. ¹³C NMR (101 MHz, DMSO-*d*₆)

190107.415.10.fid Kathir KM22-280 Au1H DMSO {C:\Bruker\TopSpin3.5pl6} 1901 15

190107.407.10.fid Kathir KM22-161 Au1H DMSO {C:\Bruker\TopSpin3.5pl6} 1901 7

Supplementary Figure 47. ¹³C NMR (101 MHz, DMSO-*d*₆)

190107.405.10.fid Kathir KM22-178 Au1H DMSO {C:\Bruker\TopSpin3.5pl6} 1901 5

Supplementary Figure 49. ¹³C NMR (101 MHz, DMSO-d₆)

190107.417.10.fid Kathir KM22-325 Au1H DMSO {C:\Bruker\TopSpin3.5pl6} 1901 17

²⁷⁰ 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Supplementary Figure 51. ¹³C NMR (101 MHz, DMSO-*d*₆) 190531.f318.11.fid Kathir KM22-325 19F(H-entk) DMSO {C:\Bruker\TopSpin3.6.0} 1905 18

Supplementary Figure 57. ¹H NMR (300 MHz, DMSO-d₆)

u13C DMSO {C:\Bruker\TopSpin3.6.0} 1901 26	_ 159.85	141.55	130.18	114.19	55.70	21.37
NH ₃ *Ct	'					'
۵ <u>ر</u>						
					,	
	90 180 170 160	150 140	130 12	0 110 100 90 80 70	60 50 40 30	0 20 10 0 -1
270 260 250 240 230 220 210 200 1 upplementary Figure 60. 0114.407.10.fid thir KM22-286 1H DMSO {C:\Bruker\TopSpin3.5pl6} 1901 7	¹³ C NMR (7	5 MH	IZ, DM	ISO- <i>d</i> ₆)		
270 260 250 240 230 220 210 200 1 upplementary Figure 60. 1114:407.10.fid hir KM22-286 IH DMSO {C:\Bruker\TopSpin3.5pl6} 1901 7 NH3⁺Ct F	¹³ C NMR (7	75 MH	I (ppm) Iz, DM	ISO- <i>d</i> ₆)		
270 260 250 240 230 220 210 200 1 upplementary Figure 60. J114.407.10.Hd thir KM22-286 IH DMSO {C:\Bruker\TopSpin3.5pl6} 1901 7 NH₃*Ct F	¹³ C NMR (7	75 MH	Iz, DM	ISO-d ₆)		
270 260 250 240 230 220 210 200 $10Supplementary Figure 60.(0114.407.10.hdwhir KM22-286(1H DMSO (C:\Bruker\TopSpin3.5pl6}) 1901 7H_3^*CtF$	¹³ C NMR (7	7 5 MH	Iz, DM	ISO-d 6)		
$270 \ 260 \ 250 \ 240 \ 230 \ 220 \ 210 \ 200 \ 10$	¹³ C NMR (7	5 MH	I (pm) Iz, DM	ISO-d ₆)		

190114.407.11.fid Kathir KM22-286 Au13C DMSO {C:\Bruker\TopSpin3.5pl6} 1901 7	- 163.55	$\stackrel{136.21}{<}_{129.67}^{136.21}$	× III5.95	49.80	21.25
NH₃*Cr F					
270 260 250 240 230 220 210 200 190 180 170 Supplementary Figure 62. ¹³ C NN Kathir KM22-286 19F(H-entk) DMSO {C:\Bruker\TopSpin3.6.0} 1905 19	160 150 1R (101 I	¹⁴⁰ 130 f1 (ppm) VHz, C	الم	50 40 30	20 10 0 -10
F TH3+Ct					

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Supplementary Figure 63. ¹⁹F NMR (282 MHz, DMSO-*d*₆)

190111.1331.10.fid Kathir KM22-279 PROTON DMSO {C:\Bruker\TopSpin3.6.0} 1901 31

190114.414.10.tid Kathir KM22-402 Au1H DMSO {C:\Bruker\TopSpin3.5pl6} 1901 14

Supplementary Figure 67. ¹³C NMR (101 MHz, DMSO-d₆)

190111.f332.10.fid Kathir KM22-403 PROTON DMSO {C:\Bruker\TopSpin3.6.0} 1901 32

190114.404.10.fid Kathir KM22-213 Au1H DMSO {C:\Bruker\TopSpin3.5pl6} 1901 4

 $\rm NH_2$ но

²⁷⁰ 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 **Supplementary Figure 71.** ¹³C NMR (**101 MHz, DMSO**-*d*₆) 190111.1330.10.tid Kathir KM22-400 PROTON DMSO {C:\Bruker\TopSpin3.6.0} 1901 30

190124.421.10.fid Kathir KM22-445 Au1H DMSO {C:\Bruker\TopSpin3.5pl6} 1901 21

190114.412.10.fid Kathir KM22-370 Au1H DMSO {C:\Bruker\TopSpin3.5pl6} 1901 12

²⁷⁰ 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Supplementary Figure 77. ¹³C NMR (101 MHz, DMSO-*d*₆)

Supplementary Figure 79. ¹³C NMR (101 MHz, DMSO-d₆)

190111.1333.10.tid Kathir KM22-429 PROTON DMSO {C:\Bruker\TopSpin3.6.0} 1901 33

190114.418.10.fid Kathir KM22-365 Au1H DMSO {C:\Bruker\TopSpin3.5pl6} 1901 18

Supplementary Figure 83. ¹³C NMR (101 MHz, DMSO-d₆)
190114.416.10.fid Kathir KM22-399 Au1H DMSO {C:\Bruker\TopSpin3.5pl6} 1901 16

NH₃⁺CI 5 5

270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Supplementary Figure 85. ¹³C NMR (101 MHz, DMSO-*d*₆) 190114.417.10.fid Kathir KM22-396 Au1H DMSO {C:\Bruker\TopSpin3.5pl6} 1901 17

270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Supplementary Figure 87. ¹³C NMR (101 MHz, DMSO-*d*₆) 190121.336.10.fid Kathir KM22-436 Au1H DMSO {C:\Bruker\TopSpin3.6.0} 1901 36

Supplementary Figure 89. ¹³C NMR (75 MHz, DMSO-d₆)

190111.1334.10.fid Kathir KM22-395 PROTON DMSO {C:\Bruker\TopSpin3.6.0} 1901 34

190111.f326.10.fid Kathir KM22-371 PROTON DMSO {C:\Bruker\TopSpin3.6.0} 1901 26

190111.f336.10.fid Kathir KM22-416 PROTON DMSO {C:\Bruker\TopSpin3.6.0} 1901 36

190111.f339.10.fid Kathir KM22-347 PROTON MeOD {C:\Bruker\TopSpin3.6.0} 1901 39

NH3+CI

190111.f340.10.fid Kathir KM22-348 PROTON CDCl3 {C:\Bruker\TopSpin3.6.0} 1901 40

F NH2 N N

Supplementary Figure 101. ¹³C NMR (75 MHz, Chloroform-*d*) ^{190531.f320.11.fd} Kathir KM22-348 ^{19F(H-entk)} CDCI3 {C:\Bruker\TopSpin3.6.0} 1905 20

10 10 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210Supplementary Figure 102. ¹⁹F NMR (282 MHz, Chloroform-*d*)

ipplementary Figure 102. FINMR (282 MHz, Chloroform-a)

Supplementary Figure 105. HRMS

270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Supplementary Figure 107. ¹³C NMR (101 MHz, DMSO-*d*₆)

Supplementary Figure 108. HRMS

190114.411.10.fid Kathir KM22-353 Au1H DMSO {C:\Bruker\TopSpin3.5pl6} 1901 11

Supplementary Figure 111. HRMS

190108.f301.10.fid Kathir KM22-352 PROTON DMSO {C:\Bruker\TopSpin3.6.0} 1901 1

89

Supplementary Figure 114. HRMS