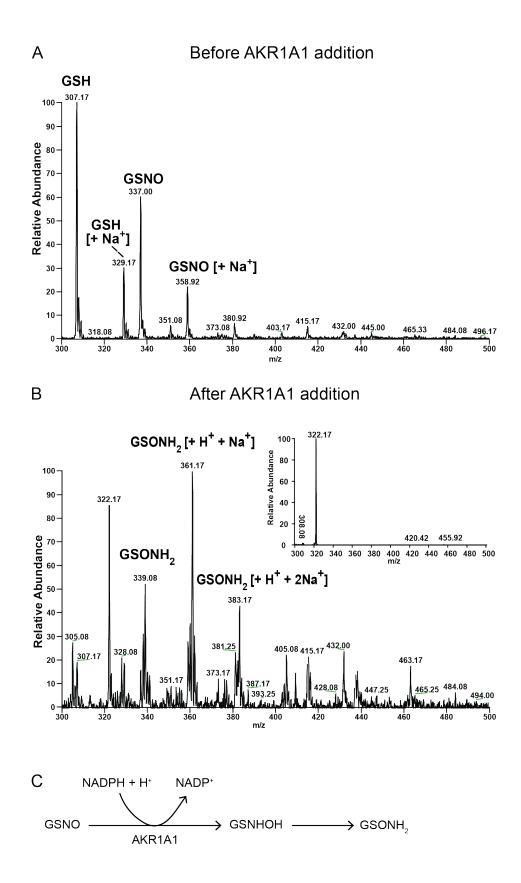

SUPPORTING INFORMATION


Figure S1. Assessment of the purity of AKR1A1. Coomassie-stained SDS-PAGE gel illustrating serial dilution of the purified protein. The identity of the highlighted bands is shown in Table S1.

Protein name	Database accession ID	Molecular weight (Da) 36594 36594	
AKR1A1 protein Bos taurus (Bovine) Band 1; major band	Q3ZCJ2_BOVIN		
AKR1A1 protein Bos taurus (Bovine) Band 2	Q3ZCJ2_BOVIN		
hemoglobin beta chain [validated] – Bos Taurus (Bovine) Band 3	HBBOB	15944.3	

Table S1. Results of protein identification from three bands in Fig. S1

Figure S2. Fold difference in basal *AKR1A1* mRNA expression compared relative to *ADH5* or *CBR1*. qRT-PCR analysis was performed using indicated mouse tissues and expression of *AKR1A1*, *CBR1*, and *ADH5* was analyzed with normalization to expression of 18S rRNA. Data are represented as a ratio of normalized expression.

Figure S3. Product analysis of GSNO reduction by AKR1A1. (A and B) Electron-spray ionization mass spectra of the reactants (A) and products (B) of assay of AKR1A1 purified from bovine kidney (for clarity, the range of m/z spectra shown is from 300 to 500). In A and B, clusters of peaks at 22 atomic mass unit intervals represent sodiated species. In B, peaks at m/z 339 and 361 correspond to glutathione-sulfinamide and its Na⁺ adduct, respectively. Inset shows the MS/MS spectra of the peak at m/z 339. Presence of a peak at m/z 322 indicates a loss of NH3⁺, confirming glutathione-sulfinamide as the major product. (C) Enzymatic reaction carried out by AKR1A1.

Table S2

Substrate	Enzyme	${{ m K_m}}^{ m a}$ ($\mu { m M}$)	kcat ^a (min ⁻¹)
GSNO	WT	184 ± 8	959
	W22A	169 ± 19	493
	K23A	122 ± 28	1161
	K127A	336 ± 24	953
	W220A	143 ± 17	824
	R312	943 ± 104	383

 ${}^{a}K_{m}$ and V_{max} were determined from Michaelis-Menten curves using GraphPad Prism 7. kcat was calculated by dividing V_{max} by the enzyme concentration in each assay. Enzyme assays were performed in triplicate.