

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Management of diabetes and associated costs in a complex humanitarian setting in the Democratic Republic of Congo

BMJ Open
bmjopen-2019-030176
Research
01-Mar-2019
Ansbro, Éimhín; Médecins sans Frontières, Manson Unit; London School of Hygiene and Tropical Medicine Faculty of Epidemiology and Population Health, Centre for Global Chronic Conditions Biringanine, Michel; Medecins Sans Frontieres Operational Centre Amsterdam, Mweso Hospital Caleo, Grazia; Médecins sans Frontières, Manson Unit Prieto-Merino, David; London School of Hygiene and Tropical Medicine Faculty of Epidemiology and Population Health, Epidemiology of NCDs Sadique, Zia; London School of Hygiene and Tropical Medicine Faculty of Public Health and Policy, Health Services Research and Policy Perel, Pablo; London School of Hygiene and Tropical Medicine Faculty of Epidemiology and Population Health, Centre for Global Chronic Conditions Jobanputra, Kiran; Médecins sans Frontières, Manson Unit Roberts, Bayard; London School of Hygiene and Tropical Medicine Faculty of Public Health and Policy, Centre for Global Chronic Conditions
Health economics < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, DIABETES & ENDOCRINOLOGY, International health services < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Epidemiology < TROPICAL MEDICINE, General diabetes < DIABETES & ENDOCRINOLOGY

SCHOLARONE[™] Manuscripts

2		
3 4	1	Title: Management of diabetes and associated costs in a complex humanitarian setting in the
5 6	2	Democratic Republic of Congo.
7		
8 9	3	Corresponding Author:
10 11	4	Éimhín Ansbro,
12	4	
13 14	5	Formerly: Manson Unit, Médecins sans Frontières, London, United Kingdom
15 16	6	Currently: London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
17	0	currently. London School of Hygiene & Hopical Medicine, Repper Street, London Well 7117, OK
18 19	7	Email: eimhin.ansbro@lshtm.ac.uk Tel: +44(0) 207 927 2086
20 21	8	Authors:
22	U	
23 24	9	1. Éimhín Ansbro, Manson Unit, Médecins sans Frontières, London, United Kingdom; London
25 26	10	School of Hygiene & Tropical Medicine, United Kingdom.
27	11	2. Michel Biringanine [,] Médecins sans Frontières Operational Centre Amsterdam, Mweso
28 29	12	Hospital, North Kivu, Democratic Republic of Congo
30 31	13	3. Grazia Caleo, Manson Unit, Médecins sans Frontières, London, United Kingdom
32 33	14	4. David Prieto-Merino, Department of Noncommunicable Disease Epidemiology, London
34	15	School of Hygiene and Tropical Medicine, London, United Kingdom
35 36	16	5. Zia Sadique, Department of Health Services Research and Policy, London School of Hygiene
37 38	17	and Tropical Medicine, London, United Kingdom
39	18	6. Pablo Perel, Centre for Global Chronic Conditions, London School of Hygiene and Tropical
40 41	19	Medicine, London, United Kingdom
42 43	20	7. Kiran Jobanputra, Manson Unit, Médecins sans Frontières, London, United Kingdom
44	21	8. Bayard Roberts, Centre for Global Chronic Conditions, London School of Hygiene and
45 46	22	Tropical Medicine, London, United Kingdom (Bayard.Roberts@lshtm.ac.uk)
47 48	23	
49	24	Word Count: 2879
50 51	25	
52 53	26	Keywords: Democratic Republic of Congo, Subsaharan Africa, diabetes, hypertension,
54	27	noncommunicable disease, humanitarian, conflict, care model, management, programme, chronic
55 56	28	care, outpatient, hospital care, task shifting, cost, economic.
57 58	29	
59 60		
00		

	30	Abstract
	31	Objective: We aimed to evaluate an Integrated Diabetic Clinic within a Hospital Outpatient
ſ	32	Department (IDC-OPD) in a complex humanitarian setting. Specific objectives were to: (i) analyse
) 2	33	diabetes management outcomes; (ii) examine the association of key insecurity and related
3 4 5	34	programmatic events with diabetes outcomes; and (iii) analyse IDC-OPD programme costs.
5 7	35	Design: A cohort analysis of routine outcome data collected between January 2014 and February
3))	36	2017; and analysis of programme costs for 2014/15.
1 2 2	37	Setting: An outpatient diabetes programme (IDC-OPD) in Mweso hospital, supported by Médecins
5 4 5	38	sans Frontières, located in an insecure and impoverished rural area in North Kivu, Demographic
5 7	39	Republic of Congo.
3 9)	40	Participants: Diabetes patients using the IDC-OPD.
 <u>2</u> 2	41	Outcome measures: Clinical outcome trends (glycaemic, blood pressure control); association of key
5 1 5	42	security and related programmatic events with clinical outcomes; and incremental programme costs.
7 3	43	Results: Of 243 enrolled diabetes patients, 44.6% were women, median age was 45 (IQR 32-56);
))	44	51.4% were classified Type 2. Visit numbers and visit interval increased on introduction of IDC-OPD
 2	45	but decreased when insecurity led to service scale-back and subsequent suspension. Clinical control
3 4 5	46	rates during initial service scale-back were similar to the preceding period of full implementation.
5 7	47	Later, patients were less likely to achieve control due to exhaustion of medications but this improved
3	48	again on service resumption. Total costs decreased by 20% from 2014 (€32,121) to 2015 (€26,410).
) I	49	Annual cost per patient dropped from €417 in 2014 to €183 in 2015 due to reduced supply costs and
2 3 4	50	increased patient throughput.
5 7	51	Conclusions: Diabetes care for stable patients in humanitarian settings is possible. Costs were less
3 9 0	52	than those for chronic HIV care in low-income settings. Findings indicate the programme could be

2		
3 4	53	simplified to involve drug collection with nurse-led, algorithm-guided treatment adjustment and
5 6	54	strengthened emergency preparedness. Further research is required to define a minimum effective
7 8 9	55	treatment package for diabetes in complex humanitarian settings.
10 11 12	56	
13 14 15	57	Article Summary
16 17	58	• This is the first study of its kind to examine diabetes outcomes and programme costs in a
18	59	complex humanitarian setting in sub-Saharan Africa.
19 20	60	Logistic regression was used to estimate the effect of insecurity and related programmatic
21 22	61	changes on clinical outcomes.
23	62	The study was limited by the relatively small sample size and lack of control group for
24 25	63	comparison.
26 27	64	• The costing analysis was descriptive only and so cost-effectiveness of the programme could
28	65	not be assessed.
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	66	not be assessed.

Title: Management of diabetes and associated costs in a complex humanitarian setting in the Democratic Republic of Congo

70 Background

Over the past 40 years, the prevalence of diabetes has increased sharply worldwide, particularly in low and middle income countries.[1] However, data are scarce from conflict-affected countries, particularly those in Central, West and East Africa.[1] Humanitarian actors have been slow to prioritise diabetes treatment in disaster and post-conflict settings despite reporting increasing presentations of patients within their programmes. [2–4] This is due to lack of knowledge on local diabetes prevalence and needs, limited research on diabetes management or outcomes in emergency settings; and a lack of programmatic and policy guidance to support diabetes care in humanitarian settings.[2,5–7] North Kivu in the Democratic Republic of Congo (DRC) is one such complex humanitarian setting, where diabetes prevalence (estimated at between 4 and 5.4%) is increasing in the context of a health system weakened by prolonged conflict.[8–10] Since 2008, Médecins sans Frontières (MSF) has supported healthcare delivery in Mweso, North Kivu, DRC, in collaboration with the Ministry of Health. North Kivu, with an estimated population of 365,000, is a rural, impoverished area bordering Rwanda. It remains a flash point in the on-going conflict in the DRC and hosts 17 internally displaced person camps. MSF supports health services in 4 out of 23 Primary Health Care clinics and in Mweso hospital within Masisi District. Mweso hospital serves a catchment area of approximately 145,000 people, with about 65,000 beneficiaries living in

87 the immediate vicinity of the hospital.

In response to growing patient and provider needs, MSF implemented a context-adapted, hospitalbased diabetes programme in March 2015, the Integrated Diabetic Clinic within Hospital Outpatient

BMJ Open

4
5
6
0
7 8
8
9
10
11
12
13
14
15
16
17
17 18
19
20
21
22
23
24
25
26
20 27
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
45
40 47
47 48
49 50
50
51
52
53
54
55
56
57
58
59
60

Department (IDC-OPD) in place of the ad hoc care previously undertaken. Intermittent
 deteriorations in security led to temporary scaling back or suspension of the programme and
 restricted patients' movement.

The IDC-OPD was a nurse-led, multi-disciplinary model, based on locally adapted clinical guidelines,
patient counselling materials and data collection tools, accompanied by 3 days of specialist
training.[11] The clinic team included: a nurse supervisor, nursing assistant, two doctors, a
nutritionist, and education and psychosocial support officers. Diabetes was diagnosed according to
World Health Organization (WHO) guidelines using repeated fasting capillary glucose. Most patients
were identified as diabetic and enrolled after acute hospital presentation, while some were
identified via the Mweso outpatient department or referring primary care clinics.

100 Patients received a detailed enrolment assessment, monthly nurse-led follow-up and 6-monthly 101 medical review, with nutrition and psychosocial support. Each patient was given a clinic-held patient 102 file and patient-held passport to facilitate safe passage. Clinical guidelines were adapted from MSF, 103 WHO and other international guidance. Patient educational tools were adapted from Santé 104 Diabète, [12] a Malian Non-Governmental Organisation, and medications were those included on 105 MSF's Essential Drugs List. Insulin doses were adjusted using single fasting capillary blood glucose 106 readings and patients' reported symptoms of hypo- or hyperglycaemia in the absence of home 107 glucose monitoring.

A mixed methods evaluation of the Mweso IDC-OPD programme was undertaken by MSF (with qualitative component of the evaluation exploring patient and provider challenges, presented elsewhere [13]). Here, we report quantitative data on programmatic and clinical outcomes and programme costs. The overall objective of this study was evaluate the MSF IDC-OPD Programme in the complex humanitarian setting of North Kivu, DRC. The specific objectives were to: (i) analyse

3 4	
5 6	
7 8	
9 10	
10 11	
12 13	
14	
15 16	
17 18	
19 20	
21	
22 23	
24 25	
26	
27 28	
29 30	
31 32	
33	
34 35	
36 37	
38 39	
40	
41 42	
43 44	
45	
46 47	
48 49	
50 51	
52	
53 54	
55 56	
57 58	
59	
60	

diabetes management outcomes; (ii) examine the association of key insecurity and related
 programmatic events with diabetes outcomes; and (iii) analyse IDC-OPD programme costs.

115 Methods

116 For the outcome analysis, we conducted a retrospective analysis of routine data of enrolled adults 117 aged ≥18 years from January 2014 to February 2017, examining trends in diabetes outcomes and their association with key programmatic events. The study period was divided into five phases, 118 119 defined by programmatic changes or periods of heightened insecurity (which impacted service 120 delivery due to staff evacuation, supply chain interruption and reduced patient access). Period T1 121 refers to ad-hoc care delivered before introduction of the IDC-OPD programme (T2). Security 122 incidents in December 2015 prompted a period of service suspension (nurse-only care, with drug 123 pick-ups, glucose testing and minimal treatment adjustments) (S1). Complete suspension followed 124 once drug stocks were exhausted (S2). Limited service resumed in April (R1) until full service recommenced from September 2016 (R2) (Table 1). 125

126 Table 1. Study Periods for Evaluation of IDC-OPD Programme, Mweso, DRC

Study Period	Description	Dates
Training 1 (T1)	Ad hoc diabetes service following basic staff training	01/01/2014 -
		14/03/2015
Training 2 (T2)	IDC-OPD implemented following formal staff training	15/03/2015 -
		14/12/2015
Suspend 1 (S1)	Reduction of clinical supervision but monthly drug	15/12/2015 -
	refills were provided until buffer stocks were	31/01/2016
	exhausted	
Suspend 2 (S2)	No clinical supervision or drugs were provided	01/02/2016 -
		14/04/2016
Resume 1 (R1)	The service was resumed without medical	15/04/2016 –

		supervision or quality control	31/08/2016
	Resume 2 (R2)	Full service resumed until end of data collection	01/09/2016 –
		period	09/02/2017
127			
128	Data		
129	Patients were giv	ven a unique identification number on enrolment. Dat	a were recorded in paper-
130	based clinic-held	I files by clinical staff and transferred to an electronic	database by a trained data
131	entry operator o	on a weekly basis. Missing data were discussed with th	ne nurse manager and gaps
132	were filled durin	g follow-up clinical visits. Single data entry was perfor	med on a password-protec
133	Microsoft Excel	software application specifically developed by MSF for	r this programme. Anonym
134	exports were tra	nsferred to the study team on a monthly basis.	
135	Demographic da	ta on patients' age, gender, occupation, and village of	residence were recorded
136	enrolment. Card	iovascular risk factors (smoking status, current alcoho	l use), family history of
137	diabetes and yea	ar of diabetes diagnosis were recorded. Clinical param	neters: body mass index (Bl
138	blood pressure (BP) measured by manual sphygmomanometer accord	ing to local MSF protocols
139	fasting capillary	blood glucose (FBG); prescribed diabetes drugs [insuli	n and/or oral hypoglycaem
140	drugs (OHGs)]; a	nd diabetes classification (Type I, Type II or other) we	re recorded at each clinical
141	encounter. Med	ical review at enrolment and six monthly thereafter w	as recorded, including
142	biochemical mar	kers (serum creatinine) and examination for complica	tions (visual acuity, catarac
143	proteinuria, foot	check). Numbers of deaths, transfers out of the area	and delays in attendance v
144	also documente	d. The key programme and clinical outcome measured	l used in the analysis are
145	shown in Table 2	2.	
146			

147 <u>Table 2: Outcome measures used to determine effect of different programme periods on</u>

148 programme delivery and intermediate clinical outcomes

	Category	Variable	
	Frequency of	Number of visits per month	
	Visits	Number of patients seen per month	
		Average visits per patient per month	
		Average days from previous visit	
		Missing data for BP / glycaemia per visit	
	Clinical	Proportion of visits per month where patients' BP is at target (< 140/90	
	Effectiveness	mmHg)	
		Proportion of visits per month were patients' glycaemia is at target (> 4.2	
	and ≤ 8.3 mmol/L)		
	Effect of insulin Proportion of visits per month where BP of patients prescribed* OHG only		
	prescription is at target		
		Proportion of visits per month where BP of patients prescribed* insulin (+/-	
		OHG) is at target	
		Proportion of visits per month where glycaemia of patients prescribed*	
		OHG only is at target	
		Proportion of visits per month where glycaemia of patients prescribed*	
		insulin (+/-OHG) is at target	
149	*Note: "Prescribed" r	efers to the prescription record from the previous visit.	
150			
100			
151	Analysis		
152	Basic demographi	ics were analysed using mean and median and were presented with inter-quartile	
153	ranges. We assess	sed the relationship of different study periods with the frequency of visits and the	

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
17	
18	
19	
20	
21	
22	
22	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
47 48	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
58 59	
60	

impact of study periods on intermediate clinical outcomes i.e. per visit attainment of blood pressure
(< 140/90 mmHg) and glycaemic (> 4.2 and ≤ 8.3 mmol/L) targets.

156 To estimate the effect of a period change we calculated the odds ratio (OR) of the odds of having the 157 biomarker under control in a visit in the new period (t) over the odds of having the biomarker 158 controlled in a visit in the previous period (t-1): $OR_t = Odds_t / Odds_{t-1}$. If $OR_t > 1$, this meant that the 159 chances of the biomarker being under control in a visit in period t was greater than the chances of 160 the biomarker being under control in a visit in the previous period (t-1) (but not necessarily than 161 other periods, t-2, t-3, etc.). Likewise, $OR_t < 1$ implied a reduction in the chances of having the 162 biomarker under control in a visit during period t compared to a visit during the previous period (t-1). To estimate these OR we ran a logistic model with period as a categorical variable, suitably 163 164 coded, and adjusted for sex, age (and square and cube terms) and number of visits of the patient 165 (and square term). Missing data: Our main analysis used only complete data. Few outcome variable data were missing: 166

167 less than 3% in BP control (most of it in the pre-training period) and less than 0.3% for glycaemic

168 control (Supplement SM1). There were no missing data for date of visit, sex or age.

9 169

170 Costing data and analysis

For the descriptive cost analysis we took a health services perspective. Key cost items identified from
a field visit were grouped into: (a) medicine, (b) supplies, and (c) staff time. Monthly resource use
and unit cost data were collected from clinic records (Supplement SM3). Monthly costs for each item
were annualised; total cost, cost per visit and cost per patient were reported in Euro (€) for 2014 and
2015.
The study was approved by the Ministry of Health of North Kivu Province and the MSF and London

177 School of Hygiene and Tropical Medicine Ethics Review Boards.

1		
2 3 4 5	178	Patient and Public Involvement
6 7	179	Patients were not involved in the design or conduct of this study.
8 9 10	180	Results
11 12 13 14	181	Between January 1^{st} 2014 and February 9^{th} 2017, 243 patients were enrolled in the IDC-OPD
15 16	182	programme (Supplement SM2). Median age was 45 years (IQR 32 – 56); 44.6% of the cohort was
17 18	183	female. For adults \geq 18 years (n=219), mean BMI was 21.3 kg/m ² and 31.1% were underweight (BMI
19 20	184	< 18.5 kg/m ²). On enrolment, 8.2% were current smokers; 24.4% reported recent alcohol intake;
21 22	185	self-reported medical history included: 9.1% hypertension, 2.2 % CVD, 2.7% tuberculosis (TB) and
23 24	186	8.7% malnutrition. Half were classified clinically as Type 2 diabetic (51%; n=125); 26% (n=62) as Type
25 26 27	187	1; and 23% (n=56) were either unclassified or classed as "other" (Supplement SM2).
28 29 30 31	188	Trends in outcomes and impact of programmatic events
31 32 33	189	Numbers of visits and appointment intervals increased after the introduction of the systematic
34 35	190	approach to diabetes care, which included monthly review appointments for stable patients (T2)
36 37	191	(Figure 1; Supplement SM4). During the period of scaled back service (S1), visit numbers initially
38 39	192	climbed while the visit interval decreased, which may reflect increased visit frequency due to short-
40 41 42	193	term drug supplies. Once drug buffer stock was exhausted, visit numbers dropped off sharply.
43 44	194	Patients may have avoided or were prevented from attending due to security conditions.
45 46	195	
47 48	196	Figure 1: Average number of days from previous visit per month for Mweso IDC-OPD service
49 50 51 52	197	
53 54	198	BP control was consistently better than glycaemic control (of note, patients without diagnosed
55 56 57	199	hypertension were included in the analysis) (Figure 2). By period T2, approximately 80% of visits
58 59	200	achieved BP and 60% achieved glycaemic control. There was a notable drop in control of both
60		

Page 11 of 33

1

BMJ Open

1 2		
3 4	201	parameters during programme suspension with a gradual improvement on resumption. Blood
5 6	202	pressure control was consistently better, while glycaemic control was consistently worse, in patients
7 8 9	203	prescribed insulin (+/- OHGs) compared with those prescribed OHGs alone (Supplement SM5), which
9 10 11	204	may be because the former group contained relatively young Type 1 and malnutrition-related
12 13	205	diabetics.
14 15	206	
16 17 18	207	Figure 2: Proportion of visits with BP or glycaemia at target by month, Mweso IDC-OPD service
19 20	208	
21		
22 23 24	209	The results of the odds ratio (OR) calculations were unexpected. Odds of attaining BP control
24 25 26	210	appeared to worsen following implementation of the formal IDC-OPD programme (T2 vs. T1), while
27 28	211	odds of attaining glucose control improved, perhaps because care was initially focussed on glucose
29 30	212	control (Supplement SM6). On scaling back the service (S1), control of both parameters seemed to
31 32 33	213	improve, possibly because the service itself or the subset of patients reaching it during the insecure
34 35	214	period were somehow different. Once medications supplies were exhausted (S2), control of both
36 37	215	parameters seemed to worsen, but control was regained on service resumption. Stratifying by
38 39 40	216	insulin prescription showed similar results (Supplement SM5).
41 42	217	Costs of providing diabetes care
43 44 45	218	The total costs of diabetes care in 2014 and 2015 were approximately €32,000 and €26,000
46 47	219	respectively (Table 3). Supplies were the major driver of costs. The main costs in 2014 were for latex
48 49 50	220	gloves, glucometers and glucometer strips, and in 2015 were glucometers, strips and lancets
51 52	221	(Supplement SM3). While medication costs increased in 2015 relative to 2014, total costs decreased,
53 54	222	largely driven by reduced excess consumption of latex gloves post-training. The cost per-patient per-
55 56 57	223	year dropped from €417 to €183 and the cost per-visit halved from €51 to €24. This was due to the
57 58 59 60	224	combined effect of increased patient throughput and lower costs in 2015.

Table 3. Costs (€) of diabetes care in 2014 and 2015, Mweso IDC-OPD service **Cost category** % 2014 costs % 2015 costs Medicine costs 5,202 16% 7,746 29% 79% Supply costs 25,435 17,180 65% Staff costs 1,484 5% 1,484 6% Total costs 32,121 100% 26,410 100% **Costs per visit** Costs per patient Discussion The programme encountered challenges related to insecurity impeding patient access and continuity of care; patient and provider difficulties with insulin management; and lack of evidence or guidance in managing what we believed to be malnutrition-related diabetes. Despite this, the findings show that glycaemic control was similar or better to that documented in other humanitarian or low-income settings (although different targets were used) and, while it was positively impacted by programmatic changes, control clearly deteriorated during periods of heightened insecurity.[14] Our findings indicate that, in a population previously undergoing regular supervision, a simplified nurse-provided, algorithm-driven service with consistent medication supply may be as effective as close medical supervision in maintaining disease control, particularly during periods of service interruption. Medical input could thus be focused on achieving glycaemic control in patients prescribed insulin, who appeared most affected by service interruption.

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
23 24	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
54	
55	
56	
57	
58	
59	
60	

We suggest that chronic disease programmes in unstable settings should engage in emergency
preparedness, learning from the experience of HIV programmes in similar settings.[20] Preparation
may include: emergency response planning; patient triage by vulnerability; provision of patient-held
treatment plans and emergency kits; building staff capacity to allow flexibility of roles in crises;
establishing alternative communication networks, including technology-facilitated patient support;
and medication stockpiling and secure storage.[4,20,21]

The relatively poorer glycaemic control in insulin-prescribed patients may reflect either disease severity or the challenges associated with insulin therapy. Adherence to daily insulin injections is difficult anywhere; in Mweso, patients are challenged by the security, financial and geographical barriers to accessing medications and the recommended diabetes diet.[13] Adjusting insulin doses based on single fasting glucose readings and patients' reported symptoms proved challenging for clinicians.

There is limited, although growing, evidence on the incidence, prevalence and characterisation of 253 254 diabetes in Sub-Saharan Africa, which our findings broadly reflect.[15] Several reviews have described controversial "atypical" forms of diabetes, including "malnutrition-related diabetes" in 255 256 Sub-Saharan Africa. [9,16] Local prevalence studies support its existence in the DRC, which is in 257 keeping with the high proportion of underweight adults and "unclassified" diabetics in our cohort.[10,17] Little evidence exists to guide either malnutrition-related diabetes care or the 258 259 effective management of insulin in humanitarian settings, particularly in the absence of home or 260 community-based glycaemia testing.[2,5]

The introduction of the IDC-OPD programme, and associated training, contributed to reducing total
 costs of care by approximately 20% and per patient per year (PPPY) costs by 44% from 2014 to 2015.
 To our knowledge, there is no available literature to compare costs of diabetes care delivered in a
 similar setting. However, the 2015 PPPY cost reported here is far lower than that reported by

BMJ Open

PEPFAR and others to deliver chronic HIV care programmes in low and middle income Sub-Saharan
Africa countries.[18,19]

Future research is needed in complex humanitarian settings to evaluate simplified, task-shared models of diabetes care; to optimise insulin management without regular finger-stick glycaemia testing; and to evaluate emergency preparedness plans and technology-facilitated remote patient support.[2,4,7,9,21] This should include the cost-effectiveness of different models of diabetes care.

271 Limitations

Our study was limited by the relatively small sample size and lack of control group for comparison. We did not explore per patient control of clinical parameters over time, control by type of diabetes (or by age), or appropriateness of insulin prescribing. Care for gestational diabetes was not addressed since this took place within antenatal care. Our costing analysis was descriptive and thus we cannot comment on the cost-effectiveness of the programme. Costing data are presented as average annual costs and did not explore the impact of the various programme periods on costs or patient-level costs. While our findings may not be generalizable to other complex humanitarian settings or to other providers' diabetes programmes in the DRC, our study contributes knowledge on key challenges and suggests solutions, which may be more broadly applicable.

281 Conclusion

Our results help develop the sparse knowledge on prevalence and characterisation of diabetes in
Sub-Saharan Africa. They demonstrate that diabetes care is feasible even in complex humanitarian
emergencies, and at a cost that is lower than chronic HIV care. The results also indicate that the
Mweso IDC-OPD programme could be further simplified to involve drug collection along with nurseled, algorithm-guided treatment adjustment. We suggest that chronic disease programmes in
unstable settings should engage in emergency preparedness, learning from the experience of HIV
programmes in similar settings. Future research is needed to evaluate simplified, task-shared models

1 2			
3 4	289	of diabetes ca	re and management; and to evaluate emergency preparedness plans and technology-
5 6 7	290	facilitated rem	note patient support.
8 9 10	291		
11 12 13	292	List of Abb	reviations
14 15 16	293	BMI	Body Mass Index
17 18	294	BP	Blood Pressure
19 20	295	DM	Diabetes Mellitus
21 22	296	DRC	Democratic Republic of Congo
23 24 25	297	HIV	Human Immunodeficiency Virus
26 27	298	IDC-OPD	Integrated Diabetic Clinic within Hospital Outpatient Department
28 29	299	MSF	Médecins sans Frontières
30 31	300	OHG	Oral Hypoglycaemic Drugs
32 33 34	301	OR	Odds Ratio
34 35 36	302	РРРҮ	Per Patient Per Year
37 38	303		
39 40 41	304		
42 43	305		
44 45			
46 47			
48 49			
49 50			
51 52			
52 53			
54			
55 56			
57			
58 59			
59 60			

Declarations

Ethics approval and consent to participate

This study was approved by the Ministry of Health of North Kivu Province, DRC, by the MSF Ethics Review Board, and the Ethics Committee of the London School of Hygiene and Tropical Medicine. Information sheets on the clinic walls provided details of the evaluation; no specific consent was sought from patients for use of their routine clinical data.

Authors' contributions

- KJ and BR were involved in study conception; EA, GC, KJ, DPM, PP and BR contributed to study
- design and interpretation of data. DPM and ZS analysed the data. MB contributed to data collection.
- EA drafted the manuscript and all authors reviewed drafts and approved the final version.

Acknowledgements

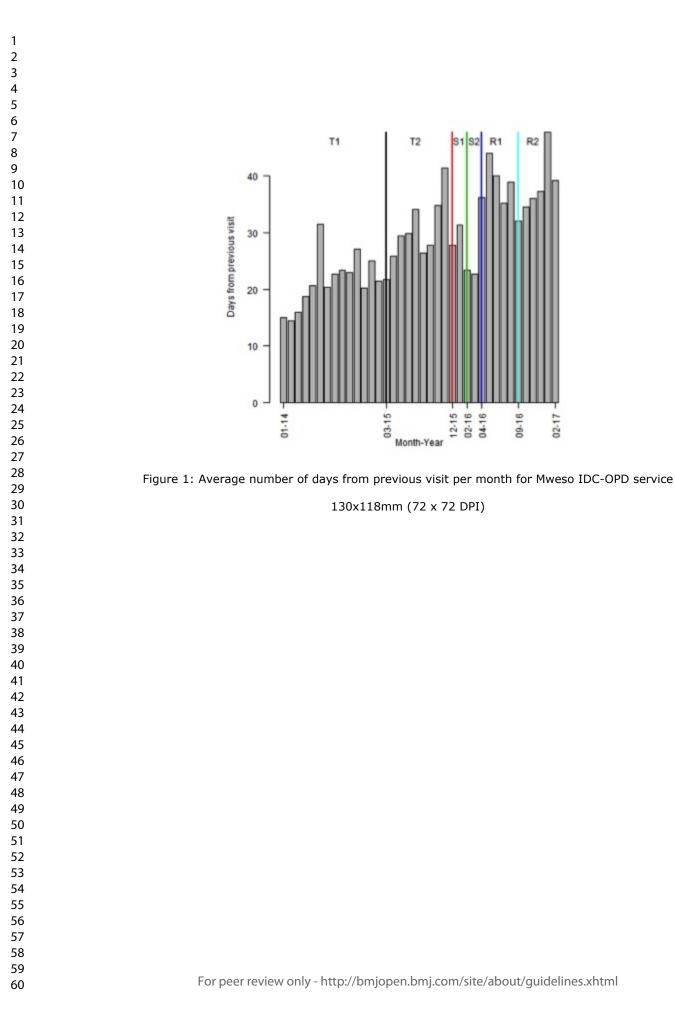
- We gratefully acknowledge the staff and patients of the MSF IDC-OPD programme for their
- contribution to this study. We thank Sarah Venis for her helpful review of the article. This work was
- presented at MSF Scientific Days Conference in London, May 2018.

Competing Interests

The authors declare that they have no competing interests.

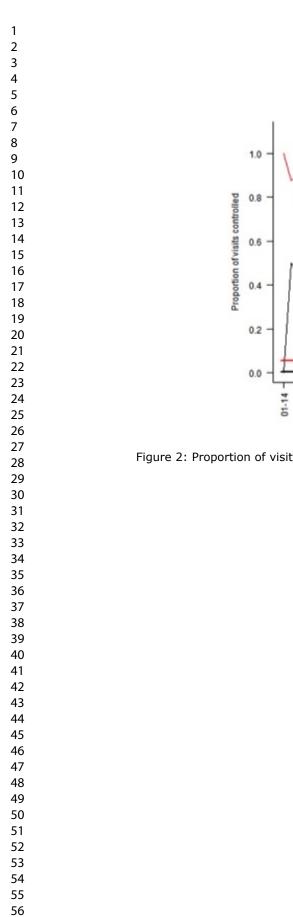
Data Sharing

- The datasets are available from MSF on request by researchers who fulfil certain criteria and under
- the auspices of a data sharing agreement.
- Funding
- This study was funded by Médecins sans Frontières.


2			
3 4 5	327	Refe	erences
6 7	328	1	NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled
8 9	329		analysis of 751 population-based studies with 4.4 million participants. Lancet (London,
10 11 12	330		<i>England)</i> 2016; 387 :1513–30. doi:10.1016/S0140-6736(16)00618-8
13 14	331	2	Demaio A, Jamieson J, Horn R, et al. Non-Communicable Diseases in Emergencies: A Call to
15 16 17	332		Action. <i>PLoS Curr</i> Published Online First: 2013.
18 19	333		doi:10.1371/currents.dis.53e08b951d59ff913ab8b9bb51c4d0de
20 21 22	334	3	Roberts B, Patel P, McKee M. Noncommunicable diseases and post-conflict countries. Bull
23 24 25	335		World Health Organ 2011; 90 :2–2A. doi:10.2471/BLT.11.098863
26 27	336	4	Besançon S, Fall I-S, Doré M, et al. Diabetes in an emergency context: the Malian case study.
28 29 30	337		<i>Confl Health</i> 2015; 9 :15. doi:10.1186/s13031-015-0042-9
31 32	338	5	Ruby A, Knight A, Perel P, et al. The Effectiveness of Interventions for Non-Communicable
33 34	339		Diseases in Humanitarian Crises: A Systematic Review. <i>PLoS One</i> 2015; 10 :e0138303.
35 36 37	340		doi:10.1371/journal.pone.0138303
38 39	341	6	Roberts B, Patel P, McKee M. Noncommunicable diseases and post-conflict countries. Bull
40 41 42	342		World Health Organ 2012; 90 :2, 2A. doi:10.2471/BLT.11.098863
43 44	343	7	Jobanputra K, Boulle P, Roberts B, et al. Three Steps to Improve Management of
45 46 47	344		Noncommunicable Diseases in Humanitarian Crises. PLOS Med 2016;13:e1002180.
48 49	345		doi:10.1371/journal.pmed.1002180
50 51 52	346	8	Whiting DR, Guariguata L, Weil C, et al. IDF diabetes atlas: global estimates of the prevalence
53 54	347		of diabetes for 2011 and 2030. <i>Diabetes Res Clin Pract</i> 2011; 94 :311–21.
55 56 57	348		doi:10.1016/j.diabres.2011.10.029
58 59 60	349	9	Atun R, Davies JI, Gale EAM, et al. Diabetes in sub-Saharan Africa: from clinical care to health

Page 18 of 33

BMJ Open


1			
2 3 4	350		policy. <i>lancet Diabetes Endocrinol</i> 2017; 5 :622–67. doi:10.1016/S2213-8587(17)30181-X
5 6 7	351	10	Muyer MT, Muls E, Mapatano MA, et al. Diabetes and intermediate hyperglycaemia in
8 9	352		Kisantu, DR Congo: a cross-sectional prevalence study. BMJ Open 2012;2:e001911.
10 11 12	353		doi:10.1136/bmjopen-2012-001911
13 14	354	11	Jobanputra K, Ansbro É. MSF OCA Mweswo Guide de diabète pour patients ambulatoires.
15 16 17	355		2015. http://fieldresearch.msf.org/msf/handle/10144/619307 (accessed 07 Jan 2019).
18 19	356	12	ONG Santé Diabète / NGO Health Diabetes - Home. https://santediabete.org/en/ (accessed
20 21 22	357		20 Aug 2018).
23 24 25	358	13	Murphy A, Biringanine M, Roberts B, et al. Diabetes care in a complex humanitarian
25 26 27	359		emergency setting: a qualitative evaluation. BMC Health Serv Res 2017;17:431.
28 29	360		doi:10.1186/s12913-017-2362-5
30 31 32	361	14	Cohen DB, Allain TJ, Glover S, et al. A survey of the management, control, and complications
33 34	362		of diabetes mellitus in patients attending a diabetes clinic in Blantyre, Malawi, an area of high
35 36 37	363		HIV prevalence. <i>Am J Trop Med Hyg</i> 2010; 83 :575–81. doi:10.4269/ajtmh.2010.10-0104
38 39	364	15	Hall V, Thomsen RW, Henriksen O, et al. Diabetes in Sub Saharan Africa 1999-2011:
40 41	365		Epidemiology and public health implications. a systematic review. BMC Public Health
42 43 44	366		2011; 11 :564. doi:10.1186/1471-2458-11-564
45 46	367	16	A sub-Saharan African perspective of diabetes.
47 48 49	368		file:///C:/Users/DAnsbro/Downloads/0f317533c181fe640b000000.pdf (accessed 30 Jan
50 51	369		2015).
52 53 54	370	17	Hightower JD, Hightower CM, Vázquez BYS, et al. Incident prediabetes/diabetes and blood
55 56	371		pressure in urban and rural communities in the Democratic Republic of Congo. Vasc Health
57 58 59 60	372		<i>Risk Manag</i> 2011; 7 :483–9. doi:10.2147/VHRM.S22707
50			

1 2			
2 3 4	373	18	Bikilla A, Jerene D, Robberstad B, et al. Cost estimates of HIV care and treatment with and
5 6	374		without anti-retroviral therapy at Arba Minch Hospital in southern Ethiopia. Cost Eff Resour
7 8 9	375		<i>Alloc</i> 2009; 7 :6. doi:10.1186/1478-7547-7-6
10 11 12	376	19	2013 Report on Costs of Treatment in the President's Emergency Plan for AIDS Relief
12 13 14	377		(PEPFAR) Background. https://www.pepfar.gov/documents/organization/212059.pdf
15 16 17	378		(accessed 21 Dec 2017).
17 18 19	379	20	Culbert H, Tu D, O'Brien DP, et al. HIV Treatment in a Conflict Setting: Outcomes and
20 21	380		Experiences from Bukavu, Democratic Republic of the Congo. <i>PLoS Med</i> 2007; 4 :e129.
22 23 24	381		doi:10.1371/journal.pmed.0040129
25 26	382	21	Slama S, Kim H-J, Roglic G, et al. Care of non-communicable diseases in emergencies. Lancet
27 28 29	383		(London, England) 2017; 389 :326–30. doi:10.1016/S0140-6736(16)31404-0
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60			

60

BMJ Open

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

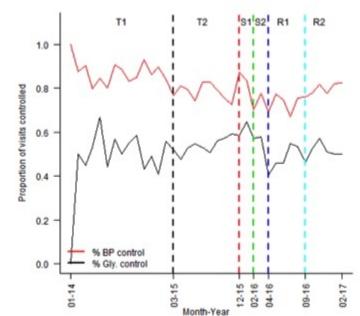
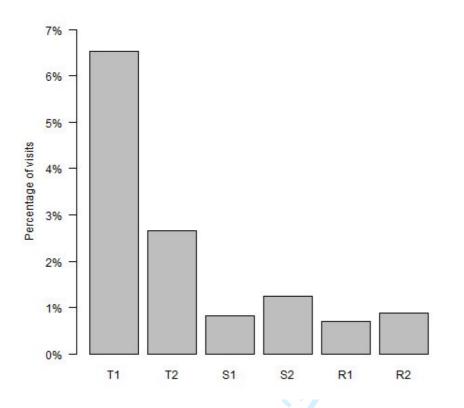



Figure 2: Proportion of visits with BP or glycaemia at target by month, Mweso IDC-OPD service

127x113mm (72 x 72 DPI)

SM1. Proportion of visits with missing data for either blood pressure or glycaemia

Note: Definitions of study periods T1 – R2 are described in Supplementary Data S1

Variable	Total	(%)	DM-1	(%)	DM-2	(%)	Other/NA	(%)
Patients (N)	243		62		125		56	
Age								
<18	24	(9.9%)	19	(30.6%)	0	(0.0%)	5	(8.9%)
18-40	74	(30.5%)	39	(62.9%)	20	(16.0%)	15	(26.8%)
41-60	112	(46.1%)	3	(4.8%)	80	(64.0%)	29	(51.8%
>60	33	(13.6%)	1	(1.6%)	25	(20.0%)	7	(12.5%
Sex								
Male	134	(55.1%)	34	(54.8%)	70	(56.0%)	30	(53.6%)
Female	108	(44.4%)	28	(45.2%)	55	(44.0%)	25	(44.6%
No data	1	(0.4%)	0	(0.0%)	0	(0.0%)	1	(1.8%
Occupation								
Labourer	121	(49.8%)	29	(46.8%)	85	(68.0%)	7	(12.5%
Office worker	19	(7.8%)	2	(3.2%)	11	(8.8%)	6	(10.7%
Student	8	(3.3%)	8	(12.9%)	0	(0.0%)	0	(0.0%
Unable to work	11	(4.5%)	7	(11.3%)	3	(2.4%)	1	(1.8%
Other	48	(19.8%)	15	(24.2%)	26	(20.8%)	7	(12.5%
No data	36	(14.8%)	1	(1.6%)	0	(0.0%)	35	(62.5%
Medical History								
CVD								
Yes	5	(2.1%)	1	(1.6%)	3	(2.4%)	1	(1.8%
No data	24	(9.9%)	0	(0.0%)	0	(0.0%)	24	(42.9%
Hypertension								
Yes	20	(8.2%)	0	(0.0%)	18	(14.4%)	2	(3.6%
No data	25	(10.3%)	0	(0.0%)	1	(0.8%)	24	(42.9%
Tuberculosis								
Yes	6	(2.5%)	1	(1.6%)	5	(4.0%)	0	(0.0%
No data	24	(9.9%)	0	(0.0%)	0	(0.0%)	24	(42.9%
Malnutrition								
Yes	19	(7.8%)	15	(24.2%)	2	(1.6%)	2	(3.6%
No data	24	(9.9%)	0	(0.0%)	0	(0.0%)	24	(42.9%
Family Hx of DM								
Yes	35	(14.4%)	6	(9.7%)	23	(18.4%)	6	(10.7%
No data	24	(9.9%)	0	(0.0%)	0	(0.0%)	24	(42.9%

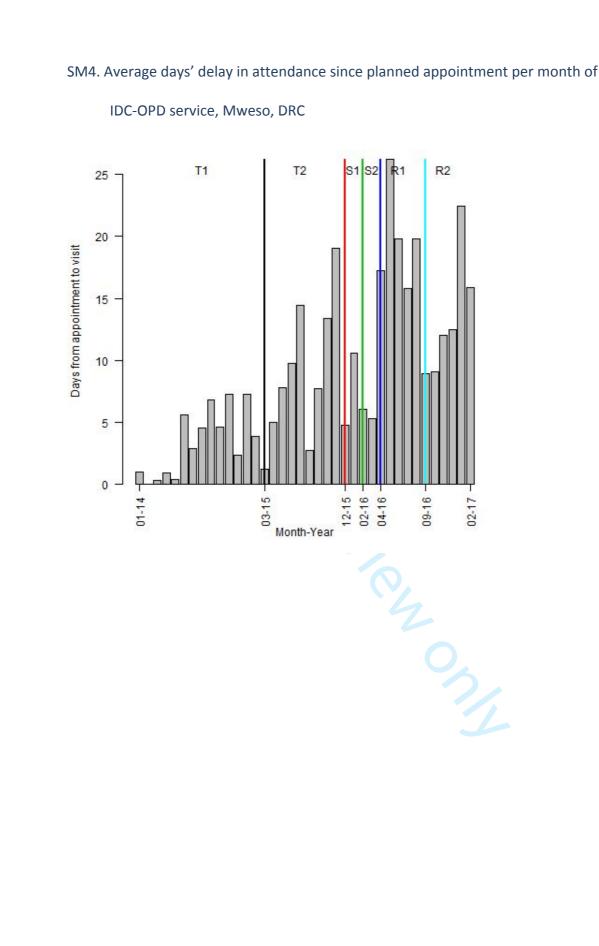
Patients >=18 years(N)*	219		43		125		51	
Smoking								
Yes	18	(8.2%)	1	(2.3%)	16	(12.8%)	1	(2.0%)
No data	21	(9.6%)	0	(0.0%)	0	(0.0%)	21	(41.2%)
Alcohol								
Yes	50	(22.8%)	12	(27.9%)	32	(25.6%)	6	(11.8%)
No data	33	(15.1%)	0	(0.0%)	1	(0.8%)	32	(62.7%)
ВМІ								
<18.5	68	(31.1%)	23	(53.5%)	34	(27.2%)	11	(21.6%)
18.5-24.9	96	(43.8%)	15	(34.9%)	59	(47.2%)	22	(43.1%)
25.0-29.9	41	(18.7%)	5	(11.6%)	27	(21.6%)	9	(17.6%)
>=30	7	(3.2%)	0	(0.0%)	5	(4.0%)	2	(3.9%)
No data	7	(3.2%)	0	(0.0%)	0	(0.0%)	7	(13.7%)

Note: For smoking, alcohol and BMI, denominators included only patients aged 18 years or above.

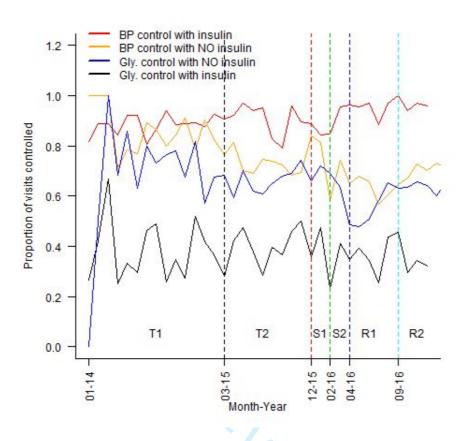
, restricts aged 18 years or

to peet terier only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

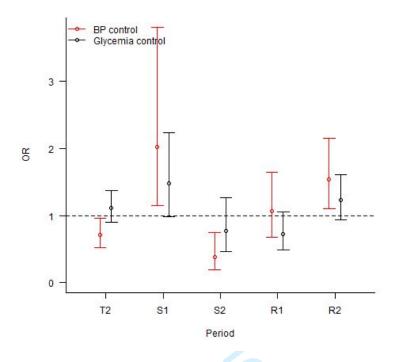

to beet terien only

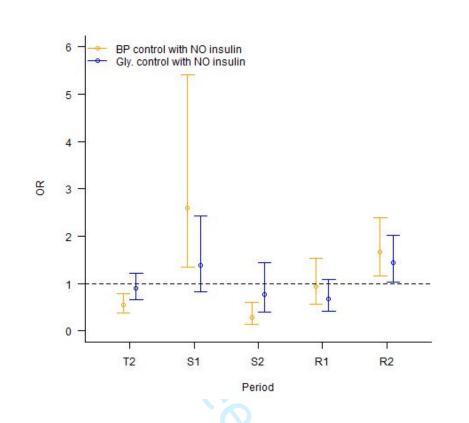
SM3. Monthly resource use associated with IDC-OPD in Mweso Hospital, North Kivu,


DRC

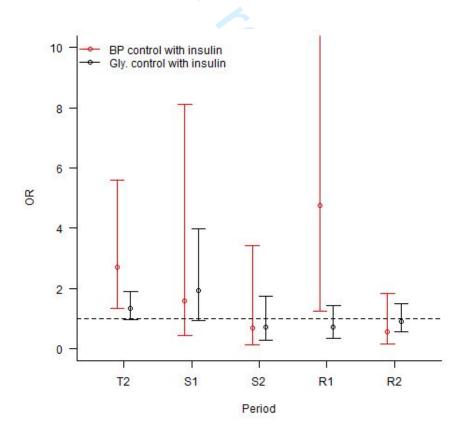
ems	Unit	2014	2015
1edicine			
INSULIN ISOPHANE (NPH), human, 100 UI/ml, 10 ml, vial	6.300	40	40
INSULIN RAPID, human, 100 IU/ml, 10 ml, vial	6.300	8	8
INSULIN, 100IU/ml, BIPHASIC 30, human, 10ml, vial	13.610	10	10
METFORMIN hydrochloride, 500 mg, tab.	0.014	5,300	12,000
GLIBENCLAMIDE, 5 mg, tab.	0.005	750	3,600
HYDROCHLOROTHIAZIDE, 50 mg, tab.	0.003	0	300
GLUCOSE HYPERTONIC, 50%, 50 ml, vial	0.556	75	6
AMITRIPTYLINE hydrochloride, 25 mg, tab.	0.006	200	750
ACETYLSALICYLIC acid (aspirin), 75 mg, tab.	0.005	0	2,000
AMLODIPINE 5mg, tabs.	0.018	0	300
upplies			
GLUCOMETER, blood glucose monitor (Nova StatStrip) + strips	96.705	5	10
(glucometer Nova StatStrip) STRIP ref. 42214	0.230	2,000	4,000
SYRINGE, s.u., Luer, insulin, 100 IU/1 ml + fixed needle	0.079	2,000	4,000
(spectrophotometer) KIT, DOSAGE CREATININE, Liquicolor 200ml	4.830	3.5	3.5
THERMOMETER, ELECTRONIC, accuracy 0.1§ C + case	1.110	20	3
SPHYGMOMANOMETER, one-hand manometer, Velcro, adult	26.000	0	1
TEST, URINE, pH,dens,prot,gluc,ket,blood,nit,leuc, 1 strip	0.197	100	200
REUSABLE SHARPS CONTAINER (RSC), 1.2 litre	44.750	1	1
CONTAINER, SAMPLE, plast., 60ml, non sterile, urine	0.083	1,700	200
LANCET, s.u., sterile, standard point	0.006	900	4,000
GLOVE, EXAMINATION, latex, s.u. non sterile, medium	0.025	50,000	500
taff time (days allocated to diabetes care)*			
MSF Medical doctor	1,350	1	1
MSF Nurse	900	1	1
BCZ Nurse	239	1	1
MSF psychosocial worker	1,422	0.125	0.125
1 Nutritionist (MSF)	864	0.0625	0.062

*Note: Staff time costs assumed 22 full-time working days per month.


SM5. Proportion of visits at target for BP and glycaemic control, stratified by insulin prescription per month of IDC-OPD service, Mweso, DRC


Note: Patients were categorised by whether they were prescribed insulin [+/- oral hypoglycaemic (OHG) drugs]) or OHG drugs alone at their last recorded visit. The former group would have included Type 1 diabetics, Type 2 diabetics with more advance illness requiring a combination of OHG and insulin, and those with an intermediate type of diabetes, presenting with high insulin requirements in the absence of diabetic ketoacidosis, which we postulated represented "malnutrition-related diabetes". The latter group were likely to include Type 2 diabetics.

SM6. Impact (OR) on BP and glycaemic control of study period over previous period, unstratified (A) and stratified by insulin prescription (B and C) per month of IDC-OPD service, Mweso, DRC


A. Impact (OR) on BP and glycaemia in all patients (not stratified by insulin prescription)

B. Impact (OR) on BP and glycaemia in patients on oral hypoglycaemic drugs only

C. Impact (OR) on BP and glycaemia in patients prescribed insulin (+/- OHG)

STROBE Statement—Checklist of items that should be included in reports of cross-sectional studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	5,6
Methods			,
Study design	4	Present key elements of study design early in the paper	5,7,8
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	4 -7
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants	5,7,8
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7,9
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why		
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	8
		(b) Describe any methods used to examine subgroups and interactions	n/a
		(c) Explain how missing data were addressed	9; Sup Mat1
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling strategy	8
		(<u>e</u>) Describe any sensitivity analyses	n/a
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	10
		(b) Give reasons for non-participation at each stage	n/a
		(c) Consider use of a flow diagram	n/a
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Supp Mat 2
		(b) Indicate number of participants with missing data for each variable of interest	Supp Mat 1

Study Title: Management of diabetes and associated costs in a complex humanitarian setting in the Democratic Republic of Congo.

Outcome data	15*	Report numbers of outcome events or summary measures	n/a
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	8
		estimates and their precision (eg, 95% confidence interval). Make clear	
		which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were	Supp
		categorized	Mat 2
		(c) If relevant, consider translating estimates of relative risk into absolute	n/a
		risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions,	n/a
		and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	10-12
Limitations	19	Discuss limitations of the study, taking into account sources of potential	14
		bias or imprecision. Discuss both direction and magnitude of any potential	
		bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	12-14
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	14
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study	16
		and, if applicable, for the original study on which the present article is	
		based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

BMJ Open

Management of diabetes and associated costs in a complex humanitarian setting in the Democratic Republic of Congo: a retrospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-030176.R1
Article Type:	Original research
Date Submitted by the Author:	21-Aug-2019
Complete List of Authors:	Ansbro, Éimhín; Médecins sans Frontières, Manson Unit; London School of Hygiene and Tropical Medicine Faculty of Epidemiology and Population Health, Centre for Global Chronic Conditions Biringanine, Michel; Medecins Sans Frontieres Operational Centre Amsterdam, Mweso Hospital Caleo, Grazia; Médecins sans Frontières, Manson Unit Prieto-Merino, David; London School of Hygiene and Tropical Medicine Faculty of Epidemiology and Population Health, Epidemiology of NCDs Sadique, Zia; London School of Hygiene and Tropical Medicine Faculty of Public Health and Policy, Health Services Research and Policy Perel, Pablo; London School of Hygiene and Tropical Medicine Faculty of Epidemiology and Population Health, Centre for Global Chronic Conditions Jobanputra, Kiran; Médecins sans Frontières, Manson Unit Roberts, Bayard; London School of Hygiene and Tropical Medicine Faculty of Public Health and Policy, Centre for Global Chronic Conditions
Primary Subject Heading :	Global health
Secondary Subject Heading:	Diabetes and endocrinology, Epidemiology
Keywords:	Health economics < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, DIABETES & ENDOCRINOLOGY, International health services < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Epidemiology < TROPICAL MEDICINE, General diabetes < DIABETES & ENDOCRINOLOGY

SCHOLARONE[™] Manuscripts

1		
2 3	1	Title: Management of diabetes and associated costs in a complex humanitarian setting in the
4 5	-	
6	2	Democratic Republic of Congo: a retrospective cohort study.
7 8		
9	3	Corresponding Author:
10 11	4	Éimhín Ansbro,
12 13		
14	5	Formerly: Manson Unit, Médecins sans Frontières, London, United Kingdom
15 16 17	6	Currently: London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
18	7	Email: eimhin.ansbro@lshtm.ac.uk Tel: +44(0) 207 927 2086
19 20		
21 22	8	Authors:
23	_	
24 25	9	1. Éimhín Ansbro, Manson Unit, Médecins sans Frontières, London, United Kingdom; London
26	10	School of Hygiene & Tropical Medicine, United Kingdom.
27 28	11	2. Michel Biringanine, Médecins sans Frontières Operational Centre Amsterdam, Mweso
29 30	12	Hospital, North Kivu, Democratic Republic of Congo
31	13	3. Grazia Caleo, Manson Unit, Médecins sans Frontières, London, United Kingdom
32 33	14	4. David Prieto-Merino, Department of Noncommunicable Disease Epidemiology, London
34 35	15	School of Hygiene and Tropical Medicine, London, United Kingdom
36	16	5. Zia Sadique, Department of Health Services Research and Policy, London School of Hygiene
37 38	17	and Tropical Medicine, London, United Kingdom
39	18	6. Pablo Perel, Centre for Global Chronic Conditions, London School of Hygiene and Tropical
40 41	19	Medicine, London, United Kingdom
42 43	20	7. Kiran Jobanputra, Manson Unit, Médecins sans Frontières, London, United Kingdom
44	21	8. Bayard Roberts, Centre for Global Chronic Conditions, London School of Hygiene and
45 46	22	Tropical Medicine, London, United Kingdom (Bayard.Roberts@lshtm.ac.uk)
47 48	23	
49	24	Word Count: 4000
50 51	25	
52	26	Keywords: Democratic Republic of Congo, Subsaharan Africa, diabetes, hypertension,
53 54	27	noncommunicable disease, humanitarian, conflict, care model, management, programme, chronic
55 56	28	care, outpatient, hospital care, task shifting, cost, economic.
57	29	
58 59		
60		

3 4 5	30	Abstract
6 7	31	Objective: We aimed to evaluate an Integrated Diabetic Clinic within a Hospital Outpatient
8 9 10	32	Department (IDC-OPD) in a complex humanitarian setting in North Kivu, Democratic Republic of
11 12	33	Congo. Specific objectives were to: (i) analyse diabetes intermediate clinical and programmatic
13 14	34	outcomes (blood pressure/glycaemic control, visit volume and frequency); (ii) explore the
15 16 17	35	association of key insecurity and related programmatic events with these outcomes; and (iii)
18 19	36	describe incremental IDC OPD programme costs.
20 21 22	37	Design: Retrospective cohort analysis of routine programmatic data collected from January 2014 -
23 24 25	38	February 2017; analysis of programme costs for 2014/2015.
26 27	39	Setting: Outpatient diabetes programme in Mweso hospital, supported by Médecins sans Frontières,
28 29 30	40	in North Kivu, Demographic Republic of Congo.
31 32 33	41	Participants: Diabetes patients attending IDC-OPD.
34 35	42	Outcome measures: Intermediate clinical and programmatic outcome trends (blood pressure/
36 37 38	43	glycaemic control; visit volume/frequency); incremental programme costs.
39 40	44	Results: Of 243 diabetes patients, 44.6% were women, median age was 45 (IQR 32-56); 51.4% were
41 42 43	45	classified Type 2. On introduction of IDC-OPD, glucose control improved and patient volume and visit
44 45	46	interval increased. During insecurity, control rates were initially maintained by a nurse-provided,
46 47	47	scaled-back service, while patient volume and visit interval decreased. Following service suspension
48 49 50	48	due to drug stock-outs, patients were less likely to achieve control;, improving on service
50 51 52	49	resumption. Total costs decreased 20% from 2014 (€32,121) to 2015 (€26,410). Annual cost per
53 54	50	patient dropped from €417 in 2014 to €183 in 2015 due to reduced supply costs and increased
55 56 57 58 59	51	patient numbers.

BMJ Open

3 4	52	Conclusions: In a chronic conflict setting, we documented that control of diabetes intermediate
5 6	53	outcomes was achievable during stable periods. During insecure periods, a simplified, nurse-led
7 8 9	54	model maintained control rates until drug stock-outs occurred. Incremental per patient annual costs
10 11	55	were lower than chronic HIV care costs in low-income settings. Future operational research should
12 13 14	56	define a simplified diabetes care package including emergency preparedness.
15 16	57	
17 18 19	58	Strengths and Limitations
20 21	59	• This is the first study of its kind to examine diabetes intermediate clinical outcomes and
22 23	60	programme costs in a complex humanitarian setting in sub-Saharan Africa.
24	61	Using routine clinical and programmatic data collected in a protracted conflict setting, we
25 26	62	estimated the effect of insecurity and related programmatic changes on diabetes
27	63	intermediate clinical outcomes, which to our knowledge, has not been addressed in the
28 29	64	literature to date.
30 31	65	 The study was limited by the relatively small sample size and lack of control group for
32	66	comparison.
33 34		
35	67	• The costing analysis was descriptive and based on aggregate data and so neither the cost-
36 37	68	effectiveness of the programme nor patient-level costs could be determined.
38 39 40 41	69	
42 43		
44		
45 46		
47		
48 49		
50		
51 52		
53		
54 55		
56		
57		
58 59		
60		

BMJ Open

Title: Management of diabetes and associated costs in a complex humanitarian setting in the Democratic Republic of Congo: a retrospective cohort study. Background Over the past 40 years, diabetes prevalence has increased sharply worldwide, particularly in low and middle income countries (LMICs).[1] However, data on the burden and needs related to diabetes and other non-communicable diseases (NCDs) are scarce from conflict-affected countries, particularly those in Sub-Saharan Africa.[1,2] Humanitarian actors have been slow to prioritise diabetes treatment in disaster and post-conflict settings despite reporting increasing presentations of diabetic patients within their programmes.[3-6] This is due to lack of knowledge on local diabetes epidemiology, limited research on diabetes management or outcomes in crisis settings; a lack of programmatic and policy guidance or tools to support diabetes care in such settings; prioritisation of other health needs; and also a perception that diabetes care is complex and expensive. [2,3,6-8] The humanitarian situation in Democratic Republic of Congo (DRC) is considered one of the most complex and challenging worldwide. Prolonged conflict over two decades has resulted in over 5 million deaths, over 4.5 million internally displaced people, the exodus of over 800,000 refugees, and ongoing political and social instability. [9,10] The health system, weakened by prolonged conflict, is challenged by competing health needs in a country ranked 176 of 189 on the human development index despite holding rich natural resources. [11] On this backdrop, diabetes prevalence is increasing, currently estimated at 4.0 - 5.4%. [12–14] While

some factors implicated in the global rise in diabetes prevalence hold true in DRC (demographic

- change, urbanisation, changing diets etc.) chronic conflict and political instability add additional

Page 5 of 39

1 2

BMJ Open

3	
4	
5	
6 7	
, o	
0	
8 9 10	
10	
11	
12	
13	
14	
12 13 14 15 16 17	
16	
17	
18	
18 19	
20	
21	
22	
20 21 22 23 24 25 26 27 28 29	
23	
24	
25	
20	
27	
28	
29	
30 31 32 33	
31	
32	
33	
34	
35	
20	
36 37	
38	
39	
40	
41	
42	
42 43	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

93 complexity. Recent reviews and ethnographic evidence point to a link between chronic food 94 insecurity, childhood malnutrition and diabetes. [13,15,16] In DRC, 43% of children under 5 years are 95 chronically malnourished and levels of food insecurity have risen sharply, with millions subsisting on 96 World Food Programme rations. [17] Recent evidence also supports an association between chronic 97 perceived stress and diabetes onset, while patients with diabetes in humanitarian settings focus on 98 suffering and loss as a cause of their illness. [16,18] Furthermore, in humanitarian crises, people with 99 diabetes are at increased risk of complications and death due to treatment interruption and 100 precarious access to food and water. [2,6]

101 Médecins sans Frontières (MSF), a medical humanitarian organisation, has supported healthcare 102 delivery in Mweso, North Kivu, in collaboration with the Ministry of Health since 2008. North Kivu is 103 a rural, impoverished area bordering Rwanda with an estimated population of 365,000. It remains a 104 flash point in the on-going conflict between shifting rebel groups and government forces, which has 105 been characterised by brutal violence against civilians and destruction of lives and livelihoods. 106 Outbreaks of violence since 2016 have resulted in recurrent waves of population displacement; 107 North Kivu alone hosts 17 internally displaced person camps. MSF supports health services in 4 out 108 of 23 Primary Health Care clinics and in Mweso hospital within Masisi District. Mweso hospital 109 serves a catchment area of approximately 145,000 people, with about 65,000 recipients of care 110 living in the immediate vicinity of the hospital.

While a national diabetes programme exists in DRC, available diabetes care is concentrated at
hospital level in major cities. [19] In response to growing patient and provider needs in Mweso, MSF
implemented a hospital-outpatient based diabetes programme in March 2015, the Integrated
Diabetic Clinic within Hospital Outpatient Department (IDC-OPD) in place of the ad hoc care
previously undertaken. The IDC-OPD was integrated at the clinical level into usual outpatient
activities, with pre-existing staff trained to provide this additional service. [20] The programme
comprised a nurse-led, multi-disciplinary model, using locally adapted clinical guidelines, patient

BMJ Open

counselling materials and data collection tools, accompanied by three days of specialist training.[21]
The clinic team included: a nurse supervisor, nursing assistant, two doctors, a nutritionist, and
education and psychosocial support officers. Diabetes was diagnosed according to World Health
Organization (WHO) guidelines using repeated fasting capillary glucose. Most patients were
identified as diabetic and enrolled after acute hospital presentation, while some were identified via
the Mweso outpatient department or referring primary care clinics.

Patients received a detailed enrolment assessment, monthly nurse-led follow-up and 6-monthly medical review. The programme included context-adapted dietary advice (accounting for locally available and affordable foods and customs) and psychosocial support, including clinician-moderated peer support groups and involvement of family or friends as treatment supporters. The psychosocial aspects of patients and providers managing diabetes are discussed in a related paper, with major themes from the patient perspective including the difficulty adhering to the recommended diet and barriers to clinic access during outbreaks of violence. [22] Each patient was given a clinic-held patient file and patient-held passport to facilitate safe passage when armed groups impeded their travel. Clinical guidelines were adapted from MSF, WHO and other international guidance. [23] Patient educational tools (disease and diet education leaflets) were adapted from Santé Diabète [24], a Malian Non-Governmental Organisation, and generic medications, included on MSF's Essential Drugs List, were prescribed. Insulin doses were adjusted using single fasting capillary blood glucose readings and patients' reported symptoms of hypo- or hyperglycaemia in the absence of home glucose monitoring. Insulin-dependent patients were prescribed human insulin, delivered via needle and syringe, and advised to store this at home in a clay pot (refrigeration was unavailable), recommended as a safe alternative in similar contexts. [25]

In early 2016, outbreaks of armed violence restricted movement of patients and supplies. Direct
 attacks on MSF staff and facilities, including an armed robbery and abductions, led to withdrawal of
 the international staff from Mweso and temporary scaling back of the programme, with local nursing

BMJ Open

staff dispensing medications to any patients reaching the clinic. Later, the programme was
suspended for a period of six weeks when supply routes were entirely blocked and drug supplies
were exhausted.

A mixed methods evaluation of the Mweso IDC-OPD programme was undertaken by MSF and included a qualitative evaluation exploring patient and provider clinical and psychosocial challenges, presented elsewhere [22]; and a retrospective review of quantitative programmatic data and cost data collected as part of routine care in a chronic conflict zone, reported here. The overall objective of this paper is to evaluate an Integrated Diabetic Clinic within a Hospital Outpatient Department (IDC-OPD) in a complex humanitarian setting in North Kivu in Democratic Republic of Congo. The specific objectives are to: (i) analyse diabetes intermediate clinical and programmatic outcomes (blood pressure/glycaemic control, visit frequency and volume); (ii) explore the association of key insecurity and related programmatic events with these outcomes; and (iii) describe incremental IDC OPD programme costs.

156 Methods

It has been acknowledged that traditional experimental and evaluation methods may be unfeasible, inappropriate or even unethical to apply in humanitarian settings [26]. Therefore, we have used a pragmatic approach to utilising programmatic data, with an open cohort design. For the outcome analysis, we conducted a retrospective analysis of routine data of enrolled adults aged ≥18 years from January 2014 to February 2017, examining trends in diabetes outcomes and their association with key programmatic events. The study period was divided into five phases, defined by programmatic changes or periods of heightened insecurity (which impacted service delivery due to staff evacuation, supply chain interruption and reduced patient access). Period T1 refers to ad-hoc care delivered before introduction of the IDC-OPD programme (T2). Security incidents in December 2015 prompted a period of service suspension (nurse-only care, with drug pick-ups, glucose testing

4	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	
∠∪ ⊃1	
21 22	
22 23	
23	
24 25 26 27 28	
25	
26	
27	
28	
29	
29 30	
31	
32 33	
33	
34 35 36	
35	
36	
37 38 39	
20	
39 40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
58 59	
59	

172

60

1 2 3

167 and minimal treatment adjustments) (S1). Complete suspension followed once drug stocks were

168 exhausted (S2). Limited service resumed in April (R1) until full service recommenced from

169 September 2016 (R2) (Table 1).

170 Table 1. Study Periods for Evaluation of IDC-OPD Programme, Mweso, DRC

Study Period	Description	Dates
Training 1 (T1)	Ad hoc diabetes service following basic staff training	01/01/2014 -
		14/03/2015
Training 2 (T2)	IDC-OPD implemented following formal staff training	15/03/2015 –
		14/12/2015
Suspend 1 (S1)	Nurse-provided care without medical supervision;	15/12/2015 –
	monthly drug refills provided until buffer stocks were	31/01/2016
	exhausted	
Suspend 2 (S2)	No clinical supervision or drugs were provided	01/02/2016 -
		14/04/2016
Resume 1 (R1)	The service was resumed without medical	15/04/2016 -
	supervision or quality control	31/08/2016
Resume 2 (R2)	Full service resumed until end of data collection	01/09/2016 -
	period	09/02/2017
Data		
-		

Patients were given a unique identification number on enrolment. Data were recorded in paperbased clinic-held files by clinical staff and transferred to an electronic database by a trained data

- entry operator on a weekly basis. Missing data were discussed with the nurse manager and gaps
- 176 were filled during follow-up clinical visits. Single data entry was performed on a password-protected

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Microsoft Excel software application specifically developed by MSF for this programme. Anonymised exports were transferred to the study team on a monthly basis.

Demographic data on patients' age, gender, occupation, and village of residence were recorded on enrolment. Cardiovascular risk factors (smoking status, current alcohol use), family history of diabetes, year of diabetes diagnosis and self-reported history of childhood malnutrition and/or tuberculosis were recorded. Clinical parameters: body mass index (BMI), blood pressure (BP) measured by manual sphygmomanometer according to local MSF protocols [21], fasting capillary blood glucose (FBG); prescribed diabetes drugs [insulin and/or oral hypoglycaemic drugs (OHGs)]; and diabetes classification (Type I, Type II or other) were recorded at each clinical encounter. Medical review at enrolment and six monthly thereafter was recorded, including biochemical markers (serum creatinine) and examination for complications (visual acuity, cataract, proteinuria, foot check). Numbers of deaths, transfers out of the area and delays in attendance were also documented. The key intermediate clinical outcome and programme measures used in the analysis are shown in Table 2.

Table 2: Outcome measures used to determine effect of different programme periods on

programme delivery and intermediate clinical outcomes

programme delivery and intermediate clinical outcomes			
Category	Variable		
Intermediate	Proportion of visits per month where patients' BP is at target (< 140/90		
Clinical Outcomes	mmHg)		
	Proportion of visits per month were patients' blood glucose is at target (> 4.2 and \leq 8.3 mmol/L)		
Number and	Number of visits per month		
frequency of visits	Number of patients seen per month		

2	
3 4	
5	
6 7	
8	
9 10	194
11 12	
13 14	195
14 15 16	196
17	
18 19	197
20 21	198
22 23	199
24 25	200
26 27	
28 29	201
30 31	202
32 33	203
34 35	204
36 37	205
38	
39 40	206
41 42	207
43 44	208
45 46	209
47 48	210
49 50	211
51 52	
53 54	212
55 56	213
57 58	
58 59	
60	

Analysis

1

Average visits per patient per month
Average days from previous visit
Missing data for BP / glycaemia per visit

Basic demographics were analysed using mean and median and were presented with inter-quartile
ranges. We assessed the relationship of different study periods with the frequency of visits and the
impact of study periods on intermediate clinical outcomes i.e. per visit attainment of blood pressure
(< 140/90 mmHg) and glycaemic (> 4.2 and ≤ 8.3 mmol/L) targets.

201 To estimate the effect of a period change we calculated the odds ratio (OR) of the odds of having the 202 biomarker under control in a visit in the new period (t) over the odds of having the biomarker 203 controlled in a visit in the previous period (t-1): $OR_t = Odds_t / Odds_{t-1}$. If $OR_t > 1$, this meant that the 204 chances of the biomarker being under control in a visit in period t was greater than the chances of 205 the biomarker being under control in a visit in the previous period (t-1) (but not necessarily than 206 other periods, t-2, t-3, etc.). Likewise, $OR_t < 1$ implied a reduction in the chances of having the 207 biomarker under control in a visit during period t compared to a visit during the previous period (t-208 1). To estimate these OR we ran a logistic model with period as a categorical variable, suitably 209 coded, and adjusted for sex, age (and square and cube terms) and number of visits of the patient 210 (and square term). The models were stratified by whether the patient was prescribed insulin (+/-211 oral hypoglycaemic agents) at the previous visit.

212 Missing data: Our main analysis used only complete data; records with missing data were excluded.
213 Few outcome variable data were missing: less than 3% in BP control (most of it in the pre-training

BMJ Open

3 4	214	period) and less than 0.3% for glycaemic control (Supplement SM1). There were no missing data for
5 6 7	215	date of visit, sex or age.
8 9	216	
10 11 12	217	Costing data and analysis
13 14	218	For the descriptive, incremental cost analysis we took a health services perspective. Information
15 16 17	219	related to the nature, location and mode of delivery of the NCD services was collected during a field
18 19 20 21	220	visit in December 2015 by the study team and was supplemented by informal interviews with clinical
	221	and administrative staff. A data analysis tool was designed to collate the relevant financial costs for
22 23	222	the study period 2014 -2015 from routine programme documents and standard MSF tools including
24 25	223	budget, human resources, drug consumption monitoring, logistics/supply tools, clinic records and
26 27 28	224	programme reports. For salary costs, we included the incremental costs of an MSF-employed
29 30 31 32 33 34 35 36	225	medical doctor and nurse and an MOH-employed nurse (with salary supplement paid by MSF)
	226	dedicating one day, two psychosocial workers dedicating one hour and a nutritionist dedicating 30
	227	minutes per month to the IDC-OPD service (based on 22 working days per month). Hence, most
	228	costs were related to drugs, equipment, disposables and stationary costs. Key cost items were
37 38 39	229	grouped into: (a) medicine, (b) supplies, and (c) staff time. Monthly resource use and unit cost data
40 41	230	were recorded and annualised (Supplement SM2); annual total cost, cost per visit and cost per
42 43	231	patient were reported in Euro (${f \epsilon}$) for 2014 before formal implementation of the IDC-OPD
44 45 46 47 48 49 50 51 52 53 54	232	programme and 2015 during full implementation.
	233	The study was approved by the Ministry of Health of North Kivu Province, DRC, and the Médecins
	234	sans Frontières Ethics Review Board (ID 1542).
	235	Patient and Public Involvement
55 56 57	236	Patients were not involved in the design or conduct of this study.
58 59 60	237	Results

BMJ Open

238	Between January 1^{st} 2014 and February 9^{th} 2017, 243 patients were enrolled in the IDC-OPD
239	programme (Supplement SM3). Median age was 45 years (IQR 32 – 56); 44.6% of the cohort was
240	female. For adults \geq 18 years (n=219), mean BMI was 21.3 kg/m ² and 31.1% were underweight (BMI
241	< 18.5 kg/m ²). On enrolment, 8.2% were current smokers; 24.4% reported recent alcohol intake;
242	self-reported medical history included: 9.1% hypertension, 2.2 % CVD, 2.7% tuberculosis (TB) and
243	8.7% malnutrition. Half were classified clinically as Type 2 diabetic (51%; n=125); 26% (n=62) as Type
244	1; and 23% (n=56) were either unclassified or classed as "other" (Supplement SM3).
245	Trends in outcomes and impact of programmatic events
246	Numbers of visits and appointment intervals increased after the introduction of the systematic
247	approach to diabetes care, which included monthly review appointments for stable patients (T2)
248	(Figure 1; Supplement SM4). During the period of scaled back service (S1), visit numbers initially
249	climbed while the visit interval decreased, which may reflect increased visit frequency due to short-
249	climbed while the visit interval decreased, which may reflect increased visit frequency due to short-
250	term drug supplies. Once drug buffer stock was exhausted, visit numbers dropped off sharply.
251	Patients may have avoided or were prevented from attending due to security conditions.
252	
253	Figure 1: Average number of days from previous visit per month for Mweso IDC-OPD service
254	
255	BP control was consistently better than glycaemic control (of note, patients without diagnosed
256	hypertension were included in the analysis) (Figure 2). By period T2, approximately 80% of visits
257	achieved BP and 60% achieved glycaemic control. There was a notable drop in control of both
258	parameters during programme suspension with a gradual improvement on resumption. Blood
259	pressure control was consistently better, while glycaemic control was consistently worse, in patients
260	prescribed insulin (+/- OHGs) compared with those prescribed OHGs alone (Supplement SM5), which

BMJ Open

3 4	261	may be because the former group contained relatively young Type 1 and malnutrition-related
5 6 7	262	diabetics.
, 8 9	263	
10 11	264	Figure 2: Proportion of visits with BP or glycaemia at target by month, Mweso IDC-OPD service
12 13 14 15	265	
16 17	266	The results of the odds ratio (OR) calculations were unexpected. Odds of attaining BP control
18 19	267	appeared to worsen following implementation of the formal IDC-OPD programme (T2 vs. T1), while
20 21	268	odds of attaining glucose control improved, perhaps because care was initially focussed on glucose
22 23 24	269	control (Supplement SM6). On scaling back the service (S1), control of both parameters seemed to
24 25 26	270	improve, possibly because the service itself or the subset of patients reaching it during the insecure
27 28	271	period were somehow different. Once medications supplies were exhausted (S2), control of both
29 30	272	parameters seemed to worsen, but control was regained on service resumption. Stratifying by
31 32 33	273	insulin prescription showed similar results (Supplement SM5).
34 35 36	274	Costs of providing diabetes care
37 38	275	The total costs of diabetes care in 2014 and 2015 were approximately €32,000 and €26,000
39 40 41	276	respectively (Table 3). Supplies were the major driver of costs each year. The greatest costs in 2014
42 43	277	were for latex gloves, glucometers and glucometer strips; in 2015 they were for glucometers, strips
44 45	278	and lancets (Supplement SM3). While medication costs increased in 2015 relative to 2014, staff costs
46 47	279	remained unchanged, and total costs decreased, largely driven by reduced excess consumption of
48 49 50	280	latex gloves after it was identified during the IDP-OPD training sessions. The total number of patients
50 51 52	281	and number of visits increased significantly from 2014 to 2015, rising from 77 and 626 to 144 and
53 54	282	1033, respectively. Thus, cost per-patient per-year (PPPY) dropped from €417 to €183 and cost per-
55 56	283	visit was halved from €51 to €24. This was due to the combined effect of higher patient numbers,
57 58 59 60	284	greater total number of visits and lower supply costs in 2015 compared to 2014 (Supplement SM3).
00		

Table 3. Costs (€) of diabetes care in 2014 and 2015, Mweso IDC-OPD service **Cost category** % 2014 costs % 2015 costs 7,746 **Medicine costs** 5,202 16% 29% Supply costs 25,435 79% 17,180 65% **Staff costs** 1,484 5% 1,484 6% **Total costs** 32,121 100% 26,410 100% **Costs per visit Costs per patient** Discussion This evaluation of a chronic disease programme in a complex conflict setting, using routine programmatic and cost data, provided lessons, which may improve clinical care and programme design. To the best of our knowledge, the influence of treatment interruption and insecurity on diabetes management in humanitarian settings has not been addressed in the literature. Similarly, we are not aware of studies providing data on costs of diabetes care in crisis settings. Our results show that glycaemic control was similar or better to that documented in other humanitarian or low-income settings (although different targets were used) and, while it was positively impacted by programmatic changes, control clearly deteriorated during periods of heightened insecurity.[27] Our findings also indicate that, in a population previously undergoing

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

regular supervision, a simplified nurse-provided, algorithm-driven service with consistent medication
supply may be as effective as close medical supervision in maintaining disease control, particularly
during periods of service interruption. Medical input could thus be focused on achieving glycaemic
control in patients prescribed insulin, who appeared most affected by service interruption. We also
note lack of evidence supporting the management of what we believed to be malnutrition-related
diabetes.

305 Intermittent outbreaks of armed conflict limited patient access and disrupted supply chains, 306 impeding continuity of care. We suggest, therefore, that in high-insecurity settings, chronic disease 307 programmes should focus on preparing patients, staff and supply chains to pre-empt treatment 308 interruption during insecure periods, learning from HIV programme experiences in similar 309 settings.[28] Preparation could include: patient triage by vulnerability (e.g. prioritising insulin-310 dependent diabetic patients, those with established complications and/or living far from the facility); provision of patient-held personal treatment plans and emergency kits (including several months' 311 312 supply of medications, such as insulin, delivery devices and guidance as appropriate); building staff 313 capacity to allow for flexibility of roles in crises; establishing networks with other chronic disease 314 programmes; and medication stockpiling and secure storage.[5,28,29] Technology could facilitate 315 continued patient treatment support when access to facilities is impossible e.g. via mobile phone 316 SMS messaging or decentralisation of care to community-based health workers furnished with 317 clinical decision support tools or support via telemedicine.

The relatively poorer glycaemic control in insulin-prescribed patients may reflect either disease
severity or the challenges associated with insulin therapy. Adherence to daily insulin injections is
difficult anywhere; in Mweso, the security, financial and geographical barriers to accessing insulin
and the unavailability, unaffordability and burden for families brought by the recommended
diabetes diet, may additionally contribute to poor adherence.[22] In this programme, clinicians
adjusted insulin doses, based on a single fasting glucose reading taken in clinic and on patients'

BMJ Open

reported symptoms in the absence of home glucose monitoring and, therefore, dose adjustment was cautious and treatment targets were conservative.

There is limited, although growing, evidence on the incidence, prevalence and characterisation of diabetes in Sub-Saharan Africa, which our findings broadly reflect. [30] Several reviews and recent ethnographic evidence describe "atypical" forms of diabetes, which may complicate diagnosis, classification and management. These include "ketosis-prone atypical diabetes mellitus" and "malnutrition-related diabetes". [13,16,31] Local prevalence studies support the existence of the latter in the DRC, which is in keeping with the high proportion of underweight adults and "unclassified" diabetics in our cohort.[14,32] It is unclear whether malnutrition is causative, associated with hyperglycaemia or with pancreatic insufficiency and further study of diabetes epidemiology in DRC is needed, exploring factors such as childhood malnutrition, food insecurity and underweight and use of calorie-dense therapeutic foods. [31] Moreover, little evidence exists to guide either malnutrition-related diabetes care or the effective management of insulin in humanitarian settings, particularly in the absence of home or community-based glucose testing.[3,7] The total cost of care delivery decreased by approximately 20% from 2014 to 2015 despite increased visit and patient numbers. This was largely due to decreased supply costs, driven by the 100-fold reduction in consumption of latex gloves following IDC-OPD training. Efficiencies of supply consumption and patient throughput (more visits and more patients seen by the same number of staff) contributed to reducing PPPY costs by 44% from €417 in 2014 to €183 in 2015. To our knowledge, there is no available literature to compare cost per patient or per visit for diabetes care (or NCD care generally) delivered in an unstable humanitarian setting. A study from Ghana reported a per patient annual direct cost of US\$372.65 for hospital-delivered diabetes care in 2005. For a potential comparator, we looked at the cost of delivering chronic care for HIV, the main life-long condition with which humanitarian actors have traditionally engaged. The 2015 PPPY cost reported in this study is far lower than that reported by PEPFAR and others to deliver chronic HIV

BMJ Open

3 4	34
5 6	35
7 8	35
9 10 11	35
12 13 14	35
15 16	35
17 18 19	35
20 21	35
22 23	35
24 25	35
26 27 28	35
28 29 30	36
31 32	36
33 34	36
35 36	36
37 38 39	36
39 40 41	36
42 43	36
44 45	36
46 47	
48 49	36
50 51	36
52 53 54	37
54 55 56	37
57 58	37
50 59 60	37

care programmes in low and middle income countries in SSA [33,34]. In terms of cost structure,
supplies were the major cost driver in the Ghanaian study (syringes, lancets and strips), whereas
other analyses of diabetes care in SSA identified medications, and specifically insulin, as the main
cost contributor [35,36].

353 Strengths and Limitations

54 Using routine clinical and programmatic data, with minimal service disruption, we have explored 55 clinical outcomes of a chronic disease programme in a protracted conflict setting and the influence 6 of periods of heightened insecurity on intermediate clinical outcomes and on service delivery. Each 57 patient who attended in a given month contributed data, irrespective of whether they ever 8 experienced a treatment interruption. Our study provides new costing information for humanitarian 59 actors to support the initiation or adaptation of specific NCD programmes and may potentially 60 support scale up of similar services in DRC (and other conflict-affected settings). We concluded that 51 the incremental cost of adding an outpatient diabetes service to a humanitarian health programme 52 in a rural hospital setting may be achieved at a cost similar to that of delivering chronic HIV 53 programmes. While we cannot confirm whether an external audit of cost data had taken place, we 54 are confident in the quality of these data due to MSF's robust systems and oversight by strong in-55 country and international teams.

66 Given the logistical and ethical challenges of undertaking research in conflict settings, we 57 acknowledge that there are a number of limitations to our study. We had a relatively small sample 68 size and no control group for comparison. We did not explore per patient control of clinical 59 parameters over time, control by diabetes type (or age), appropriateness of prescribing, patient-0' reported outcomes or the influence of psychosocial factors, diet, or adherence in each study phase '1 since these data were unavailable. Gestational diabetes was not addressed since this took place 2' within antenatal services. Our costing analysis was descriptive so we could not comment on '3 programme cost-effectiveness. Costing data were presented as average annual costs and did not

Page 18 of 39

BMJ Open

explore the impact of various programme periods on costs. Since our cost data were aggregate, we
could not explore patient-level costs or account for patient heterogeneity. While our findings may
not be generalizable to other complex humanitarian settings or to other providers' diabetes
programmes in the DRC, our study contributes knowledge on key challenges and suggests solutions,
which may be more broadly applicable.

Future research is needed in complex humanitarian settings to evaluate simplified, task-shared models of diabetes care, including culturally- and contextually-relevant psychosocial support and dietary advice; to optimise insulin management; and to evaluate emergency preparedness plans and technology-facilitated remote patient support. [3,5,8,13,29] We recommend that future prospective studies should explore per-patient outcomes (as well as exploring programme-level outcomes as done in this study). We suggest including a control group, collection of additional outcome variables, such as complication rates and patient-reported outcomes e.g. related to quality-of-life, including functionality and mental health, and exploration of the impact of psychosocial stressors and treatment interruption on clinical outcomes. We also suggest that the cost-effectiveness of different models of diabetes care, including use of technology-facilitated remote support, and patient level costing studies from both provider and patient perspectives should be undertaken, exploring patient heterogeneity and direct and indirect patient costs.

391 Conclusion

Our results help develop the sparse knowledge on the prevalence and characterisation of diabetes in
 Sub-Saharan Africa. They demonstrate that diabetes care is feasible even in complex humanitarian
 emergencies, and at a cost that is lower than chronic HIV care. The results also indicate that the
 Mweso IDC-OPD programme could be further simplified to involve drug collection along with nurse led, algorithm-guided treatment adjustment. We suggest that chronic disease programmes in
 unstable settings should engage in emergency preparedness, learning from the experience of HIV

2 3 4	398	programmes i	n similar settings. Future research is needed to evaluate simplified, task-shared models
5 6	399	of diabetes ca	re and management; and to evaluate emergency preparedness plans and technology-
7 8 9	400	facilitated rem	note patient support.
9 10 11 12 13	401		
14 15 16	402	List of Abb	reviations
17 18	403	BMI	Body Mass Index
19 20	404	BP	Blood Pressure
21 22	405	DM	Diabetes Mellitus
23 24 25	406	DRC	Democratic Republic of Congo
26 27	407	HIV	Human Immunodeficiency Virus
28 29	408	IDC-OPD	Integrated Diabetic Clinic within Hospital Outpatient Department
30 31	409	LMICs	Low- and Middle-Income Countries
32 33 34	410	MSF	Médecins sans Frontières
35 36	411	NCD	Noncommunicable Disease
37 38	412	OHG	Oral Hypoglycaemic Drugs
39 40	413	OR	Odds Ratio
41 42 43	414	РРРҮ	Per Patient Per Year
44 45	415		
46 47	416		
48 49 50 51 52 53 54 55 56 57 58 59 60	417		

Declarations

419 Ethics approval and consent to participate

This study was approved by the Ministry of Health of North Kivu Province, DRC, by the MSF Ethics
Review Board, and the Ethics Committee of the London School of Hygiene and Tropical Medicine.
Information sheets on the clinic walls provided details of the evaluation; no specific consent was
sought from patients for use of their routine clinical data.

424 Authors' contributions

- 425 KJ and BR were involved in study conception; EA, GC, KJ, DPM, PP and BR contributed to study
- 426 design and interpretation of data. DPM and ZS analysed the data. MB contributed to data collection.
- 427 EA drafted the manuscript and all authors reviewed drafts and approved the final version.

428 Acknowledgements

- 429 We gratefully acknowledge the staff and patients of the MSF IDC-OPD programme for their
- 36
 37 430 contribution to this study. We thank Sarah Venis for her helpful review of the article. This work was
- 38
 39 431 presented at MSF Scientific Days Conference in London, May 2018.
 40

432 Competing Interests

4445 433 The authors declare that they have no competing interests.

48 434 Data Sharing

- 51 435 The datasets are available from MSF on request by researchers who fulfil certain criteria and under
- 5253 436 the auspices of a data sharing agreement.
- 56 437 **Funding**
- 58
 59 438 This study was funded by Médecins sans Frontières.

2			
3 4 5	439	Refe	erences
6 7	440	1	NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled
8 9	441		analysis of 751 population-based studies with 4.4 million participants. Lancet (London,
10 11 12	442		<i>England)</i> 2016; 387 :1513–30. doi:10.1016/S0140-6736(16)00618-8
13 14	443	2	Kehlenbrink S, Smith J, Ansbro É, <i>et al.</i> The burden of diabetes and use of diabetes care in
15 16 17	444		humanitarian crises in low-income and middle-income countries. Lancet Diabetes Endocrinol
18 19	445		2019; 0 . doi:10.1016/S2213-8587(19)30082-8
20 21 22	446	3	Demaio A, Jamieson J, Horn R, et al. Non-Communicable Diseases in Emergencies: A Call to
23 24	447		Action. <i>PLoS Curr</i> Published Online First: 2013.
25 26 27	448		doi:10.1371/currents.dis.53e08b951d59ff913ab8b9bb51c4d0de
28 29	449	4	Roberts B, Patel P, McKee M. Noncommunicable diseases and post-conflict countries. Bull
30 31 32	450		World Health Organ 2011; 90 :2-2A. doi:10.2471/BLT.11.098863
33 34	451	5	Besançon S, Fall I-S, Doré M, et al. Diabetes in an emergency context: the Malian case study.
35 36 37	452		<i>Confl Health</i> 2015; 9 :15. doi:10.1186/s13031-015-0042-9
38 39	453	6	Boulle P, Kehlenbrink S, Smith J, et al. Challenges associated with providing diabetes care in
40 41 42	454		humanitarian settings. Lancet Diabetes Endocrinol 2019; 0 . doi:10.1016/S2213-
43 44 45	455		8587(19)30083-X
46 47	456	7	Ruby A, Knight A, Perel P, et al. The Effectiveness of Interventions for Non-Communicable
48 49	457		Diseases in Humanitarian Crises: A Systematic Review. PLoS One 2015;10:e0138303.
50 51 52	458		doi:10.1371/journal.pone.0138303
53 54	459	8	Jobanputra K, Boulle P, Roberts B, et al. Three Steps to Improve Management of
55 56	460		Noncommunicable Diseases in Humanitarian Crises. PLOS Med 2016;13:e1002180.
57 58 59 60	461		doi:10.1371/journal.pmed.1002180

Page 22 of 39

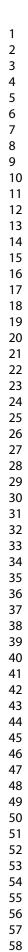
BMJ Open

1

1 2			
3 4	462	9	International Rescue Committee. Mortality in the Democratic Republic of Congo: An ongoing
5 6	463		crisis International Rescue Committee (IRC). 2007.
7 8	464		https://www.rescue.org/report/mortality-democratic-republic-congo-ongoing-crisis
9 10 11	465		(accessed 10 Dec 2017).
12 13 14	466	10	UNHCR - UNHCR Global Trends 2018. Geneva.
15 16	467		2019.https://www.unhcr.org/uk/statistics/unhcrstats/5d08d7ee7/unhcr-global-trends-
17 18	468		2018.html (accessed 1 Jul 2019).
19 20 21	469	11	Human Development Indices and Indicators: 2018 Statistical Update Congo (Democratic
22 23 24	470		Republic of the). http://hdr.undp.org/en/data (accessed 30 Jul 2019).
25 26	471	12	Whiting DR, Guariguata L, Weil C, et al. IDF diabetes atlas: global estimates of the prevalence
27 28	472		of diabetes for 2011 and 2030. <i>Diabetes Res Clin Pract</i> 2011; 94 :311–21.
29 30 31	473		doi:10.1016/j.diabres.2011.10.029
32 33 34	474	13	Atun R, Davies JI, Gale EAM, et al. Diabetes in sub-Saharan Africa: from clinical care to health
35 36	475		policy. <i>lancet Diabetes Endocrinol</i> 2017; 5 :622–67. doi:10.1016/S2213-8587(17)30181-X
37 38 39	476	14	Muyer MT, Muls E, Mapatano MA, et al. Diabetes and intermediate hyperglycaemia in
40 41	477		Kisantu, DR Congo: a cross-sectional prevalence study. <i>BMJ Open</i> 2012; 2 :e001911.
42 43 44	478		doi:10.1136/bmjopen-2012-001911
45 46	479	15	A sub-Saharan African perspective of diabetes.
47 48	480		file:///C:/Users/DAnsbro/Downloads/0f317533c181fe640b000000.pdf (accessed 30 Jan
49 50 51	481		2015).
52 53 54	482	16	Carruth L, Mendenhall E. "Wasting away": Diabetes, food insecurity, and medical insecurity in
55 56	483		the Somali Region of Ethiopia. Soc Sci Med 2019; 228 :155–63.
57 58 59 60	484		doi:10.1016/J.SOCSCIMED.2019.03.026

Page 23 of 39

1


BMJ Open

1 2			
3 4	485	17	Food and Agriculture Organisation of the United Nations. FAO - News Article: Food insecurity
5 6	486		soars in conflict-ridden Democratic Republic of Congo.
7 8 9	487		http://www.fao.org/news/story/en/item/1028934/icode/ (accessed 5 Aug 2019).
10 11 12	488	18	Harris ML, Oldmeadow C, Hure A, et al. Stress increases the risk of type 2 diabetes onset in
13 14	489		women: A 12-year longitudinal study using causal modelling. <i>PLoS One</i> 2017; 12 :e0172126.
15 16 17	490		doi:10.1371/journal.pone.0172126
18 19	491	19	World diabetes Foundation.Projects. Improving diabetes care WDF05-128.
20 21	492		https://www.worlddiabetesfoundation.org/projects/congo-kinshasa-wdf05-128 (accessed 5
22 23 24	493		Aug 2019).
25 26	494	20	Valentijn PP, Schepman SM, Opheij W, et al. Understanding integrated care: a comprehensive
27 28	495		conceptual framework based on the integrative functions of primary care. Int J Integr Care
29 30 31	496		2013; 13 :e010. doi:10.5334/ijic.886
32 33 34	497	21	Ansbro ÉM. MSF OCA Mweswo Guide de diabète pour patients ambulatoires. 2015.
35 36	498	22	Murphy A, Biringanine M, Roberts B, et al. Diabetes care in a complex humanitarian
37 38 39	499		emergency setting: a qualitative evaluation. BMC Health Serv Res 2017;17:431.
40 41	500		doi:https://dx.doi.org/10.1186/s12913-017-2362-5
42 43 44	501	23	Jobanputra K, Ansbro E. Diabetes service evaluation (2014-2017) – main findings from
45 46	502		Mweso, North Kivu, the Democratic Republic of Congo. Published Online First:
47 48 49	503		2018.https://fieldresearch.msf.org/handle/10144/619307 (accessed 12 May 2019).
50 51	504	24	ONG Santé Diabète / NGO Health Diabetes - Home. https://santediabete.org/en/ (accessed
52 53 54	505		20 Aug 2018).
55 56	506	25	Ogle GD, Abdullah M, Mason D, et al. Insulin storage in hot climates without refrigeration:
57 58 59 60	507		temperature reduction efficacy of clay pots and other techniques. <i>Diabet Med</i> 2016; 33 :1544–

BMJ Open

1 2			
2 3 4 5	508		53. doi:10.1111/dme.13194
6 7	509	26	Blanchet K, Ramesh A, Frison S, et al. Evidence on public health interventions in humanitarian
8 9 10	510		crises. <i>Lancet (London, England)</i> 2017; 390 :2287–96. doi:10.1016/S0140-6736(16)30768-1
11 12	511	27	Cohen DB, Allain TJ, Glover S, et al. A survey of the management, control, and complications
13 14	512		of diabetes mellitus in patients attending a diabetes clinic in Blantyre, Malawi, an area of high
15 16 17	513		HIV prevalence. <i>Am J Trop Med Hyg</i> 2010; 83 :575–81. doi:10.4269/ajtmh.2010.10-0104
18 19	514	28	Culbert H, Tu D, O'Brien DP, et al. HIV Treatment in a Conflict Setting: Outcomes and
20 21 22	515		Experiences from Bukavu, Democratic Republic of the Congo. <i>PLoS Med</i> 2007; 4 :e129.
23 24	516		doi:10.1371/journal.pmed.0040129
25 26	517	29	Slama S, Kim H-J, Roglic G, <i>et al.</i> Care of non-communicable diseases in emergencies. <i>Lancet</i>
27 28	518		(London, England) 2017; 389 :326–30. doi:10.1016/S0140-6736(16)31404-0
29 30			
31 32	519	30	Hall V, Thomsen RW, Henriksen O, et al. Diabetes in Sub Saharan Africa 1999-2011:
33 34	520		Epidemiology and public health implications. a systematic review. BMC Public Health
35 36 27	521		2011; 11 :564. doi:10.1186/1471-2458-11-564
37 38	522	31	Gill G V., Mbanya J-C, Ramaiya KL, <i>et al.</i> A sub-Saharan African perspective of diabetes.
39 40 41	523		<i>Diabetologia</i> 2009; 52 :8–16. doi:10.1007/s00125-008-1167-9
42	525		
43 44	524	32	Hightower JD, Hightower CM, Vázquez BYS, et al. Incident prediabetes/diabetes and blood
45 46 47	525		pressure in urban and rural communities in the Democratic Republic of Congo. Vasc Health
48 49	526		<i>Risk Manag</i> 2011; 7 :483–9. doi:10.2147/VHRM.S22707
50 51	527	33	Bikilla A, Jerene D, Robberstad B, et al. Cost estimates of HIV care and treatment with and
52 53 54	528		without anti-retroviral therapy at Arba Minch Hospital in southern Ethiopia. Cost Eff Resour
55 56	529		<i>Alloc</i> 2009; 7 :6. doi:10.1186/1478-7547-7-6
57 58 59 60	530	34	2013 Report on Costs of Treatment in the President's Emergency Plan for AIDS Relief

1 2			
3 4	531		(PEPFAR) Background. https://www.pepfar.gov/documents/organization/212059.pdf
5 6 7	532		(accessed 21 Dec 2017).
8 9	533	35	Quaye EA, Amporful EO, Akweongo P, et al. Analysis of the Financial Cost of Diabetes Mellitus
10 11	534		in Four Cocoa Clinics of Ghana. Value Heal Reg Issues 2015;7:49–53.
12 13 14	535		doi:10.1016/j.vhri.2015.08.005
15 16 17	536	36	Kirigia JM, Sambo HB, Sambo LG, <i>et al.</i> Economic burden of diabetes mellitus in the WHO
$\begin{array}{c} 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 43\\ 44\\ 546\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\end{array}$	537		African region. BMC Int Health Hum Rights 2009;9:6. doi:10.1186/1472-698X-9-6
57 58			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

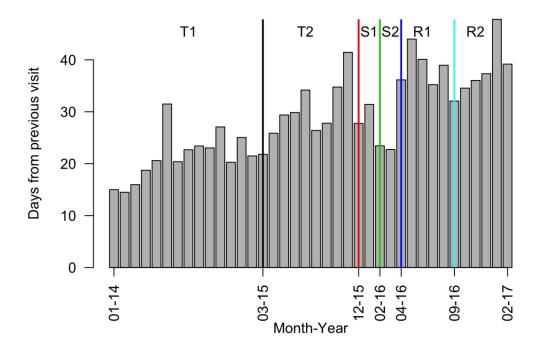


Figure 1: Average number of days from previous visit per month for Mweso IDC-OPD service 615x436mm (72 x 72 DPI)

BMJ Open

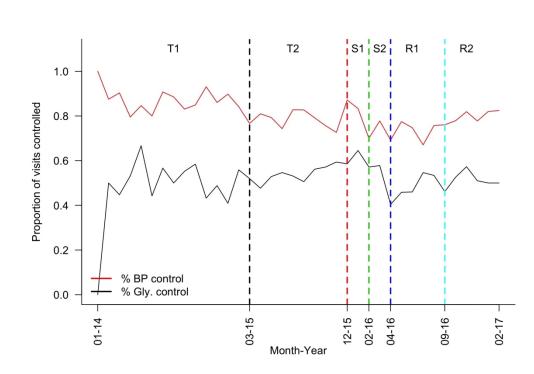
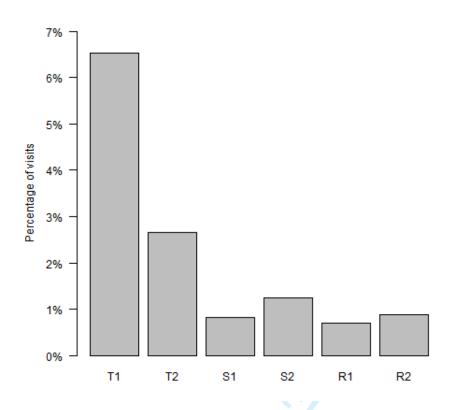



Figure 2: Proportion of visits with BP or glycaemia at target by month, Mweso IDC-OPD service

809x558mm (72 x 72 DPI)

SM1. Proportion of visits with missing data for either blood pressure or glycaemia

Note: Definitions of study periods T1 – R2 are described in Supplementary Data S1

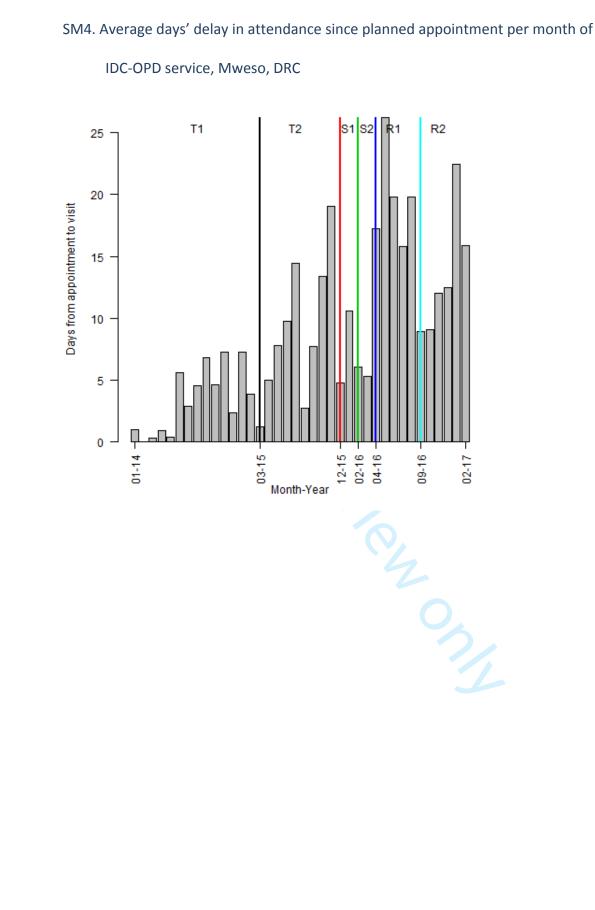
SM2. Monthly resource use associated with IDC-OPD in Mweso Hospital, North Kivu,

DRC

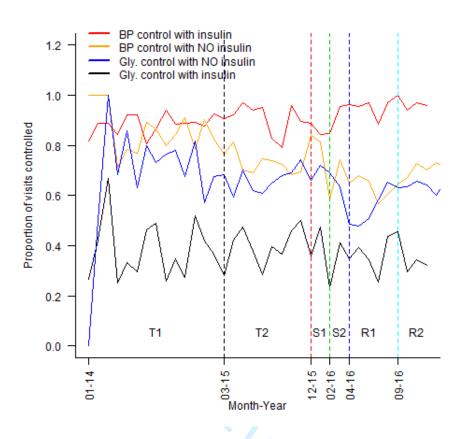
tems	Unit	2014	2015
Medicine			
INSULIN ISOPHANE (NPH), human, 100 UI/ml, 10 ml, vial	6.300	40	40
INSULIN RAPID, human, 100 IU/ml, 10 ml, vial	6.300	8	8
INSULIN, 100IU/ml, BIPHASIC 30, human, 10ml, vial	13.610	10	10
METFORMIN hydrochloride, 500 mg, tab.	0.014	5,300	12,000
GLIBENCLAMIDE, 5 mg, tab.	0.005	750	3,600
HYDROCHLOROTHIAZIDE, 50 mg, tab.	0.003	0	300
GLUCOSE HYPERTONIC, 50%, 50 ml, vial	0.556	75	6
AMITRIPTYLINE hydrochloride, 25 mg, tab.	0.006	200	750
ACETYLSALICYLIC acid (aspirin), 75 mg, tab.	0.005	0	2,000
AMLODIPINE 5mg, tabs.	0.018	0	300
Supplies			
GLUCOMETER, blood glucose monitor (Nova StatStrip) + strips	96.705	5	10
(glucometer Nova StatStrip) STRIP ref. 42214	0.230	2,000	4,000
SYRINGE, s.u., Luer, insulin, 100 IU/1 ml + fixed needle	0.079	2,000	4,000
(spectrophotometer) KIT, DOSAGE CREATININE, Liquicolor 200ml	4.830	3.5	3.5
THERMOMETER, ELECTRONIC, accuracy 0.1§ C + case	1.110	20	3
SPHYGMOMANOMETER, one-hand manometer, Velcro, adult	26.000	0	1
TEST, URINE, pH,dens,prot,gluc,ket,blood,nit,leuc, 1 strip	0.197	100	200
REUSABLE SHARPS CONTAINER (RSC), 1.2 litre	44.750	1	1
CONTAINER, SAMPLE, plast., 60ml, non sterile, urine	0.083	1,700	200
LANCET, s.u., sterile, standard point	0.006	900	4,000
GLOVE, EXAMINATION, latex, s.u. non sterile, medium	0.025	50,000	500
Staff time (days allocated to diabetes care)*			
MSF Medical doctor	1,350	1	1
MSF Nurse	900	1	1
BCZ Nurse	239	1	1
MSF psychosocial worker	1,422	0.125	0.125
1 Nutritionist (MSF)	864	0.0625	0.0625

*Note: Staff time costs assumed 22 full-time working days per month.

S3. Baseline characteristics of 243 patients on enrolment into Mweso IDC-OPD service

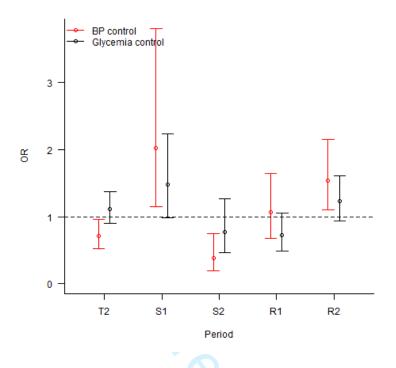

Variable	Total	(%)	DM-1	(%)	DM-2	(%)	Other/NA	(%)
Patients (N)	243		62		125		56	
Age								
<18	24	(9.9%)	19	(30.6%)	0	(0.0%)	5	(8.9%)
18-40	74	(30.5%)	39	(62.9%)	20	(16.0%)	15	(26.8%)
41-60	112	(46.1%)	3	(4.8%)	80	(64.0%)	29	(51.8%)
>60	33	(13.6%)	1	(1.6%)	25	(20.0%)	7	(12.5%)
Sex								
Male	134	(55.1%)	34	(54.8%)	70	(56.0%)	30	(53.6%)
Female	108	(44.4%)	28	(45.2%)	55	(44.0%)	25	(44.6%)
No data	1	(0.4%)	0	(0.0%)	0	(0.0%)	1	(1.8%)
Occupation								
Labourer	121	(49.8%)	29	(46.8%)	85	(68.0%)	7	(12.5%)
Office worker	19	(7.8%)	2	(3.2%)	11	(8.8%)	6	(10.7%)
Student	8	(3.3%)	8	(12.9%)	0	(0.0%)	0	(0.0%
Unable to work	11	(4.5%)	7	(11.3%)	3	(2.4%)	1	(1.8%
Other	48	(19.8%)	15	(24.2%)	26	(20.8%)	7	(12.5%
No data	36	(14.8%)	1	(1.6%)	0	(0.0%)	35	(62.5%
Medical History								
CVD								
Yes	5	(2.1%)	1	(1.6%)	3	(2.4%)	1	(1.8%
No data	24	(9.9%)	0	(0.0%)	0	(0.0%)	24	(42.9%
Hypertension								
Yes	20	(8.2%)	0	(0.0%)	18	(14.4%)	2	(3.6%
No data	25	(10.3%)	0	(0.0%)	1	(0.8%)	24	(42.9%
Tuberculosis								
Yes	6	(2.5%)	1	(1.6%)	5	(4.0%)	0	(0.0%
No data	24	(9.9%)	0	(0.0%)	0	(0.0%)	24	(42.9%
Malnutrition								
Yes	19	(7.8%)	15	(24.2%)	2	(1.6%)	2	(3.6%
No data	24	(9.9%)	0	(0.0%)	0	(0.0%)	24	(42.9%
Family Hx of DM								
Yes	35	(14.4%)	6	(9.7%)	23	(18.4%)	6	(10.7%
No data	24	(9.9%)	0	(0.0%)	0	(0.0%)	24	(42.9%

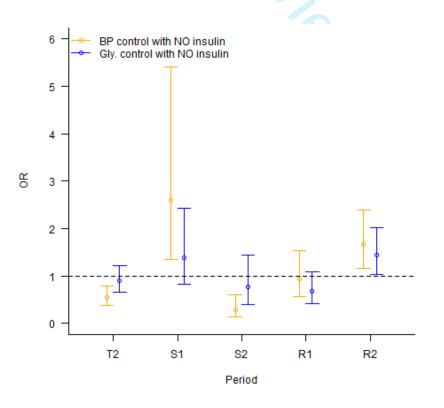
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

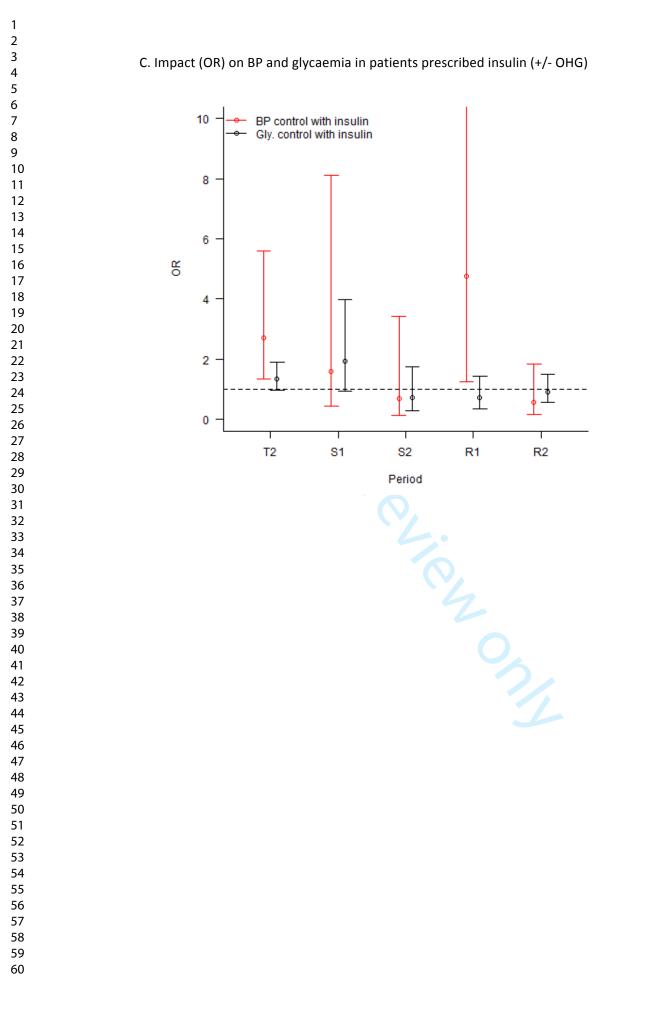

Patients >=18 years(N)*	219		43		125		51	
Smoking								
Yes	18	(8.2%)	1	(2.3%)	16	(12.8%)	1	(2
No data	21	(9.6%)	0	(0.0%)	0	(0.0%)	21	(41
Alcohol								
Yes	50	(22.8%)	12	(27.9%)	32	(25.6%)	6	(11
No data	33	(15.1%)	0	(0.0%)	1	(0.8%)	32	(62
ВМІ								
<18.5	68	(31.1%)	23	(53.5%)	34	(27.2%)	11	(21
18.5-24.9	96	(43.8%)	15	(34.9%)	59	(47.2%)	22	(43
25.0-29.9	41	(18.7%)	5	(11.6%)	27	(21.6%)	9	(17
>=30	7	(3.2%)	0	(0.0%)	5	(4.0%)	2	(3
No data	7	(3.2%)	0	(0.0%)	0	(0.0%)	7	(13

Note: For smoking, alcohol and BMI, denominators included only patients aged 18 years or above.

for peet terien only


SM5. Proportion of visits at target for BP and glycaemic control, stratified by insulin prescription per month of IDC-OPD service, Mweso, DRC


Note: Patients were categorised by whether they were prescribed insulin [+/- oral hypoglycaemic (OHG) drugs]) or OHG drugs alone at their last recorded visit. The former group would have included Type 1 diabetics, Type 2 diabetics with more advance illness requiring a combination of OHG and insulin, and those with an intermediate type of diabetes, presenting with high insulin requirements in the absence of diabetic ketoacidosis, which we postulated represented "malnutrition-related diabetes". The latter group were likely to include Type 2 diabetics.


SM6. Impact (OR) on BP and glycaemic control of study period over previous period, unstratified (A) and stratified by insulin prescription (B and C) per month of IDC-OPD service, Mweso, DRC

A. Impact (OR) on BP and glycaemia in all patients (not stratified by insulin prescription)

B. Impact (OR) on BP and glycaemia in patients on oral hypoglycaemic drugs only

STROBE Statement-Checklist of items that should be included in reports of cross-sectional studies

Study Title: Management of diabetes and associated costs in a complex humanitarian setting in the Democratic Republic of Congo: a retrospective cohort study.

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1,4
		(b) Provide in the abstract an informative and balanced summary of what	2-3
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-7
Objectives	3	State specific objectives, including any prespecified hypotheses	7
Methods			1
Study design	4	Present key elements of study design early in the paper	7-11
Setting	5	Describe the setting, locations, and relevant dates, including periods of	4,5,7,
	C	recruitment, exposure, follow-up, and data collection	8, 11
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants	7
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	6,9,10
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	6
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias			n/a
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	10
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	10
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	10
		(c) Explain how missing data were addressed	10,11
		(d) If applicable, describe analytical methods taking account of sampling	10
		strategy	
		(<u>e</u>) Describe any sensitivity analyses	n/a
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers	10
		potentially eligible, examined for eligibility, confirmed eligible, included	
		in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	n/a
		(c) Consider use of a flow diagram	n/a
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	Supp
		social) and information on exposures and potential confounders	Mat 3
		(b) Indicate number of participants with missing data for each variable of	Supp
		interest	Mat 1
Outcome data	15*	Report numbers of outcome events or summary measures	9,10

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	n/a
		estimates and their precision (eg, 95% confidence interval). Make clear	
		which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were	Supp
		categorized	Mat 3
		(c) If relevant, consider translating estimates of relative risk into absolute	n/a
		risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions,	n/a
		and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	12-14
Limitations	19	Discuss limitations of the study, taking into account sources of potential	17,18
		bias or imprecision. Discuss both direction and magnitude of any potential	
		bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	14-16
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	18
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study	20
		and, if applicable, for the original study on which the present article is	
		based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

BMJ Open

Management of diabetes and associated costs in a complex humanitarian setting in the Democratic Republic of Congo: a retrospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-030176.R2
Article Type:	Original research
Date Submitted by the Author:	22-Oct-2019
Complete List of Authors:	Ansbro, Éimhín; Médecins sans Frontières, Manson Unit; London School of Hygiene and Tropical Medicine Faculty of Epidemiology and Population Health, Centre for Global Chronic Conditions Biringanine, Michel; Medecins Sans Frontieres Operational Centre Amsterdam, Mweso Hospital Caleo, Grazia; Médecins sans Frontières, Manson Unit Prieto-Merino, David; London School of Hygiene and Tropical Medicine Faculty of Epidemiology and Population Health, Epidemiology of NCDs Sadique, Zia; London School of Hygiene and Tropical Medicine Faculty of Public Health and Policy, Health Services Research and Policy Perel, Pablo; London School of Hygiene and Tropical Medicine Faculty of Epidemiology and Population Health, Centre for Global Chronic Conditions Jobanputra, Kiran; Médecins sans Frontières, Manson Unit Roberts, Bayard; London School of Hygiene and Tropical Medicine Faculty of Public Health and Policy, Centre for Global Chronic Conditions
Primary Subject Heading :	Global health
Secondary Subject Heading:	Diabetes and endocrinology, Epidemiology, Health economics
Keywords:	Health economics < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, DIABETES & ENDOCRINOLOGY, International health services < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Epidemiology < TROPICAL MEDICINE, General diabetes < DIABETES & ENDOCRINOLOGY

SCHOLARONE[™] Manuscripts

1							
2 3	1	Title: Management of diabetes and associated costs in a complex humanitarian setting in the					
4 5	-						
6	2	Democratic Republic of Congo: a retrospective cohort study.					
7 8							
9	3	Corresponding Author:					
10 11	4	Éimhín Ansbro,					
12 13							
14	5	Formerly: Manson Unit, Médecins sans Frontières, London, United Kingdom					
15 16 17	6	Currently: London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK					
18	7	Email: eimhin.ansbro@lshtm.ac.uk Tel: +44(0) 207 927 2086					
19 20	,						
21 22	8	Authors:					
23	_						
24 25	9	1. Éimhín Ansbro, Manson Unit, Médecins sans Frontières, London, United Kingdom; London					
26	10	School of Hygiene & Tropical Medicine, United Kingdom.					
27 28	11	2. Michel Biringanine, Médecins sans Frontières Operational Centre Amsterdam, Mweso					
29 30	12	Hospital, North Kivu, Democratic Republic of Congo					
31	13	3. Grazia Caleo, Manson Unit, Médecins sans Frontières, London, United Kingdom					
32 33	14	4. David Prieto-Merino, Department of Noncommunicable Disease Epidemiology, London					
34 35	15	School of Hygiene and Tropical Medicine, London, United Kingdom					
35 36	16	5. Zia Sadique, Department of Health Services Research and Policy, London School of Hygiene					
37 38	17	and Tropical Medicine, London, United Kingdom					
39	18	6. Pablo Perel, Centre for Global Chronic Conditions, London School of Hygiene and Tropical					
40 41	19	Medicine, London, United Kingdom					
42 43	20	7. Kiran Jobanputra, Manson Unit, Médecins sans Frontières, London, United Kingdom					
44	21	8. Bayard Roberts, Centre for Global Chronic Conditions, London School of Hygiene and					
45 46	22	Tropical Medicine, London, United Kingdom (Bayard.Roberts@lshtm.ac.uk)					
47 48	23						
49	24	Word Count: 3999					
50 51	25						
52	26	Keywords: Democratic Republic of Congo, Subsaharan Africa, diabetes, hypertension,					
53 54	27	noncommunicable disease, humanitarian, conflict, care model, management, programme, chronic					
55 56	28	care, outpatient, hospital care, task shifting, cost, economic.					
57							
59	23						
52 53 54 55 56 57 58	26 27	noncommunicable disease, humanitarian, conflict, care model, management, programme, chron					

3 4	30	Abstract
5		
6 7 8	31	Objective: We aimed to evaluate an Integrated Diabetic Clinic within a Hospital Outpatient
9 10	32	Department (IDC-OPD) in a complex humanitarian setting in North Kivu, Democratic Republic of
11 12	33	Congo. Specific objectives were to: (i) analyse diabetes intermediate clinical and programmatic
13 14	34	outcomes (blood pressure/glycaemic control, visit volume and frequency); (ii) explore the
15 16 17	35	association of key insecurity and related programmatic events with these outcomes; and (iii)
17 18 19 20	36	describe incremental IDC OPD programme costs.
21 22	37	Design: Retrospective cohort analysis of routine programmatic data collected from January 2014 -
23 24	38	February 2017; analysis of programme costs for 2014/2015.
25 26	39	Setting: Outpatient diabetes programme in Mweso hospital, supported by Médecins sans Frontières,
27 28 29	40	in North Kivu, Demographic Republic of Congo.
30 31 32	41	Participants: Diabetes patients attending IDC-OPD.
33 34 35	42	Outcome measures: Intermediate clinical and programmatic outcome trends (blood pressure/
36 37 38	43	glycaemic control; visit volume/frequency); incremental programme costs.
39 40	44	Results: Of 243 diabetes patients, 44.6% were women, median age was 45 (IQR 32-56); 51.4% were
41 42	45	classified Type 2. On introduction of IDC-OPD, glucose control improved and patient volume and visit
43 44 45	46	interval increased. During insecurity, control rates were initially maintained by a nurse-provided,
46 47	47	scaled-back service, while patient volume and visit interval decreased. Following service suspension
48 49	48	due to drug stock-outs, patients were less likely to achieve control, improving on service resumption.
50 51	49	Total costs decreased 16% from 2014 (€36,573) to 2015 (€30,861). Annual cost per patient dropped
52 53 54	50	from €475 in 2014 to €214 in 2015 due to reduced supply costs and increased patient numbers.
55 56 57	51	Conclusions: In a chronic conflict setting, we documented that control of diabetes intermediate
57 58 59 60	52	outcomes was achievable during stable periods. During insecure periods, a simplified, nurse-led

BMJ Open

1		
2 3 4	53	model maintained control rates until drug stock-outs occurred. Incremental per patient annual costs
5 6	54	were lower than chronic HIV care costs in low-income settings. Future operational research should
7 8	55	define a simplified diabetes care package including emergency preparedness.
9 10 11 12	56	
13 14	57	Strengths and Limitations
15 16		
17	58	This is the first study of its kind to examine diabetes intermediate clinical outcomes and
18 19	59	programme costs in a complex humanitarian setting in sub-Saharan Africa.
20	60	 Using routine clinical and programmatic data collected in a protracted conflict setting, we
21 22	61	estimated the effect of insecurity and related programmatic changes on diabetes
23	62	intermediate clinical outcomes, which to our knowledge, has not been addressed in the
24 25	63	literature to date.
26	64	• The study was limited by the relatively small sample size and lack of control group for
27 28	65	comparison.
29 30	66	 The costing analysis was descriptive and based on aggregate data and so neither the cost-
30 31		
32 33	67	effectiveness of the programme nor patient-level costs could be determined.
33 34	68	
35		
36 37		
38		
39 40		
41		
42 43		
44		
45 46		
40 47		
48		
49 50		
51		
52		
53 54		
55		
56 57		
57		
59		
60		

BMJ Open

Title: Management of diabetes and associated costs in a complex humanitarian setting in the Democratic Republic of Congo: a retrospective

Background

cohort study.

Over the past 40 years, diabetes prevalence has increased sharply worldwide, particularly in low and middle income countries (LMICs).[1] However, data on the burden and needs related to diabetes and other non-communicable diseases (NCDs) are scarce from conflict-affected countries, particularly those in Sub-Saharan Africa.[1,2] Humanitarian actors have been slow to prioritise diabetes treatment in disaster and post-conflict settings despite reporting increasing presentations of diabetic patients within their programmes.[3-6] This is due to lack of knowledge on local diabetes epidemiology, limited research on diabetes management or outcomes in crisis settings; a lack of programmatic and policy guidance or tools to support diabetes care in such settings; prioritisation of other health needs; and also a perception that diabetes care is complex and expensive. [2,3,6-8] The humanitarian situation in Democratic Republic of Congo (DRC) is considered one of the most complex and challenging worldwide. Prolonged conflict over two decades has resulted in over 5 million deaths, over 4.5 million internally displaced people, the exodus of over 800,000 refugees, and ongoing political and social instability. [9,10] The health system, weakened by prolonged conflict, is challenged by competing health needs in a country ranked 176 of 189 on the human development index despite holding rich natural resources. [11]

On this backdrop, diabetes prevalence is increasing, currently estimated at 4.0 - 5.4%. [12–14] While some factors implicated in the global rise in diabetes prevalence hold true in DRC (demographic change, urbanisation, changing diets etc.) chronic conflict and political instability add additional

Page 5 of 39

1 2

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
19 20	
20 21 22 23	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44 45	
45 46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

92 complexity. Recent reviews and ethnographic evidence point to a link between chronic food 93 insecurity, childhood malnutrition and diabetes. [13,15,16] In DRC, 43% of children under 5 years are 94 chronically malnourished and levels of food insecurity have risen sharply, with millions subsisting on 95 World Food Programme rations. [17] Recent evidence also supports an association between chronic 96 perceived stress and diabetes onset, while patients with diabetes in humanitarian settings focus on 97 suffering and loss as a cause of their illness. [16,18] Furthermore, in humanitarian crises, people with 98 diabetes are at increased risk of complications and death due to treatment interruption and 99 precarious access to food and water. [2,6]

100 Médecins sans Frontières (MSF), a medical humanitarian organisation, has supported healthcare 101 delivery in Mweso, North Kivu, in collaboration with the Ministry of Health since 2008. North Kivu is 102 a rural, impoverished area bordering Rwanda with an estimated population of 365,000. It remains a 103 flash point in the on-going conflict between shifting rebel groups and government forces, which has 104 been characterised by brutal violence against civilians and destruction of lives and livelihoods. 105 Outbreaks of violence since 2016 have resulted in recurrent waves of population displacement; 106 North Kivu alone hosts 17 internally displaced person camps. MSF supports health services in 4 out 107 of 23 Primary Health Care clinics and in Mweso hospital within Masisi District. Mweso hospital 108 serves a catchment area of approximately 145,000 people, with about 65,000 recipients of care 109 living in the immediate vicinity of the hospital.

While a national diabetes programme exists in DRC, available diabetes care is concentrated at
hospital level in major cities. [19] In response to growing patient and provider needs in Mweso, MSF
implemented a hospital-outpatient based diabetes programme in March 2015, the Integrated
Diabetic Clinic within Hospital Outpatient Department (IDC-OPD) in place of the ad hoc care
previously undertaken. The IDC-OPD was integrated at the clinical level into usual outpatient
activities, with pre-existing staff trained to provide this additional service. [20] The programme
comprised a nurse-led, multi-disciplinary model, using locally adapted clinical guidelines, patient

BMJ Open

counselling materials and data collection tools, accompanied by three days of specialist training.[21] The clinic team included: a nurse supervisor, nursing assistant, two doctors, a nutritionist, and education and psychosocial support officers. Diabetes was diagnosed according to World Health Organization (WHO) guidelines using repeated fasting capillary glucose. Most patients were identified as diabetic and enrolled after acute hospital presentation, while some were identified via the Mweso outpatient department or referring primary care clinics.

Patients received a detailed enrolment assessment, monthly nurse-led follow-up and 6-monthly medical review. The programme included context-adapted dietary advice (accounting for locally available and affordable foods and customs) and psychosocial support, including clinician-moderated peer support groups and involvement of family or friends as treatment supporters. The psychosocial aspects of patients and providers managing diabetes are discussed in a related paper, with major themes from the patient perspective including the difficulty adhering to the recommended diet and barriers to clinic access during outbreaks of violence. [22] Each patient was given a clinic-held patient file and patient-held passport to facilitate safe passage when armed groups impeded their travel. Clinical guidelines were adapted from MSF, WHO and other international guidance. [23] Patient educational tools (disease and diet education leaflets) were adapted from Santé Diabète [24], a Malian Non-Governmental Organisation, and generic medications, included on MSF's Essential Drugs List, were prescribed. Insulin doses were adjusted using single fasting capillary blood glucose readings and patients' reported symptoms of hypo- or hyperglycaemia in the absence of home glucose monitoring. Insulin-dependent patients were prescribed human insulin, delivered via needle and syringe, and advised to store this at home in a clay pot, recommended as a safe alternative to refrigeration in similar contexts. [25] In early 2016, outbreaks of armed violence restricted movement of patients and supplies. Direct

the international staff from Mweso and temporary scaling back of the programme, with local nursing

attacks on MSF staff and facilities, including an armed robbery and abductions, led to withdrawal of

BMJ Open

staff dispensing medications to any patients reaching the clinic. Later, the programme was
suspended for a period of six weeks when supply routes were entirely blocked and drug stocks were
exhausted.

A mixed methods evaluation of the Mweso IDC-OPD programme was undertaken by MSF and included a qualitative evaluation exploring patient and provider clinical and psychosocial challenges, presented elsewhere [22]; and a retrospective review of quantitative programmatic data and cost data collected as part of routine care in a chronic conflict zone, reported here. The overall aim of this paper was to evaluate an Integrated Diabetic Clinic within a Hospital Outpatient Department (IDC-OPD) in a complex humanitarian setting in North Kivu in Democratic Republic of Congo. The specific objectives were to: (i) analyse diabetes intermediate clinical and programmatic outcomes (blood pressure/glycaemic control, visit frequency and volume); (ii) explore the association of key insecurity and related programmatic events with these outcomes; and (iii) describe incremental IDC OPD programme costs.

155 Methods

It has been acknowledged that traditional experimental and evaluation methods may be unfeasible, inappropriate or even unethical to apply in humanitarian settings [26]. Therefore, we have used a pragmatic approach to utilising programmatic data, with an open cohort design. For the outcome analysis, we conducted a retrospective analysis of routine data of enrolled adults aged ≥18 years from January 2014 to February 2017, examining trends in diabetes outcomes and their association with key programmatic events. The study period was divided into five phases, defined by programmatic changes or periods of heightened insecurity (which impacted service delivery due to staff evacuation, supply chain interruption and reduced patient access). Period T1 refers to ad-hoc care delivered before introduction of the IDC-OPD programme (T2). Security incidents in December 2015 prompted a period of service suspension (nurse-only care, with drug pick-ups, glucose testing

ر ۸
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
∠∪ ⊃1
21
22
23 24 25
24
25
26
27
28
20
29
30
31
32
33
34
35
34 35 36
20
37 38
38
39
40
41
42
43
44
44
46
47
48
49
50
51
52
52 53
54
55
56
57
58
59
60

171

172

60

1 2 3

and minimal treatment adjustments) (S1). Complete suspension followed once drug stocks were

167 exhausted (S2). Limited service resumed in April (R1) until full service recommenced from

168 September 2016 (R2) (Table 1).

169 Table 1. Study Periods for Evaluation of IDC-OPD Programme, Mweso, DRC

raining 1 (T1)	Ad hoc diabetes service following basic staff training	01/01/2014 -
		14/03/2015
raining 2 (T2)	IDC-OPD implemented following formal staff training	15/03/2015 –
		14/12/2015
uspend 1 (S1)	Nurse-provided care without medical supervision;	15/12/2015 -
	monthly drug refills provided until buffer stocks were exhausted	31/01/2016
Suspend 2 (S2)	No clinical supervision or drugs were provided	01/02/2016 -
		14/04/2016
esume 1 (R1)	The service was resumed without medical	15/04/2016 -
	supervision or quality control	31/08/2016
esume 2 (R2)	Full service resumed until end of data collection	01/09/2016 -
	period	09/02/2017
Data		

based clinic-held files by clinical staff and transferred to an electronic database by a trained data

174 entry operator on a weekly basis. Missing data were discussed with the nurse manager and gaps

175 were filled during follow-up clinical visits. Single data entry was performed on a password-protected

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

3 ⊿
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 23
23
24
25
26
27
28
29
30
31
32
33
34
35
36
30 37
3/
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

176 Microsoft Excel software application specifically developed by MSF for this programme. Anonymised 177 exports were transferred to the study team on a monthly basis.

178 Demographic data on patients' age, gender, occupation, and village of residence were recorded on enrolment. Cardiovascular risk factors (smoking status, current alcohol use), family history of 179 diabetes, year of diabetes diagnosis and self-reported history of childhood malnutrition and/or 180 tuberculosis were recorded. Clinical parameters: body mass index (BMI), blood pressure (BP) 181 182 measured by manual sphygmomanometer according to local MSF protocols [21], fasting capillary 183 blood glucose (FBG); prescribed diabetes drugs [insulin and/or oral hypoglycaemic drugs (OHGs)]; 184 and diabetes classification (Type I, Type II or other) were recorded at each clinical encounter. 185 Medical review at enrolment and six monthly thereafter was recorded, including biochemical 186 markers (serum creatinine) and examination for complications (visual acuity, cataract, proteinuria, 187 foot check). Numbers of deaths, transfers out of the area and delays in attendance were also 188 documented. The key intermediate clinical outcome and programme measures used in the analysis 189 are shown in Table 2.

190

191 Table 2: Outcome measures used to determine effect of different programme periods on

192 programme delivery and intermediate clinical outcomes

programme delivery and intermediate clinical outcomes				
Category	Variable			
Intermediate	Proportion of visits per month where patients' BP is at target (< 140/90			
Clinical Outcomes	mmHg)			
	Proportion of visits per month where patients' blood glucose is at target			
	(> 4.2 and \leq 8.3 mmol/L)			
Number and	Number of visits per month			
frequency of visits	Number of patients seen per month			

2	
3 4	
5	
6 7	
8	
9 10	193
11	193
12 13	194
14 15 16	195
17 18	196
19 20 21	197
21 22 23	198
24 25	199
26 27	
28 29	200
30 31	201
32 33	202
34 35	203
36 37	204
38 39 40	205
40 41 42	206
43 44	207
45 46	208
47 48	209
49 50	210
51 52 53	• • •
53 54 55	211
55 56 57	212
58	
59 60	
00	

Average visits per patient per month
Average days from previous visit
Missing data for BP / glycaemia per visit

195 Analysis

Basic demographics were analysed using mean and median and were presented with inter-quartile
ranges. We assessed the relationship of different study periods with the frequency of visits and the
impact of study periods on intermediate clinical outcomes i.e. per visit attainment of blood pressure
(< 140/90 mmHg) and glycaemic (> 4.2 and ≤ 8.3 mmol/L) targets.

200 To estimate the effect of a period change we calculated the odds ratio (OR) of the odds of having the 201 biomarker under control in a visit in the new period (t) over the odds of having the biomarker 202 controlled in a visit in the previous period (t-1): $OR_t = Odds_t / Odds_{t-1}$. If $OR_t > 1$, this meant that the 203 chances of the biomarker being under control in a visit in period t was greater than the chances of 204 the biomarker being under control in a visit in the previous period (t-1) (but not necessarily than 205 other periods, t-2, t-3, etc.). Likewise, $OR_t < 1$ implied a reduction in the chances of having the 206 biomarker under control in a visit during period t compared to a visit during the previous period (t-207 1). To estimate these OR we ran a logistic model with period as a categorical variable, suitably 208 coded, and adjusted for sex, age (and square and cube terms) and number of visits of the patient 209 (and square term). The models were stratified by whether the patient was prescribed insulin (+/-210 oral hypoglycaemic agents) at the previous visit.

211 Missing data: Our main analysis used only complete data; records with missing data were excluded.
212 Few outcome variable data were missing: less than 3% in BP control (most of it in the pre-training

BMJ Open

2		
3 4	213	period) and less than 0.3% for glycaemic control (Supplement SM1). There were no missing data for
5 6 7	214	date of visit, sex or age.
8 9	215	
10 11 12	216	Costing data and analysis
12 13 14 15 16	217	For the descriptive, incremental cost analysis we took a health services perspective. Information
	218	related to the nature, location and mode of delivery of the NCD services was collected during a field
17 18 19	219	visit in December 2015 by the study team and was supplemented by informal interviews with clinical
20 21	220	and administrative staff. A data analysis tool was designed to collate the relevant financial costs for
22 23	221	the study period 2014 -2015 from routine programme documents and standard MSF tools including
24 25 26	222	budget, human resources, drug consumption monitoring, logistics/supply tools, clinic records and
26 27 28	223	programme reports. For salary costs, we included the incremental costs of an MSF-employed
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52 53 54 55 56	224	medical doctor and nurse and an MOH-employed nurse (with salary supplement paid by MSF)
	225	dedicating one day, two psychosocial workers dedicating one hour and a nutritionist dedicating 30
	226	minutes per week to the IDC-OPD service (based on 22 working days per month). Hence, most costs
	227	were related to drugs, equipment, disposables and stationary. Key cost items were grouped into: (a)
	228	medicine, (b) supplies, and (c) staff time. Monthly resource use and unit cost data were recorded
	229	and annualised (Supplement SM2); annual total cost, cost per visit and cost per patient were
	230	reported in Euro (${f \in}$) for 2014 before formal implementation of the IDC-OPD programme and for
	231	2015 during full implementation.
	232	The study was approved by the Ministry of Health of North Kivu Province, DRC, and the Médecins
	233	sans Frontières Ethics Review Board (ID 1542).
	234	Patient and Public Involvement
	235	Patients were not involved in the design or conduct of this study.
58 59 60	236	Results

BMJ Open

1 2	
2 3	
4	
5	
6	
7 8	
9	
10	
11	
12	
14	
15	
16	
12 13 14 15 16 17 18	
19	
20	
21	
22 23	
24	
25	
26 27	
27 28	
29	
30	
31 32	
32 33	
34	
34 35	
36 27	
37 38	
39	
40	
41 42	
42 43	
44	
45	
46 47	
47 48	
49	
50	
51 52	
52 53	
54	
55	
56 57	
58	
59	
60	

1

237	Between January 1^{st} 2014 and February 9^{th} 2017, 243 patients were enrolled in the IDC-OPD
238	programme (Supplement SM3). Median age was 45 years (IQR 32 – 56); 44.6% of the cohort was
239	female. For adults \geq 18 years (n=219), mean BMI was 21.3 kg/m ² and 31.1% were underweight (BMI
240	< 18.5 kg/m ²). On enrolment, 8.2% were current smokers; 24.4% reported recent alcohol intake;
241	self-reported medical history included: 9.1% hypertension, 2.2 % CVD, 2.7% tuberculosis and 8.7%
242	malnutrition. Half were classified clinically as Type 2 diabetic (51%; n=125); 26% (n=62) as Type 1;
243	and 23% (n=56) were either unclassified or classed as "other" (Supplement SM3).
244	Trends in outcomes and impact of programmatic events
245	Numbers of visits and appointment intervals increased after the introduction of the systematic
245	Numbers of visits and appointment intervals increased after the introduction of the systematic
246	approach to diabetes care, which included monthly review appointments for stable patients (T2)
247	(Figure 1; Supplement SM4). During the period of scaled back service (S1), visit numbers initially
248	climbed while the visit interval decreased, which may reflect increased visit frequency due to short-
249	term drug supplies. Once drug buffer stock was exhausted, visit numbers dropped off sharply.
250	Patients may have avoided or were prevented from attending due to security conditions.
251	
252	Figure 1: Average number of days from previous visit per month for Mweso IDC-OPD service
253	
254	BP control was consistently better than glycaemic control (of note, patients without diagnosed
255	hypertension were included in the analysis) (Figure 2). By period T2, approximately 80% of visits
256	achieved BP and 60% achieved glycaemic control. There was a notable drop in control of both
257	parameters during programme suspension with a gradual improvement on resumption. Blood
258	pressure control was consistently better, while glycaemic control was consistently worse, in patients
259	prescribed insulin (+/- OHGs) compared with those prescribed OHGs alone (Supplement SM5), which

BMJ Open

3 4	260	may be because the former group contained relatively young Type 1 and malnutrition-related
5 6 7	261	diabetics.
, 8 9	262	
) 10 11	263	Figure 2: Proportion of visits with BP or glycaemia at target by month, Mweso IDC-OPD service
12 13 14 15	264	
16 17	265	The results of the odds ratio (OR) calculations were unexpected. Odds of attaining BP control
18 19	266	appeared to worsen following implementation of the formal IDC-OPD programme (T2 vs. T1), while
20 21	267	odds of attaining glucose control improved, perhaps because care was initially focussed on glucose
22 23 24	268	control (Supplement SM6). On scaling back the service (S1), control of both parameters seemed to
24 25 26	269	improve, possibly because the service itself or the subset of patients reaching it during the insecure
27 28	270	period were somehow different. Once medications supplies were exhausted (S2), control of both
29 30	271	parameters seemed to worsen, but control was regained on service resumption. Stratifying by
31 32 33	272	insulin prescription showed similar results (Supplement SM5).
34 35 36	273	Costs of providing diabetes care
37 38	274	The total costs of diabetes care in 2014 and 2015 were approximately €37,000 and €31,000
39 40 41	275	respectively (Table 3). Supplies were the major driver of costs each year. The greatest costs in 2014
42 43	276	were for latex gloves, glucometers and glucometer strips; in 2015 they were for glucometers, strips
44 45	277	and lancets (Supplement SM2). While medication costs increased in 2015 relative to 2014, staff costs
46 47	278	remained unchanged, and total costs decreased, largely driven by reduced excess consumption of
48 49 50	279	latex gloves after it was identified during the IDP-OPD training sessions. The total number of patients
50 51 52	280	and number of visits increased significantly from 2014 to 2015, rising from 77 and 626 to 144 and
53 54	281	1103, respectively. Thus, cost per-patient per-year (PPPY) dropped from €475 to €214 and cost per-
55 56	282	visit was halved from €58 to €28. This was due to the combined effect of higher patient numbers,
57 58 59 60	283	greater total number of visits and lower supply costs in 2015 compared to 2014 (Supplement SM2).
00		

Table 3. Costs (€) of diabetes care in 2014 and 2015, Mweso IDC-OPD service Cost category % 2014 costs % 2015 costs **Medicine costs** 5,202 14% 7,746 25% Supply costs 25,435 70% 17,180 56% Staff costs 5,935 16% 5,935 19% **Total costs** 36,573 100% 30,861 100% Costs per visit **Costs per patient** Discussion This evaluation of a chronic disease programme in a complex conflict setting, using routine programmatic and cost data, provided lessons, which may improve clinical care and programme design. To the best of our knowledge, the influence of treatment interruption and insecurity on diabetes management in humanitarian settings has not been addressed in the literature. Similarly, we are not aware of costing studies of diabetes care in crisis settings. Our results show that glycaemic control was similar or better to that documented in other humanitarian or low-income settings (using different targets) and, while it was positively impacted by programmatic changes, control clearly deteriorated during periods of heightened insecurity.[27] Our findings also indicate that, in a population previously undergoing regular supervision, a simplified nurse-provided, algorithm-driven service with consistent medication supply may be as

Page 15 of 39

1 2

BMJ Open

2	
3	
4	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
23	
24	
25	
26	
27	
28	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

299 effective as close medical supervision in maintaining disease control, particularly during periods of 300 service interruption. Medical input could thus be focused on achieving glycaemic control in patients 301 prescribed insulin, who appeared most affected by service interruption. We also note the lack of 302 evidence supporting management of what we believed to be malnutrition-related diabetes. 303 Intermittent outbreaks of armed conflict limited patient access and disrupted supply chains, 304 impeding continuity of care. We suggest that in high-insecurity settings, chronic disease 305 programmes should focus on preparing patients, staff and supply chains to pre-empt treatment 306 interruption during insecure periods, learning from HIV programme experiences in similar 307 settings.[28] Preparation could include: triaging patients by vulnerability (e.g. prioritising insulin-308 dependent diabetic patients, those with established complications and/or living far from the facility); 309 enhancing patients' health literacy and self-management education and provision of patient-held 310 personal treatment plans and emergency kits (including several months' supply of medications, such 311 as insulin, delivery devices and guidance as appropriate) to facilitate self-care during insecure periods; building staff capacity to allow for flexibility of roles in crises; establishing networks with 312 313 other chronic disease programmes; and stockpiling and secure storage of medications.[5,28,29] 314 Technology could facilitate continued patient treatment support when access to facilities is 315 impossible e.g. via mobile phone SMS messaging or decentralisation of care to community-based 316 health workers furnished with clinical decision support tools or supported via telemedicine. 317 The relatively poorer glycaemic control in insulin-prescribed patients may reflect either disease 318 severity or the challenges associated with insulin therapy. Adherence to daily insulin injections is 319 difficult anywhere; in Mweso, the security, financial and geographical barriers to accessing insulin 320 and the unavailability, unaffordability and burden for families of the recommended diabetes diet, 321 may additionally contribute to poor adherence.[22] In this programme, clinicians adjusted insulin 322 doses based on a single fasting glucose reading taken in clinic and on patients' reported symptoms in

BMJ Open

the absence of home glucose monitoring and, therefore, dose adjustment was cautious and treatment targets were conservative.

There is limited, although growing, evidence on the incidence, prevalence and characterisation of diabetes in Sub-Saharan Africa, which our findings broadly reflect. [30] Several reviews and recent ethnographic evidence describe "atypical" forms of diabetes, which may complicate diagnosis, classification and management. These include "ketosis-prone atypical diabetes mellitus" and "malnutrition-related diabetes". [13,16,31] Local prevalence studies support the existence of the latter in the DRC, which is in keeping with the high proportion of underweight adults and "unclassified" diabetics in our cohort.[14,32] It is unclear whether malnutrition is causative, associated with hyperglycaemia or with pancreatic insufficiency and further study of diabetes epidemiology in DRC is needed, exploring factors such as childhood malnutrition, food insecurity and underweight and use of calorie-dense therapeutic foods. [31] Moreover, little evidence exists to guide either malnutrition-related diabetes care or the effective management of insulin in humanitarian settings, particularly in the absence of home or community-based glucose testing.[3,7] The total cost of care delivery decreased by 16% from 2014 to 2015 despite increased visit and patient numbers. This was largely due to decreased supply costs, driven by the 100-fold reduction in consumption of latex gloves following IDC-OPD training. Efficiencies of supply consumption and patient throughput (more visits and more patients seen by the same number of staff) contributed to reducing PPPY costs by 55% from €475 in 2014 to €214 in 2015. To our knowledge, there is no available literature to compare cost per patient or per visit for diabetes care (or NCD care generally) delivered in unstable humanitarian settings. A study from Ghana reported a per patient annual direct cost of US\$372.65 for hospital-delivered diabetes care in

life-long condition with which humanitarian actors have traditionally engaged. The 2015 PPPY cost

reported in this study is far lower than that reported by PEPFAR and others to deliver chronic HIV

2005. For a potential comparator, we looked at the cost of delivering chronic care for HIV, the main

BMJ Open

2 3 4	(1)
5 6	3
7 8	3
9 10	3
11 12 13 14 15	3
16	(1)
17 18 19	3
20 21	3
22 23	(1)
24 25	3
26 27 20	3
28 29 30	3
31 32	(1)
33 34	(1)
35 36	3
37 38 39	(1)
40 41	(1)
42 43 44	3
45 46	(1)
47 48	3
49 50	3
51 52 53	(1)
54 55	(1)
56 57	(1)
58 59 60	3
60	

care programmes in low and middle income countries in SSA [33,34]. In terms of cost structure,
supplies were the major cost driver in the Ghanaian study (syringes, lancets and strips), whereas
other analyses of diabetes care in SSA identified medications, and specifically insulin, as the main
cost contributor [35,36].

352 Strengths and Limitations

353 Using routine clinical and programmatic data, with minimal service disruption, we have explored 354 clinical outcomes of a chronic disease programme in a protracted conflict setting and the influence of periods of heightened insecurity on intermediate clinical outcomes and on service delivery. Each 355 patient who attended in a given month contributed data, irrespective of whether they ever 856 857 experienced a treatment interruption. Our study provides new costing information for humanitarian actors to support the initiation or adaptation of specific NCD programmes and may potentially 858 359 support scale up of similar services in DRC (and other conflict-affected settings). We concluded that 860 the incremental cost of adding an outpatient diabetes service to a humanitarian health programme 861 in a rural hospital setting may be achieved at a cost similar to that of delivering chronic HIV 362 programmes. While we cannot confirm whether an external audit of cost data had taken place, we 863 are confident in the quality of these data due to MSF's robust systems and oversight by strong in-864 country and international teams.

865 Given the logistical and ethical challenges of undertaking research in conflict settings, we 866 acknowledge that there are a number of study limitations. We had a relatively small sample size and 867 no control group for comparison. We did not explore per patient control of clinical parameters over time, control by diabetes type (or age), appropriateness of prescribing, patient-reported outcomes 868 869 or the influence of psychosocial factors, diet, or adherence in each study phase since these data 370 were unavailable. Gestational diabetes was not addressed since this was managed within antenatal 371 services. Our costing analysis was descriptive so we could not comment on programme cost-372 effectiveness. Costing data were presented as average annual costs and did not explore the impact

> of various programme periods on costs. Since our cost data were aggregate, we could not explore patient-level costs or account for patient heterogeneity. While our findings may not be generalizable to other complex humanitarian settings or to other providers' diabetes programmes in the DRC, our study contributes knowledge on key challenges and suggests solutions, which may be more broadly applicable.

BMJ Open

Future research is needed in complex humanitarian settings to evaluate simplified, task-shared models of diabetes care, including culturally- and contextually-relevant psychosocial support and dietary advice; to optimise insulin management; and to evaluate emergency preparedness plans and technology-facilitated remote patient support. [3,5,8,13,29] We recommend that future prospective studies should explore per-patient outcomes (while also exploring programme-level outcomes as done in this study). We suggest including a control group; collecting additional outcome variables, such as complication rates and patient-reported outcomes e.g. related to quality-of-life, including functionality and mental health; and exploring the impact of psychosocial stressors and treatment interruption on clinical outcomes. We also suggest that cost-effectiveness studies of different models of diabetes care, including use of technology-facilitated remote support, and patient level costing studies from both provider and patient perspectives should be undertaken, exploring patient heterogeneity and direct and indirect patient costs.

390 Conclusion

Our results help develop the sparse knowledge on the prevalence and characterisation of diabetes in
Sub-Saharan Africa. They demonstrate that diabetes care is feasible even in complex humanitarian
emergencies, and at a cost that is lower than chronic HIV care. The results also indicate that the
Mweso IDC-OPD programme could be further simplified to involve drug collection along with nurseled, algorithm-guided treatment adjustment. We suggest that chronic disease programmes in
unstable settings should engage in emergency preparedness, learning from the experience of HIV

1 2			
3 4	397	programmes ir	n similar settings. Future research is needed to evaluate simplified, task-shared models
5 6	398	of diabetes car	e and management; and to evaluate emergency preparedness plans and technology-
7 8	399	facilitated rem	ote patient support.
9 10 11 12 13	400		
14 15 16	401	List of Abbr	reviations
17 18	402	BMI	Body Mass Index
19 20	403	BP	Blood Pressure
21 22	404	DM	Diabetes Mellitus
23 24 25 26 27 28 29 30 31 32 33 34	405	DRC	Democratic Republic of Congo
	406	HIV	Human Immunodeficiency Virus
	407	IDC-OPD	Integrated Diabetic Clinic within Hospital Outpatient Department
	408	LMICs	Low- and Middle-Income Countries
	409	MSF	Médecins sans Frontières
35 36	410	NCD	Noncommunicable Disease
37 38	411	OHG	Oral Hypoglycaemic Drugs
39 40	412	OR	Odds Ratio
41 42 43	413	РРРҮ	Per Patient Per Year
44 45	414		
46 47	415		
48 49 50 51 52 53 54 55 55 56	416		
57 58			
59 60			

Declarations

418 Ethics approval and consent to participate

This study was approved by the Ministry of Health of North Kivu Province, DRC, by the MSF Ethics
Review Board, and the Ethics Committee of the London School of Hygiene and Tropical Medicine.
Information sheets on the clinic walls provided details of the evaluation; no specific consent was
sought from patients for use of their routine clinical data.

423 Authors' contributions

- 424 KJ and BR were involved in study conception; EA, GC, KJ, DPM, PP and BR contributed to study
- 425 design and interpretation of data. DPM and ZS analysed the data. MB contributed to data collection.
- 426 EA drafted the manuscript and all authors reviewed drafts and approved the final version.

427 Acknowledgements

- 428 We gratefully acknowledge the staff and patients of the MSF IDC-OPD programme for their
- 36
 37 429 contribution to this study. We thank Sarah Venis for her helpful review of the article. This work was
- 38
 39 430 presented at MSF Scientific Days Conference in London, May 2018.
 40

431 Competing Interests

4445 432 The authors declare that they have no competing interests.

48 433 Data Sharing

- 51 434 The datasets are available from MSF on request by researchers who fulfil certain criteria and under
- 5253 435 the auspices of a data sharing agreement.
- 56 436 **Funding**
- 5859 437 This study was funded by Médecins sans Frontières.

2						
3 4 5	438	References				
6 7	439	1	NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled			
8 9	440		analysis of 751 population-based studies with 4.4 million participants. Lancet (London,			
10 11 12	441		<i>England</i>) 2016; 387 :1513–30. doi:10.1016/S0140-6736(16)00618-8			
13 14	442	2	Kehlenbrink S, Smith J, Ansbro É, et al. The burden of diabetes and use of diabetes care in			
15 16 17	443		humanitarian crises in low-income and middle-income countries. Lancet Diabetes Endocrinol			
18 19	444		2019; 0 . doi:10.1016/S2213-8587(19)30082-8			
20 21 22	445	3	Demaio A, Jamieson J, Horn R, et al. Non-Communicable Diseases in Emergencies: A Call to			
23 24	446		Action. <i>PLoS Curr</i> Published Online First: 2013.			
25 26 27	447		doi:10.1371/currents.dis.53e08b951d59ff913ab8b9bb51c4d0de			
28 29	448	4	Roberts B, Patel P, McKee M. Noncommunicable diseases and post-conflict countries. Bull			
30 31 32	449		World Health Organ 2011; 90 :2-2A. doi:10.2471/BLT.11.098863			
33 34	450	5	Besançon S, Fall I-S, Doré M, et al. Diabetes in an emergency context: the Malian case study.			
35 36 37	451		Confl Health 2015; 9 :15. doi:10.1186/s13031-015-0042-9			
38 39	452	6	Boulle P, Kehlenbrink S, Smith J, et al. Challenges associated with providing diabetes care in			
40 41 42	453		humanitarian settings. Lancet Diabetes Endocrinol 2019;0. doi:10.1016/S2213-			
43 44 45	454		8587(19)30083-X			
45 46 47	455	7	Ruby A, Knight A, Perel P, et al. The Effectiveness of Interventions for Non-Communicable			
48 49	456		Diseases in Humanitarian Crises: A Systematic Review. PLoS One 2015;10:e0138303.			
50 51 52	457		doi:10.1371/journal.pone.0138303			
53 54	458	8	Jobanputra K, Boulle P, Roberts B, et al. Three Steps to Improve Management of			
55 56	459		Noncommunicable Diseases in Humanitarian Crises. PLOS Med 2016;13:e1002180.			
57 58 59 60	460		doi:10.1371/journal.pmed.1002180			

Page 22 of 39

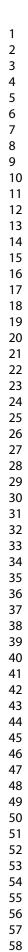
BMJ Open

1

1 2			
3 4	461	9	International Rescue Committee. Mortality in the Democratic Republic of Congo: An ongoing
5 6	462		crisis International Rescue Committee (IRC). 2007.
7 8	463		https://www.rescue.org/report/mortality-democratic-republic-congo-ongoing-crisis
9 10 11	464		(accessed 10 Dec 2017).
12 13 14	465	10	UNHCR - UNHCR Global Trends 2018. Geneva.
15 16	466		2019.https://www.unhcr.org/uk/statistics/unhcrstats/5d08d7ee7/unhcr-global-trends-
17 18	467		2018.html (accessed 1 Jul 2019).
19 20 21	468	11	Human Development Indices and Indicators: 2018 Statistical Update Congo (Democratic
22 23 24	469		Republic of the). http://hdr.undp.org/en/data (accessed 30 Jul 2019).
25 26	470	12	Whiting DR, Guariguata L, Weil C, et al. IDF diabetes atlas: global estimates of the prevalence
27 28	471		of diabetes for 2011 and 2030. <i>Diabetes Res Clin Pract</i> 2011; 94 :311–21.
29 30 31	472		doi:10.1016/j.diabres.2011.10.029
32 33 34	473	13	Atun R, Davies JI, Gale EAM, et al. Diabetes in sub-Saharan Africa: from clinical care to health
35 36	474		policy. <i>lancet Diabetes Endocrinol</i> 2017; 5 :622–67. doi:10.1016/S2213-8587(17)30181-X
37 38 39	475	14	Muyer MT, Muls E, Mapatano MA, et al. Diabetes and intermediate hyperglycaemia in
40 41	476		Kisantu, DR Congo: a cross-sectional prevalence study. BMJ Open 2012;2:e001911.
42 43 44	477		doi:10.1136/bmjopen-2012-001911
45 46	478	15	A sub-Saharan African perspective of diabetes.
47 48	479		file:///C:/Users/DAnsbro/Downloads/0f317533c181fe640b000000.pdf (accessed 30 Jan
49 50 51	480		2015).
52 53 54	481	16	Carruth L, Mendenhall E. "Wasting away": Diabetes, food insecurity, and medical insecurity in
55 56	482		the Somali Region of Ethiopia. Soc Sci Med 2019; 228 :155–63.
57 58 59 60	483		doi:10.1016/J.SOCSCIMED.2019.03.026

Page 23 of 39

1


BMJ Open

1 2			
3 4	484	17	Food and Agriculture Organisation of the United Nations. FAO - News Article: Food insecurity
5 6	485		soars in conflict-ridden Democratic Republic of Congo.
7 8 9	486		http://www.fao.org/news/story/en/item/1028934/icode/ (accessed 5 Aug 2019).
10 11 12	487	18	Harris ML, Oldmeadow C, Hure A, et al. Stress increases the risk of type 2 diabetes onset in
13 14	488		women: A 12-year longitudinal study using causal modelling. <i>PLoS One</i> 2017; 12 :e0172126.
15 16 17	489		doi:10.1371/journal.pone.0172126
18 19	490	19	World diabetes Foundation. Projects. Improving diabetes care WDF05-128.
20 21	491		https://www.worlddiabetesfoundation.org/projects/congo-kinshasa-wdf05-128 (accessed 5
22 23 24	492		Aug 2019).
25 26	493	20	Valentijn PP, Schepman SM, Opheij W, et al. Understanding integrated care: a comprehensive
27 28	494		conceptual framework based on the integrative functions of primary care. Int J Integr Care
29 30 31	495		2013; 13 :e010. doi:10.5334/ijic.886
32 33 34	496	21	Ansbro ÉM. MSF OCA Mweswo Guide de diabète pour patients ambulatoires. 2015.
35 36	497	22	Murphy A, Biringanine M, Roberts B, et al. Diabetes care in a complex humanitarian
37 38 39	498		emergency setting: a qualitative evaluation. BMC Health Serv Res 2017;17:431.
40 41	499		doi:https://dx.doi.org/10.1186/s12913-017-2362-5
42 43 44	500	23	Jobanputra K, Ansbro E. Diabetes service evaluation (2014-2017) – main findings from
45 46	501		Mweso, North Kivu, the Democratic Republic of Congo. Published Online First:
47 48 49	502		2018.https://fieldresearch.msf.org/handle/10144/619307 (accessed 12 May 2019).
50 51	503	24	ONG Santé Diabète / NGO Health Diabetes - Home. https://santediabete.org/en/ (accessed
52 53 54	504		20 Aug 2018).
55 56	505	25	Ogle GD, Abdullah M, Mason D, et al. Insulin storage in hot climates without refrigeration:
57 58 59 60	506		temperature reduction efficacy of clay pots and other techniques. <i>Diabet Med</i> 2016; 33 :1544–

BMJ Open

1			
2 3 4	507		53. doi:10.1111/dme.13194
5 6 7	508	26	Blanchet K, Ramesh A, Frison S, et al. Evidence on public health interventions in humanitarian
8 9 10	509		crises. <i>Lancet (London, England)</i> 2017; 390 :2287–96. doi:10.1016/S0140-6736(16)30768-1
11 12	510	27	Cohen DB, Allain TJ, Glover S, et al. A survey of the management, control, and complications
13 14	511		of diabetes mellitus in patients attending a diabetes clinic in Blantyre, Malawi, an area of high
15 16 17	512		HIV prevalence. <i>Am J Trop Med Hyg</i> 2010; 83 :575–81. doi:10.4269/ajtmh.2010.10-0104
18 19	513	28	Culbert H, Tu D, O'Brien DP, et al. HIV Treatment in a Conflict Setting: Outcomes and
20 21 22	514		Experiences from Bukavu, Democratic Republic of the Congo. <i>PLoS Med</i> 2007; 4 :e129.
22 23 24	515		doi:10.1371/journal.pmed.0040129
25 26	516	29	Slama S, Kim H-J, Roglic G, et al. Care of non-communicable diseases in emergencies. Lancet
27 28	517		(London, England) 2017; 389 :326–30. doi:10.1016/S0140-6736(16)31404-0
29 30	517		
31 32	518	30	Hall V, Thomsen RW, Henriksen O, et al. Diabetes in Sub Saharan Africa 1999-2011:
33 34	519		Epidemiology and public health implications. a systematic review. BMC Public Health
35 36	520		2011; 11 :564. doi:10.1186/1471-2458-11-564
37 38	521	31	Gill G V., Mbanya J-C, Ramaiya KL, <i>et al.</i> A sub-Saharan African perspective of diabetes.
39 40		51	
41 42	522		<i>Diabetologia</i> 2009; 52 :8–16. doi:10.1007/s00125-008-1167-9
43 44	523	32	Hightower JD, Hightower CM, Vázquez BYS, et al. Incident prediabetes/diabetes and blood
45 46	524		pressure in urban and rural communities in the Democratic Republic of Congo. Vasc Health
47 48 49	525		<i>Risk Manag</i> 2011; 7 :483–9. doi:10.2147/VHRM.S22707
50 51	526	33	Bikilla A, Jerene D, Robberstad B, et al. Cost estimates of HIV care and treatment with and
52 53 54	527		without anti-retroviral therapy at Arba Minch Hospital in southern Ethiopia. Cost Eff Resour
54 55 56	528		<i>Alloc</i> 2009; 7 :6. doi:10.1186/1478-7547-7-6
57 58	E 20	24	2012 Report on Casts of Treatment in the President's Emergency Plan for AIDS Palisf
59 60	529	34	2013 Report on Costs of Treatment in the President's Emergency Plan for AIDS Relief

1 2			
3 4	530		(PEPFAR) Background. https://www.pepfar.gov/documents/organization/212059.pdf
5 6 7	531		(accessed 21 Dec 2017).
8 9	532	35	Quaye EA, Amporful EO, Akweongo P, et al. Analysis of the Financial Cost of Diabetes Mellitus
10 11 12	533		in Four Cocoa Clinics of Ghana. Value Heal Reg Issues 2015;7:49–53.
13 14	534		doi:10.1016/j.vhri.2015.08.005
15 16 17	535	36	Kirigia JM, Sambo HB, Sambo LG, <i>et al.</i> Economic burden of diabetes mellitus in the WHO
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 90 41 42 43 45 46 47 48 90 51 52 53 54 55 56 57 58	536		African region. BMC Int Health Hum Rights 2009;9:6. doi:10.1186/1472-698X-9-6
59 60			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

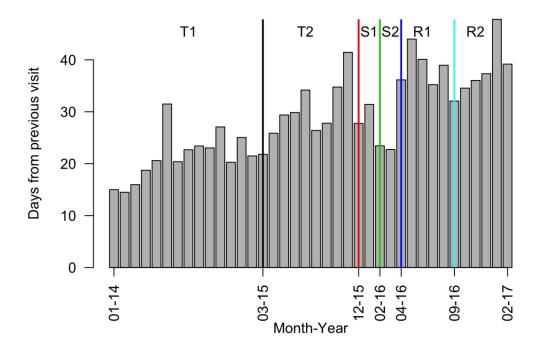


Figure 1: Average number of days from previous visit per month for Mweso IDC-OPD service 615x436mm (72 x 72 DPI)

BMJ Open

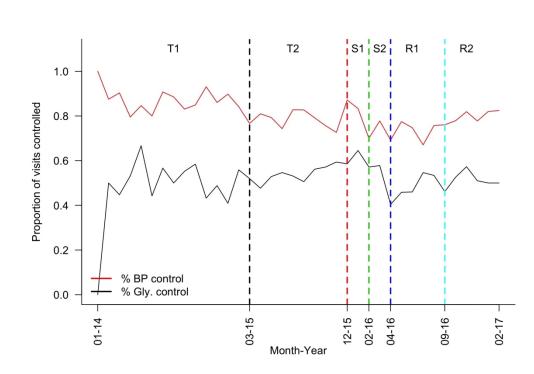
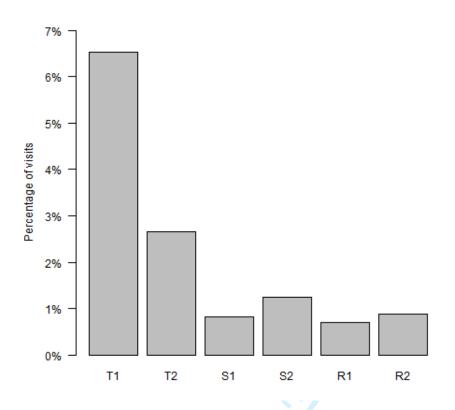



Figure 2: Proportion of visits with BP or glycaemia at target by month, Mweso IDC-OPD service

809x558mm (72 x 72 DPI)

SM1. Proportion of visits with missing data for either blood pressure or glycaemia

measurements, IDC-OPD Programme, Mweso, DRC

Note: Definitions of study periods T1 – R2 are described in Table 1

SM2. Monthly resource use associated with IDC-OPD in Mweso Hospital, North Kivu,

DRC

Items	Unit cost (€)	Forecast monthly consumption		
	.,	2014	. 2015	
Medicine				
INSULIN ISOPHANE (NPH), human, 100 UI/ml, 10 ml, vial	6.300	40	40	
INSULIN RAPID, human, 100 IU/ml, 10 ml, vial	6.300	8	8	
INSULIN, 100IU/ml, BIPHASIC 30, human, 10ml, vial	13.610	10	10	
METFORMIN hydrochloride, 500 mg, tab.	0.014	5,300	12,000	
GLIBENCLAMIDE, 5 mg, tab.	0.005	750	3,600	
HYDROCHLOROTHIAZIDE, 50 mg, tab.	0.003	0	300	
GLUCOSE HYPERTONIC, 50%, 50 ml, vial	0.556	75	6	
AMITRIPTYLINE hydrochloride, 25 mg, tab.	0.006	200	750	
ACETYLSALICYLIC acid (aspirin), 75 mg, tab.	0.005	0	2,000	
AMLODIPINE 5mg, tabs.	0.018	0	300	
Supplies				
GLUCOMETER, blood glucose monitor (Nova StatStrip) + strips	96.705	5	10	
(glucometer Nova StatStrip) STRIP ref. 42214	0.230	2,000	4,000	
SYRINGE, s.u., Luer, insulin, 100 IU/1 ml + fixed needle	0.079	2,000	4,000	
(spectrophotometer) KIT, DOSAGE CREATININE, Liquicolor 200ml	4.830	3.5	3.5	
THERMOMETER, ELECTRONIC, accuracy 0.1§ C + case	1.110	20	3	
SPHYGMOMANOMETER, one-hand manometer, Velcro, adult	26.000	0	1	
TEST, URINE, pH,dens,prot,gluc,ket,blood,nit,leuc, 1 strip	0.197	100	200	
REUSABLE SHARPS CONTAINER (RSC), 1.2 litre	44.750	1	1	
CONTAINER, SAMPLE, plast., 60ml, non sterile, urine	0.083	1,700	200	
LANCET, s.u., sterile, standard point	0.006	900	4,000	
GLOVE, EXAMINATION, latex, s.u. non sterile, medium	0.025	50,000	500	
Staff time (days allocated to diabetes care)*				
MSF Medical doctor	1,350	4	4	
MSF Nurse	900	4	4	
BCZ Nurse	239	4	4	
MSF psychosocial worker	1,422	0.5	0.5	
1 Nutritionist (MSF)	864	0.25	0.25	

*Note: Staff time costs assumed 22 full-time working days per month.

Variable Total (%) DM-1 (%) DM-2 (%) Other/NA (%) Patients (N) 243 62 125 56 Age (9.9%) 5 (8.9%) <18 24 19 (30.6%) 0 (0.0%) 18-40 74 (30.5%) 39 (62.9%) 20 (16.0%) 15 (26.8%) 3 80 29 41-60 112 (46.1%) (4.8%) (64.0%) (51.8%) 7 25 >60 33 (13.6%) 1 (1.6%) (20.0%) (12.5%) Sex 134 (55.1%) 34 (54.8%) 70 (56.0%) 30 (53.6%) Male Female 108 (44.4%) 28 (45.2%) 55 (44.0%) 25 (44.6%) 1 0 No data (0.4%) (0.0%) 0 (0.0%) (1.8%) 1 Occupation Labourer 121 (49.8%) 29 (46.8%) 85 (68.0%) 7 (12.5%) (7.8%) Office worker 19 2 (3.2%) 11 (8.8%) 6 (10.7%) Student 8 (3.3%) 8 (12.9%) 0 (0.0%) 0 (0.0%) Unable to work 11 (4.5%) 7 (11.3%) 3 (2.4%) 1 (1.8%) Other 48 (19.8%) 15 (24.2%) 26 (20.8%) 7 (12.5%) 35 No data 36 (14.8%) 1 (1.6%) 0 (0.0%) (62.5%) **Medical History** CVD Yes 5 (2.1%) 1 (1.6%)3 (2.4%) 1 (1.8%) No data 24 0 (0.0%) 0 (0.0%) 24 (42.9%) (9.9%) Hypertension 20 0 2 Yes (8.2%) (0.0%) 18 (14.4%)(3.6%) No data 25 0 (0.0%) 24 (42.9%) (10.3%)1 (0.8%) Tuberculosis Yes 6 (2.5%) 1 (1.6%) 5 (4.0%) 0 (0.0%) No data 24 (9.9%) 0 (0.0%) 0 (0.0%) 24 (42.9%) Malnutrition Yes 19 (7.8%) 15 (24.2%) 2 (1.6%) 2 (3.6%) 0 No data 0 24 (42.9%) 24 (9.9%) (0.0%) (0.0%) Family Hx of DM

SM3. Baseline characteristics of 243 patients on enrolment into Mweso IDC-OPD service

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

6

0

(9.7%)

(0.0%)

23

0

(18.4%)

(0.0%)

6

24

(10.7%)

(42.9%)

35

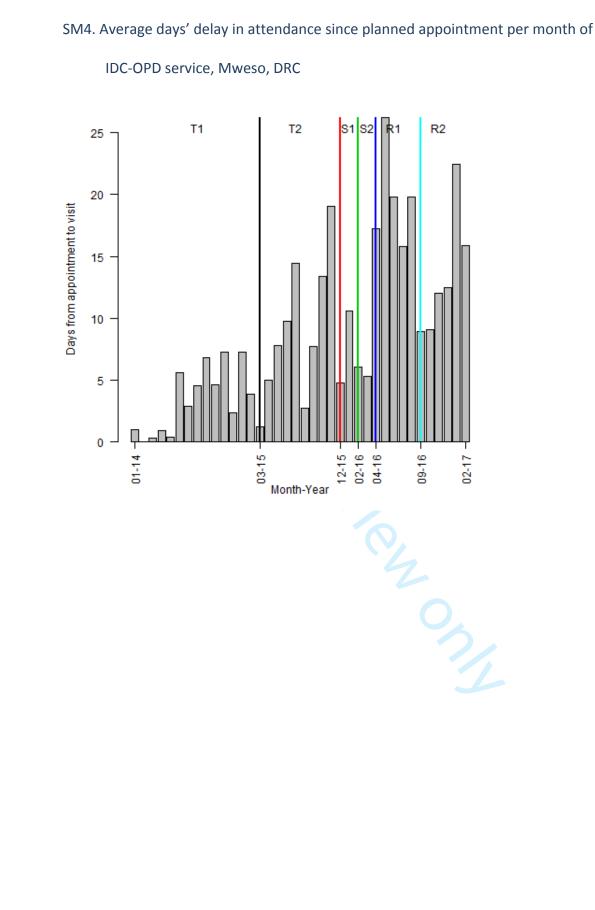
24

(14.4%)

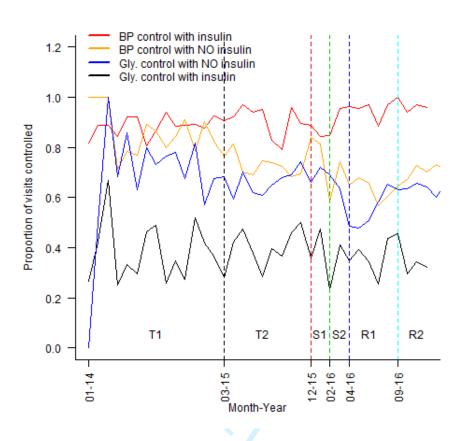
(9.9%)

58

59 60 Yes

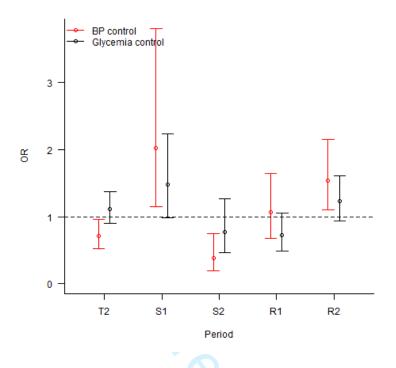

No data

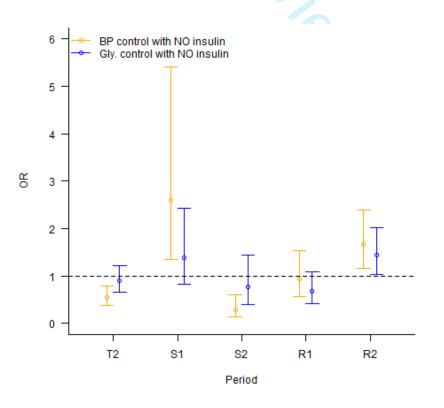
Patients >=18 years(N)*	219		43		125		51	
Smoking								
Yes	18	(8.2%)	1	(2.3%)	16	(12.8%)	1	(2.0%)
No data	21	(9.6%)	0	(0.0%)	0	(0.0%)	21	(41.2%
Alcohol								
Yes	50	(22.8%)	12	(27.9%)	32	(25.6%)	6	(11.8%
No data	33	(15.1%)	0	(0.0%)	1	(0.8%)	32	(62.7%
ВМІ								
<18.5	68	(31.1%)	23	(53.5%)	34	(27.2%)	11	(21.6%
18.5-24.9	96	(43.8%)	15	(34.9%)	59	(47.2%)	22	(43.1%
25.0-29.9	41	(18.7%)	5	(11.6%)	27	(21.6%)	9	(17.6%
>=30	7	(3.2%)	0	(0.0%)	5	(4.0%)	2	(3.9%
No data	7	(3.2%)	0	(0.0%)	0	(0.0%)	7	(13.7%

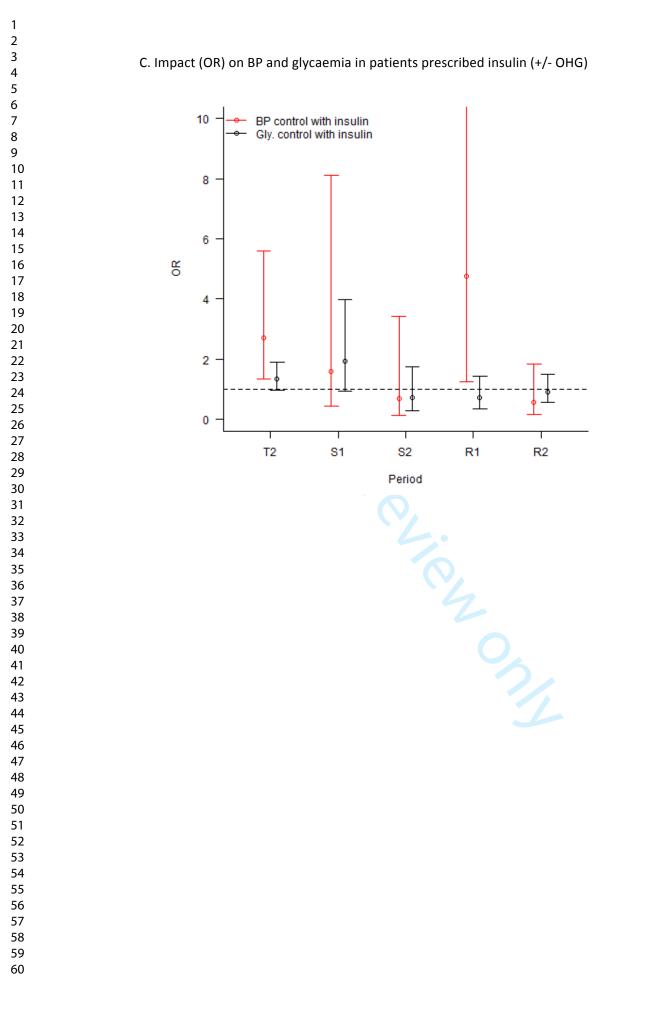

Note: For smoking, alcohol and BMI, denominators included only patients aged 18 years or above.

, Patients aged 18 years (

to beet teries only


SM5. Proportion of visits at target for BP and glycaemic control, stratified by insulin prescription per month of IDC-OPD service, Mweso, DRC


Note: Patients were categorised by whether they were prescribed insulin [+/- oral hypoglycaemic (OHG) drugs]) or OHG drugs alone at their last recorded visit. The former group would have included Type 1 diabetics, Type 2 diabetics with more advanced illness requiring a combination of OHG and insulin, and those with an intermediate type of diabetes, presenting with high insulin requirements in the absence of diabetic ketoacidosis, which we postulated represented "malnutrition-related diabetes". The latter group were likely to include Type 2 diabetics.


SM6. Impact (OR) on BP and glycaemic control of study period over previous period, unstratified (A) and stratified by insulin prescription (B and C) per month of IDC-OPD service, Mweso, DRC

A. Impact (OR) on BP and glycaemia in all patients (not stratified by insulin prescription)

B. Impact (OR) on BP and glycaemia in patients on oral hypoglycaemic drugs only

STROBE Statement—Checklist of items that should be included in reports of cross-sectional studies

Study Title: Management of diabetes and associated costs in a complex humanitarian setting in the Democratic Republic of Congo: a retrospective cohort study.

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1,4
		(b) Provide in the abstract an informative and balanced summary of what	2-3
		was done and what was found	
Introduction			I
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-7
Objectives	3	State specific objectives, including any prespecified hypotheses	7
Methods			
Study design	4	Present key elements of study design early in the paper	7-11
Setting	5	Describe the setting, locations, and relevant dates, including periods of	4,5,7,
betting	5	recruitment, exposure, follow-up, and data collection	8, 11
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants	7
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6,9,10
Data sources/	8*	For each variable of interest, give sources of data and details of methods	6
measurement	Ũ	of assessment (measurement). Describe comparability of assessment	
measurement		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	n/a
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	10
(applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	10
		(b) Describe any methods used to examine subgroups and interactions	10
		(c) Explain how missing data were addressed	10,11
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling	10
		strategy	
D		(<u>e</u>) Describe any sensitivity analyses	n/a
Results Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	10
i articipants	15	potentially eligible, examined for eligibility, confirmed eligible, included	10
		in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	n/a
		(c) Consider use of a flow diagram	n/a
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	Supp
Descriptive data	17	social) and information on exposures and potential confounders	Mat 3
		(b) Indicate number of participants with missing data for each variable of	Supp
		interest	Mat 1

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	n/a
		estimates and their precision (eg, 95% confidence interval). Make clear	
		which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were	Supp
		categorized	Mat 3
		(c) If relevant, consider translating estimates of relative risk into absolute	n/a
		risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions,	n/a
		and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	12-14
Limitations	19	Discuss limitations of the study, taking into account sources of potential	17,18
		bias or imprecision. Discuss both direction and magnitude of any potential	
		bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	14-16
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	18
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study	20
		and, if applicable, for the original study on which the present article is	
		based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.