
Recursive Feature Elimination by Sensitivity Testing

I. SUPPLEMENTARY MATERIAL

A. Generalization of Theorem 2.1

In this Section, we will prove a stronger version of Theorem
2.1, generalizing it to apply to a product distribution D and
to a function other than parity.

There are two parameters that are important in generalizing
Theorem 2.1, ρ and Imin. Under a uniform distribution, each
feature j has equal probability of being either 1 or 0. Under
a product distribution, one of these two probabilities may be
larger than the other. We use ρ > 0 to denote the maximum,
over all features j, of the ratio between the larger and the
smaller of these two probabilities, for product distribution D.
Thus, for example, if each feature j is 1 with probability 3/4
and 0 with probability 1/4, then ρ = 3.

When the examples are labeled according to a parity func-
tion (on a subset of the variables), flipping the value of a
relevant feature j in a random example drawn from D always
changes the value of the function. For other functions g,
flipping the value of a relevant feature j in a random example
drawn from D will change the value of g with some non-zero
probability. We denote the minimum of that probability, over
all relevant j, by Imin. This is the minimum influence of a
relevant variable of g, with respect to distribution D (cf. [1]).

For the uniform distribution with g being a parity function,
ρ = 1 and Imin = 1.

The generalized theorem replaces the polynomial depen-
dence of m on 1

1
2−ε

in Theorem 2.1 with a polynomial
dependence on 1

1
2 Imin−ρε

.

Theorem I.1. Suppose a machine learning algorithm is used
to learn a classifier M for a Boolean target concept f
defined on n Boolean features, where the target concept labels
examples according to the value of a Boolean function g,
computed on a fixed subset of the features. Suppose M has
true error rate ε < 1

2 , with respect to a product distribution D,
where 2ρε ≤ Imin. Then there is a quantity t that is polynomial
in n, ln 1

δ , and
1

1
2 Imin−ρε

, with the following property: for all

0 < δ < 1, if the R̃(j) values for all n features are computed
using M and an i.i.d. sample of size t, drawn from distribution
D, then with probability least 1−δ, the computed R̃(j) values
for all the relevant features will be higher than the computed
R̃(j) values for the irrelevant features.

Proof. Consider a random example a drawn from D. Flipping
any relevant bit in a reverses the output of f with probability
at least Imin.

Let P (a) denote the probability of drawing assignment a
from distribution D. By the definition of ρ, for any bit j,

1
ρP (a) ≤ P (a¬j) ≤ ρP (a). Here a¬j denotes the assignment
produced by flipping bit j of a.

Let A denote the set of assignments in {0, 1}n such that
M(a) 6= f(a).

Consider a relevant variable j of f . First, we will lower
bound the probability, for random a drawn from distribution D,
that f(a) 6=M(a¬j). It is easy to see that f(a) 6=M(a¬j) iff
one of the following two conditions holds: (1) f(a) 6= f(a¬j),
and a¬j 6∈ A, or (2) f(a) = f(a¬j), and a¬j ∈ A. Thus
the probability that f(a) 6= M(a¬j) is lower bounded by the
probability that Condition (1) holds. We will now lower bound
that probability.

Prob[f(a) 6= f(a¬j) and a¬j 6∈ A]
≥ Prob[f(a) 6= f(a¬j)]− Prob[a¬j ∈ A]

≥ Imin − ρε
(1)

The last inequality above uses the fact that the total proba-
bility mass of A is ε, and therefore the total probability mass
of assignments a such that a¬j ∈ A is at most ρε.

Thus, for relevant variable j, for random a drawn from D,
Prob[f(a) 6=M(a¬j)] ≥ Imin − ρε.

Now consider the case where j is an irrelevant variable.
In this case, the only way that f(a) 6= M(a¬j) is if a¬j ∈
A, which happens with probability at most ρε. Therefore,
Prob[f(a) 6=M(a¬j)] ≤ ρε.

In the statement of the theorem, we assumed that Imin >
2ρε. Let τ = 1

2Imin − ρε.
Now suppose we compute the R̃(j) values for all features

j using an i.i.d. random sample X drawn from D and labeled
according to f . Let t = 1

2τ2 ln
n
δ be the size of this sample.

Recall that R̃(j) is the difference between the accuracy of M
on X , and the accuracy of M on the sample derived from X by
flipping j in each example. This second accuracy measures the
percentage of examples a for which f(a) =M(a¬j). Let d(j)
be the percentage of examples a for which f(a) 6=M(a¬j). It
follows that for any pair of features j′ and j′′, R̃(j′) ≥ R̃(j′′)
iff d(j′) ≥ d(j′′). We will prove the following claim: with
probability at least 1 − δ, d(j) > 1

2Imin for each relevant
feature j, and d(j) < 1

2Imin for each irrelevant feature j.
This suffices to prove the theorem.

To prove the claim, consider a random a drawn from D. We
can view the test of whether f(a) 6= M(a¬j) as a Bernoulli
trial, with success when the inequality holds. Thus if j is a
relevant variable, the probability of success is at least Imin −
ρε. If j is an irrelevant variable, the probability of success is
at most ρε.

With this view, we can apply a standard bound of Hoeffding.
Consider a sequence of m independent Bernoulli trials, each



with probability p of success. Suppose that out of these m
trials, the observed fraction of successes is p̂. The bound of
Hoeffding states that for any c > 0, Prob[p̂ ≥ p + c] ≤
e−2mc

2

[2]. By exchanging the role of failures and successes,
it immediately follows that the inequality Prob[p̂ ≤ p− c] ≤
e−2mc

2

also holds. Thus if m ≥ 1
2c2 ln

1
δ , we have the

following two inequalities

Prob[p̂ ≥ p+ t] ≤ δ (2)
Prob[p̂ ≤ p− t] ≤ δ (3)

We apply these two inequalities to the tests performed in
computing d(j) from X . Consider a random assignment a
drawn from D. If j is relevant, then the probability of success
(i.e., that f(a) 6= M(a¬j)) is at least (Imin − ρε). If j
is irrelevant, then the probability of success is at most ρε.
The assignments in X correspond to 1

2τ2 ln
n
δ Bernoulli trials.

Because τ = 1
2Imin − ρε, applying the above bounds with

c = τ and s = 1
2τ2 ln

n
δ implies that the following holds for

each feature j: If j is relevant, then Prob[d(j) ≤ 1
2Imin] ≤ δ

n ,
and if j is irrelevant, then Prob[d(j) ≥ 1

2Imin] ≤ δ
n .

Since there are n features, it follows that with probability
at least 1−δ, the d(j) values for the relevant variables will all
be greater than 1

2Imin, and the d(j) values for the irrelevant
features will be less then 1

2Imin.

The condition ε < Imin/(2ρ) in the above theorem lim-
its its applicability to arbitrary functions g, even under the
uniform distribution. For example, consider the consensus
function (which is correlation immune): g(x1, . . . , xk) = 1
iff x1 = x2 = . . . = xk. Under the uniform distribution, the
value of Imin for the consensus function is 1/2k−2. For k = 4,
the condition ε < Imin/(2ρ) would then be satisfied only if
the error ε of model M was less than 1/8.

We note that while it might be possible to prove a version
of the theorem with a somewhat less restrictive condition,
there are inherent limits as to what can be proved. For
example, suppose g is a function on k variables that classifies
at least 75% of its 2k possible examples as negative. (The
consensus function on 3 variables has this property.) Then the
model that predicts negative on all examples has exactly 75%
accuracy. Using RFEST with such a model, there is no hope
of distinguishing relevant from irrelevant variables.
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