
 1 

SUPPLEMENTARY MATERIALS 
 

Table of Contents 
Participants .................................................................................................................................... 3 

Clinical Assessment ....................................................................................................................... 3 

Factor Analysis .............................................................................................................................. 3 

Cognitive Assessment .................................................................................................................... 5 

Image Acquisition and Processing ............................................................................................... 6 

Image Quality Assurance ............................................................................................................. 6 

Jacobian Volume ........................................................................................................................... 6 

Non-negative Matrix Factorization ............................................................................................. 7 

Figure 1. Correlated dimensions of psychopathology show a high degree of overlapping 
symptoms. .................................................................................................................................... 10 

Figure 2. Structural covariance networks delineated by NMF. ............................................. 11 

Figure 3. Fear is associated with reduced cortical thickness in multiple structural 
covariance networks. .................................................................................................................. 12 

Figure 4. Overall psychopathology is associated with reduced volume globally, while 
anxious-misery is associated with greater volume in multiple structural covariance 
networks. ...................................................................................................................................... 13 

Supplementary Table 1. Structural covariance networks of cortical thickness in relation to 
anxious-misery, psychosis, behavioral, fear, and overall pathology (n=1394, df=1385). ..... 14 

Supplementary Table 2. Structural covariance networks of volume in relation to anxious-
misery, psychosis, behavioral, fear, and overall pathology (n=1394, df=1385). .................... 15 

Supplementary Table 3. Sensitivity analysis that includes maternal level of education as an 
additional covariate and excludes 11% of the sample on psychiatric psychotropic 
medications (n=1226, df=1215). ................................................................................................. 16 

Supplementary Table 4. Structural covariance networks of cortical thickness and volume 
in relation to traditional diagnostic categories. ........................................................................ 17 

Supplementary Figure 1. Schematic representing network derivation using non-negative 
matrix factorization. ................................................................................................................... 18 

Supplementary Figure 2. Gradient of reconstruction error for multiple NMF solutions. ... 19 

Supplementary Figure 3. NMF results are consistent with ROIs derived from JLF. .......... 20 



 2 

Supplementary Figure 4. Structural networks are associated with symptoms above and 
beyond age, sex, and cognition. .................................................................................................. 21 
 
 
 
 
 
 
 
 
 
 
  



 3 

Participants 
1,601 participants completed multimodal neuroimaging as part of the PNC (1, 2), a large-

scale community-based study of brain development. Of these, 154 were excluded for: medical 
disorders that could impact brain functioning (n=81), medication use for medical conditions that 
could affect central nervous system functioning (n=64), or substantial structural brain 
abnormalities (n=20); several subjects were excluded for multiple criteria. Exclusion criteria 
based on medical history included but was not limited to: cancer, cerebral meningitis, cystic 
fibrosis, immunological conditions (e.g., lupus, common variable immunodeficiency), lead 
poisoning, severe liver or kidney problems, and sickle cell anemia. Neurological/endocrine 
disorders that were the basis of exclusion included: epilepsy, stroke, loss of consciousness for 
more than 5 min, major neurodevelopmental disorders (e.g., autism), brain tumor or injury, 
reflex neurovascular dystrophy, Marfan syndrome, thyroid problems, and Turner syndrome. 
Medications for medical conditions that were the basis of exclusion included but were not 
limited to: anticonvulsants, antiemetics, CNS stimulants, muscle relaxants, narcotic analgesics 
(pain relievers), and sedatives. In addition, 51 individuals were excluded for failing to meet 
structural image quality assurance protocols, and two participants were excluded for missing 
clinical data. The final sample consisted of 1,394 youth; demographics of the sample are 
summarized in Table 1. 

Clinical Assessment 
As described in detail in our previous work (1–3), assessment of lifetime 

psychopathology was conducted using GOASSESS, a structured screening interview 
administered to probands (age 11-21) and collateral informants of probands (age 8-17), based on 
a modified version of the Kiddie-Schedule for Affective Disorders and Schizophrenia (4) and 
Diagnostic and Statistical Manual of Mental Disorders, 4th edition, Text Revision criteria (5). 
The GOASSESS interview assesses lifetime occurrence of mood (major depressive episode, 
mania), anxiety (agoraphobia, generalized anxiety, panic, specific phobia, social phobia, 
separation anxiety, posttraumatic stress), behavioral problems (oppositional defiant, attention 
deficit/hyperactivity, conduct), psychosis, eating disorder (anorexia, bulimia), and suicidal 
symptoms. Among the GOASSESS questions, 112 screening items administered to all 
participants were used for the current investigation. Of note, due to comorbidity, participants 
may be represented in more than one category. The GOASSESS interview was administered by 
trained assessors who underwent a common training protocol (developed and implemented by 
MEC) that included didactic sessions, assigned readings, and supervised pair-wise practice. 
Assessors were certified for independent assessments following observation by a certified 
clinical observer who rated the proficiency of the assessor on a 60-item checklist of interview 
procedures. The median interval of time between clinical assessment and neuroimaging was 2 
months. 

Factor Analysis 
Traditional diagnostic categories are limited by inadequate reliability, as well as 

substantial heterogeneity and comorbidity found among disorders (6–10). Additionally, given 
that psychopathology symptoms are continuous and hierarchically arranged (11–13), we sought 
to quantify a dimensional measure of psychopathology across all psychiatric disorders. To do 
this, we applied an exploratory factor analysis (EFA) to 112 item-level symptom questions from 
the GOASSESS. EFA is used to find meaningful patterns of covariance and to optimally cluster 
variables by identifying a smaller number of unobserved variables, or factors, that explain said 
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covariance. For example, it is possible that covariances among our 112 symptom variables 
mainly reflect the influence of a smaller number of underlying (latent) variables. Exploratory 
factor analysis aims to identify these latent variables in an exploratory manner, in other words, 
without imposing any constraints based on a priori theories about how the variables will be 
related. As described in detail elsewhere (14), an exploratory factor analysis with the PNC 
dataset yielded four correlated dimensions of psychopathology including factors for anxious-
misery, psychosis, behavioral (externalizing), and fear (Figure 1A). This is consistent with the 
results of prior exploratory factor analyses of psychiatric symptoms (11, 12, 15). Importantly, 
these factors are highly correlated with one another and lack specificity. For example, as can be 
seen in Figure 1A, the participants with fear-based disorders (PTSD, agoraphobia, social 
anxiety, specific phobia, and separation anxiety) had the highest scores on the fear factor, but 
also had fairly high scores on the three other factors (anxious-misery, psychosis, and behavioral) 
as well. Additionally, we see that the fear factor is fairly high across all of the symptom 
categories (e.g., depression, GAD, psychosis, ADHD, conduct disorder, etc.). Thus, endorsement 
of any of the 112 psychiatric symptoms increases the probability of endorsement of any other of 
the symptoms, regardless of whether the symptoms are part of the same disorder. This implies 
that there may be a ”general” latent variable explaining at least some of the covariance across all 
psychiatric symptoms. However, exploratory factor analysis with a simple-structure oblique 
(oblimin) rotation does not capture this common factor.  

The common factor among psychopathology disorders has been termed “p” for 
psychopathology, akin to the overall “g” intelligence factor in cognition research (13). Like g, 
the p factor quantifies the overall level of psychopathology present across clinical domains. 
Importantly, p has been identified as an important feature of clinical symptoms that may 
contribute to the non-specificity of biomarkers found across disorders (10); thus, the p factor was 
of direct interest to the current study. To measure the p factor, we use a bifactor model, which 
requires each item to load on a primary dimension of interest and no more than one secondary 
dimension. In other words, the bifactor model identifies a common factor that is shared across all 
112 symptoms while simultaneously estimating specific symptom factors (e.g., anxious-misery, 
psychosis, behavioral, and fear); the general factor (“p”) and the group factors compete for 
explanation of variance in the item (symptom) responses. Thus, the bifactor model yields both 
the p factor and orthogonal (uncorrelated) factors for the specific dimensions of symptoms. As 
documented in full elsewhere (14), we used a confirmatory bifactor analysis (16, 17) 
implemented in Mplus (18) to model the four correlated factors found with exploratory factor 
analysis (anxious-misery, psychosis, behavioral, and fear) plus a fifth factor that was common 
across all psychiatric disorders, which we termed overall psychopathology (Figure 1B). The 
scores for each factor from the bifactor model showed excellent reliability (overall 
psychopathology: alpha = .98, anxious-misery: alpha = .82, psychosis: alpha = .80, behavioral: 
alpha = .92, fear: alpha = .85). Note that by including the general factor for overall 
psychopathology, correlations among the four specific factors were removed—i.e. all factors in 
the bifactor model are orthogonal. The use of a bifactor model is critical for increasing the 
specificity of our factors. For example, Figure 1C demonstrates how the orthogonal factors now 
relate more specifically to the relevant disorders using the bifactor model, relative to the 
exploratory factor analysis model (Figure 1A). Additionally, as can be seen in Figure 1C, 
overall psychopathology in the green bars was common across the diagnostic categories, but had 
the strongest associations with the psychosis and anxious-misery disorders followed by the 
behavioral and fear disorders. By extracting overall psychopathology (p factor) from the model, 
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the anxious-misery, psychosis, behavioral, and fear factors now represent the “pure” symptoms 
not accounted for by general psychopathology. For example, the fear factor represents the fear 
symptoms specific to the fear disorders and that are not shared across other diagnostic categories.  

Examples of some of the items with high loadings (above .60) on the overall 
psychopathology factor included: 1) Has there ever been a time when you felt so full of energy 
that you couldn't stop doing things and didn't get tired; 2) Have you ever been bothered by 
thoughts that don't make sense to you, that come over and over again and won't go away, such as 
fear that you would do something/say something bad without intending to; 3) I have had the 
experience of hearing faint or clear sounds of people or a person mumbling or talking when there 
is no one near me; 4) Has there ever been a time when you felt grouchy, irritable or in a bad 
mood most of the time, even little things would make you mad; 5) Has there ever been a time 
when all of a sudden, you felt that you were losing control, something terrible was going to 
happen, that you were going crazy, or going to die? Examples of the top items for anxious-
misery included: 1) Did you worry a lot more than most children/people your age; 2) Have you 
ever been a worrier; 3) Has there ever been a time when you felt sad or depressed most of the 
time; 4) Has there ever been a time when you cried a lot, or felt like crying? For psychosis, top 
items included: 1) I think I might feel like my mind is "playing tricks" on me; 2) I may have felt 
that there could possibly be something interrupting or controlling my thoughts, feelings, or 
actions; 3) I think I may get confused at times whether something I experience or perceive may 
be real or may be just part of my imagination or dreams; 4) I believe that I have special natural or 
supernatural gifts beyond my talents and natural strengths. For behavioral, the top items were: 1) 
Did you often have problems following instructions and often fail to finish school, work, or other 
things you meant to get done; 2) Did you often have trouble paying attention or keeping your 
mind on your school, work, chores, or other activities that you were doing; 3) Did you often have 
people tell you that you did not seem to be listening when they spoke to you or that you were 
daydreaming; 4) Did you often dislike, avoid, or put off school or homework (or any other 
activity requiring concentration)? And finally, for fear the top items included: 1) Was there ever 
a time in your life when you felt afraid or uncomfortable acting, performing, giving a 
talk/speech, playing a sport or doing a musical performance, or taking an important test or exam 
(even though you studied enough); 2) Felt afraid or uncomfortable when you had to do 
something in front of a group of people, like speaking in class; 3) Felt afraid or uncomfortable 
because you were the center of attention and were concerned something embarrassing might 
happen; 4) Felt afraid or uncomfortable or really, really shy with people, like meeting new 
people, going to parties, or eating or drinking, writing or doing homework in front of others? For 
the loadings (standardized item-trait correlations) for all items in these models, see Moore et al. 
(14). 

Cognitive Assessment 
Cognition was assessed using the University of Pennsylvania Computerized 

Neurocognitive Battery (CNB), which has been described in detail elsewhere (19). Briefly, 14 
cognitive tests evaluating aspects of cognition, including executive control, episodic memory, 
complex reasoning, social cognition, and sensorimotor speed were administered in a fixed order. 
Except for the sensorimotor tests that only measure speed, each test provides measures of both 
accuracy and speed. We used three factor scores for performance accuracy derived in a 
previously reported exploratory factor analysis with oblique rotation (19): 1) executive function 
and complex reasoning, 2) social cognition, and 3) episodic memory. These cognitive factor 
scores were included as predictors of psychopathology in the multivariate analyses. 
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Image Acquisition and Processing 

Imaging data were acquired on a Siemens TIM Trio 3 Tesla scanner (Erlangen, Germany) 
with a 32-channel head coil. Structural brain imaging was completed using a magnetization-
prepared, rapid acquisition gradient-echo (MPRAGE) T1-weighted image with the following 
parameters: TR 1810 ms; TE 3.51 ms; FOV 180x240 mm; matrix 192x256; 160 slices; slice 
thickness/gap 1/0 mm; TI 1100 ms; flip angle 9 degrees; effective voxel resolution of 0.93 x 0.93 
x 1.00 mm; total acquisition time 3:28 minutes. Structural image processing utilized Advanced 
Normalization Tools (ANTs) (20). This pipeline includes N4 bias field correction, brain 
extraction, Atropos probabilistic tissue segmentation (21), and direct estimation of cortical 
thickness in volumetric space (22). Structural images were registered to a custom adolescent 
template in local space using the top-performing SyN diffeomorphic registration method (23). 
Prior to analysis, cortical thickness images were down-sampled to 2 mm voxels and smoothed 
with a 4 mm full-width, half maximum Gaussian kernel. After statistical testing, images were 
registered to the Montreal Neurologic Institute (MNI) 152 1-mm template space for reporting of 
standard coordinates and display. 

Image Quality Assurance 
Three highly trained image analysts independently assessed structural image quality; for 

full details of this procedure see Rosen et al. (24). Briefly, three raters were trained prior to rating 
images on an independent training sample of 100 images. All three raters were trained to >85% 
concordance with faculty consensus ratings. T1 images were rated on a 0-2 Likert scale (0 = 
unusable images (3.1% of the sample), 1 = usable images with some artifact (16.9%), and 2 = 
images with none or almost no artifact (80.0%)). All images with an average rating of 0 were 
excluded from analyses. We included average quality rating across the three raters as a covariate 
in all models in order to control for the confounding influence of subtle variation in image 
quality.  

All processed data underwent rigorous quality control as well. Specifically, the volume 
and thickness of anatomically-defined regions of interest (defined using multi-atlas labeling with 
joint label fusion (25); see below) were evaluated for outliers. Outliers were defined as values 
greater or less than 2.5 standard deviations (S.D.) from the mean regional value. Participants 
with an elevated (+2.5 S.D.) number of regions with outlying volume or cortical thickness values 
were flagged for manual review. Similarly, a regional laterality index was calculated for both 
cortical thickness and volume, and participants with an elevated number of regional laterality 
outliers (+2.5 S.D.) were flagged for review. Flagged images were then manually viewed by two 
independent data analysts. A total of 61 individuals were excluded for failing to meet these 
image processing quality assurance procedures. 

Jacobian Volume  
Volume images were created from the log transformed determinant of the Jacobian of the 

deformation field. Specifically, displacement vectors created during spatial normalization were 
composed with the corresponding 12-DOF affine transformation to produce total displacements 
from the subject brain to the template brain in millimeters. These displacement vectors were used 
to calculate Jacobian matrices in each voxel, on which we calculated the log of the determinant 
to quantify local expansion or contraction (26, 27). Our method differs from prior approaches in 
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that displacement vectors are usually evaluated after the affine transform has been applied, which 
obscures overall larger-scale changes in brain size. 

 
Non-negative Matrix Factorization 

Non-negative matrix factorization (NMF) provides several advantages over prior 
methods such as principal component analysis (PCA). Notably, PCA and other techniques 
produce widely-dispersed components with both positive and negative directions, often limiting 
straightforward interpretation. In contrast, NMF produces compact, positively-signed 
components that are more interpretable and reproducible (28, 29). 

We used the same procedures for deriving networks with NMF as done previously (28, 
30–32). To derive NMF networks, first the NMF algorithm takes an input matrix X containing 
voxel-wise cortical thickness estimates (dimensions: 128,155 voxels x 1,394 participants), and 
the algorithm then approximates that matrix as a product of two matrices with non-negative 
elements: X � BC (Supplemental Figure 1). The first matrix, B, is of size D x K and contains 
the estimated non-negative networks and their respective loadings on each of the D voxels, 
where K is the user-specified number of networks. The B matrix, or loadings matrix, is 
composed of coefficients that denote the relative contribution of each voxel to a given network. 
These non-negative coefficients of the decomposition represent the entirety of the brain as a 
subject-specific addition of various parts. The second matrix, C, is of size K x N and contains 
subject-specific weights for each network. These subject-specific weights indicate the 
contribution of each network in reconstructing the original cortical thickness map and were 
evaluated for associations with psychopathology.  

Consistent with studies using this technique (28, 32), we performed multiple NMF 
solutions requesting 2 to 30 networks (in steps of two) in order to obtain a range of possible 
solutions. We selected the optimal dimensionality of these networks using two criteria. First, we 
calculated the reconstruction error for each solution as the Frobenius norm between the structural 
data matrix and the NMF approximation and plotted the reconstruction error for all solutions. 
Second, we conducted a split-half reliability analysis to describe the stability of the NMF 
solution at each resolution, quantified using the Adjusted Rand Index (ARI). As expected, 
reconstruction error generally declined as the number of networks increased. The final 18-
network solution was chosen based on the gradient of reconstruction error (Supplementary 
Figure 2), which shows only nominal decrements in error beyond 14 networks. Additionally, we 
checked the split-half reliability at this resolution, which revealed an ARI of .93 for the 18-
network solution, suggesting that this solution is highly reproducible. This resolution is also 
consistent with previous reports (32). Accordingly, the 18-network solution was used for all 
subsequent analyses. As in prior work using NMF (28, 32), the structural covariance networks 
identified were highly symmetric bilaterally (Figure 2). Cortical thickness NMF networks were 
then applied to volume images in order to obtain comparable networks for volume analyses. 
NMF networks were visualized on the inflated Population-Average, Landmark-, and Surface-
based (PALS) cortical surfaces using Caret software (33, 34). Images were converted to the 
Montreal Neurologic Institute (MNI) 152 1-mm template space for display. 
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Figure 1. Correlated dimensions of psychopathology show a high degree of overlapping 
symptoms. A) An exploratory factor analysis of 112 psychiatric symptoms identified four 
correlated dimensions of psychopathology: anxious-misery, psychosis, behavioral, and fear, 
which show a high degree of overlap across dimensions and diagnostic screening categories. 
Here we show the mean factor scores of each dimension (anxious-misery, psychosis, behavioral, 
and fear) in the related screening diagnoses. B) A confirmatory bifactor analysis constrained the 
dimensions of psychopathology (anxious-misery, psychosis, behavioral, and fear) to be 
orthogonal, and extracted a common factor (overall psychopathology). C) The orthogonal factors 
load more specifically onto the relevant disorders. Sample sizes for each diagnostic screening 
category are shown in parentheses. GAD = generalized anxiety disorder; Depress = depressive 
disorders; Psych = psychosis; ODD = oppositional defiant disorder; ADHD = attention-
deficit/hyperactivity disorder; Con = conduct disorder; PTSD = posttraumatic stress disorder; 
Agora = agoraphobia; Soc Anx = social anxiety disorder; Spec Ph = specific phobia; Sep Anx = 
separation anxiety disorder; TD = typically developing.  
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Figure 2. Structural covariance networks delineated by NMF. Structural covariance networks 
are shown for the 18-network solution, with the spatial distribution of each network indicated by 
loadings at each voxel in arbitrary units (shown with the color bar, where warmer colors 
correspond to higher values). High symmetry can be seen between the left (L) and right (R) 
hemispheres. The anatomical coverage of each structural covariance network was as follows: 1) 
cingulate cortex; 2) medial temporal cortex; 3) temporal pole; 4) dorsolateral prefrontal cortex; 
5) posterior cingulate cortex; 6) superior parietal cortex; 7) superior temporal cortex; 8) dorsal 
prefrontal cortex; 9) insular cortex; 10) fusiform cortex; 11) inferior temporal cortex; 12) right 
lateral occipital cortex; 13) subgenual cingulate, anterior cingulate, and anterior insula; 14) 
inferior prefrontal cortex; 15) inferior parietal cortex; 16a) precuneus and 16b) temporoparietal 
junction; 17) lingual gyrus; 18) medial occipital cortex. 
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Figure 3. Fear is associated with reduced cortical thickness in multiple structural 
covariance networks. Mass-univariate analyses using GAMs that controlled for linear and 
nonlinear age, sex, and image quality revealed that fear symptoms were associated with reduced 
cortical thickness in multiple networks. This association was maximal in networks such as the 
temporal-parietal junction and posterior cingulate cortex (Figure 3A; network 16). Significant 
associations were also present in networks that included the anterior cingulate, anterior insula, 
and subgenual cingulate cortex (Figure 3C; network 13). Composite network boundaries were 
obtained by assigning each voxel to one of the 18 networks with the highest loading for that 
voxel. Multiple comparisons were accounted for using the False Discovery Rate (Q<0.05). 
Dotted lines on scatterplots represent the 95% confidence interval.  
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Figure 4. Overall psychopathology is associated with reduced volume globally, while 
anxious-misery is associated with greater volume in multiple structural covariance 
networks. Mass-univariate analyses using GAMs that controlled for linear and nonlinear age, 
sex, and image quality revealed that overall psychopathology was associated with reduced 
volume across the brain (Figure 4A and 4B). Conversely, anxious-misery symptoms were 
associated with increased volume in most networks (Figure 4C and 4D). Composite network 
boundaries were obtained by assigning each voxel to one of the 18 networks with the highest 
loading for that voxel. Multiple comparisons were accounted for using the False Discovery Rate 
(Q<0.05). Dotted lines on scatterplots represent the 95% confidence interval.  
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Supplementary Table 1. Structural covariance networks of cortical thickness in relation to anxious-misery, psychosis, 
behavioral, fear, and overall pathology (n=1394, df=1385). 

Cortical Thickness Anxious-misery Psychosis Behavioral 
NMF Network B SE t pfdr B SE t pfdr B SE t pfdr 

1: Cingulate cortex -0.01 0.02 -0.38 .910 -0.01 0.02 -0.52 .725 -0.04 0.02 -1.77 .191 
2: Medial temporal cortex 0.02 0.03 0.81 .629 -0.05 0.02 -1.99 .139 0.00 0.02 0.09 .928 
3: Temporal pole 0.04 0.02 1.80 .216 -0.04 0.02 -1.82 .162 -0.03 0.02 -1.59 .222 
4: Frontal cortex -0.04 0.02 -1.84 .216 -0.02 0.02 -0.97 .500 -0.01 0.02 -0.55 .619 
5: Posterior cingulate cortex 0.06 0.02 2.40 .098 -0.06 0.02 -3.04 .043 -0.04 0.02 -2.01 .191 
 6: Superior parietal cortex 0.02 0.02 0.81 .629 -0.02 0.02 -0.81 .537 -0.03 0.02 -1.24 .323 
7: Superior temporal cortex 0.01 0.03 0.19 .931 -0.05 0.02 -2.10 .129 -0.04 0.02 -1.72 .191 
8: Dorsomedial prefrontal cortex -0.03 0.02 -1.40 .412 0.00 0.02 -0.13 .897 -0.02 0.02 -0.98 .394 
9: Insular cortex 0.01 0.02 0.30 .920 -0.03 0.02 -1.44 .246 -0.04 0.02 -1.89 .191 
10: Fusiform cortex 0.03 0.03 1.03 .609 -0.04 0.02 -1.47 .246 -0.05 0.03 -1.80 .191 
11: Inferior temporal cortex 0.00 0.02 0.15 .931 -0.01 0.02 -0.32 .789 -0.03 0.02 -1.25 .323 
12: Right lateral occipital cortex 0.05 0.03 2.03 .189 -0.04 0.02 -1.54 .246 -0.05 0.02 -1.90 .191 
13: Subgenual cingulate, anterior cingulate, and anterior insula 0.01 0.02 0.53 .821 -0.04 0.02 -1.80 .162 -0.02 0.02 -0.91 .407 
14: Inferior prefrontal cortex 0.00 0.02 -0.09 .931 -0.01 0.02 -0.46 .728 -0.03 0.02 -1.17 .328 
15: Intraparietal 0.06 0.02 2.57 .093 -0.05 0.02 -2.12 .129 -0.05 0.02 -2.15 .191 
16: Posterior cingulate (a) and TPJ (b) 0.07 0.02 2.94 .060 -0.05 0.02 -2.25 .129 -0.05 0.02 -2.42 .191 
17: Parahippocampal 0.02 0.03 0.85 .629 -0.02 0.02 -0.83 .537 -0.04 0.03 -1.39 .296 
18: Medial occipital cortex 0.03 0.03 1.26 .470 -0.05 0.02 -2.32 .129 -0.03 0.02 -1.14 .328 

Cortical Thickness Fear Overall Psychopathology     
NMF Network B SE t pfdr B SE t pfdr R2*    

1: Cingulate cortex -0.05 0.02 -2.22 .040 -0.03 0.02 -1.54 .249 0.35    
2: Medial temporal cortex -0.07 0.02 -2.85 .009 -0.03 0.02 -1.06 .399 0.17    
3: Temporal pole -0.06 0.02 -2.86 .009 -0.02 0.02 -1.09 .399 0.37    
4: Frontal cortex -0.03 0.02 -1.49 .153 0.05 0.02 2.21 .123 0.38    
5: Posterior cingulate cortex -0.08 0.02 -3.69 .001 -0.04 0.02 -1.90 .149 0.34    
6: Superior parietal cortex -0.03 0.02 -1.30 .204 0.01 0.02 0.38 .748 0.38    
7: Superior temporal cortex -0.05 0.02 -2.14 .045 0.00 0.02 0.00 .997 0.17    
8: Dorsomedial prefrontal cortex -0.01 0.02 -0.43 .665 0.04 0.02 1.74 .186 0.35    
9: Insular cortex -0.05 0.02 -2.23 .040 -0.03 0.02 -1.48 .249 0.29    
10: Fusiform cortex -0.09 0.03 -3.41 .002 -0.06 0.03 -2.28 .123 0.10    
11: Inferior temporal cortex -0.08 0.02 -3.47 .002 -0.01 0.02 -0.50 .694 0.25    
12: Right lateral occipital cortex -0.07 0.02 -3.08 .005 -0.03 0.02 -1.10 .399 0.22    
13: Subgenual cingulate, anterior cingulate, and anterior insula -0.08 0.02 -3.42 .002 -0.06 0.02 -2.71 .061 0.25    
14: Inferior prefrontal cortex -0.05 0.02 -2.39 .031 0.04 0.02 2.03 .128 0.38    
15: Intraparietal -0.04 0.02 -1.70 .107 -0.02 0.02 -0.89 .483 0.33    
16: Posterior cingulate (a) and TPJ (b) -0.09 0.02 -4.38 <.001 -0.09 0.02 -4.25 <.001 0.37    
17: Parahippocampal -0.05 0.03 -2.03 .055 -0.05 0.03 -2.08 .128 0.11    
18: Medial occipital cortex -0.09 0.02 -3.75 .001 -0.02 0.02 -0.69 .589 0.23    
  * R2 values are for the full-model.  
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Supplementary Table 2. Structural covariance networks of volume in relation to anxious-misery, psychosis, behavioral, fear, 
and overall pathology (n=1394, df=1385). 

Volume Anxious-misery Psychosis Behavioral 
NMF Network B SE t pfdr B SE t pfdr B SE t pfdr 

1: Cingulate cortex 0.06 0.02 2.23 .029 -0.03 0.02 -1.16 .277 -0.06 0.02 -2.56 .053 
2: Medial temporal cortex 0.09 0.02 3.96 <.001 -0.05 0.02 -2.13 .185 -0.05 0.02 -1.99 .072 
3: Temporal pole 0.10 0.02 4.28 <.001 -0.02 0.02 -1.12 .277 -0.06 0.02 -2.38 .054 
4: Frontal cortex 0.06 0.02 2.31 .025 -0.03 0.02 -1.34 .253 -0.05 0.02 -2.14 .064 
5: Posterior cingulate cortex 0.08 0.02 3.35 .002 -0.04 0.02 -1.63 .207 -0.05 0.02 -2.06 .072 
6: Superior parietal cortex 0.07 0.03 2.75 .008 -0.04 0.02 -1.92 .185 -0.08 0.02 -3.25 .011 
7: Superior temporal cortex 0.04 0.02 1.69 .092 -0.01 0.02 -0.62 .533 -0.02 0.02 -0.65 .516 
8: Dorsomedial prefrontal cortex 0.07 0.02 3.02 .005 -0.03 0.02 -1.41 .253 -0.03 0.02 -1.47 .160 
9: Insular cortex 0.08 0.03 3.10 .004 -0.03 0.02 -1.41 .253 -0.05 0.02 -2.22 .060 
10: Fusiform cortex 0.09 0.02 3.86 <.001 -0.05 0.02 -2.05 .185 -0.08 0.02 -3.28 .011 
11: Inferior temporal cortex 0.10 0.02 4.37 <.001 -0.05 0.02 -2.15 .185 -0.03 0.02 -1.44 .160 
12: Right lateral occipital cortex 0.08 0.02 3.20 .003 -0.04 0.02 -1.75 .185 -0.04 0.02 -1.56 .144 
13: Subgenual cingulate, anterior cingulate, and anterior insula 0.05 0.02 2.06 .042 -0.03 0.02 -1.28 .258 -0.06 0.02 -2.37 .054 
14: Inferior prefrontal cortex 0.07 0.02 2.77 .008 -0.04 0.02 -1.74 .185 -0.05 0.02 -1.94 .072 
15: Intraparietal 0.06 0.02 2.63 .011 -0.03 0.02 -1.18 .277 -0.05 0.02 -1.95 .072 
16: Posterior cingulate (a) and TPJ (b) 0.10 0.02 4.12 <.001 -0.04 0.02 -1.77 .185 -0.04 0.02 -1.83 .088 
17: Parahippocampal 0.07 0.02 2.80 .008 -0.04 0.02 -1.74 .185 -0.05 0.02 -2.30 .056 
18: Medial occipital cortex 0.09 0.02 3.52 .001 -0.03 0.02 -1.33 .253 -0.06 0.02 -2.52 .053 

Volume Fear Overall Psychopathology     
NMF Network B SE t pfdr B SE t pfdr R2*    

1: Cingulate cortex -0.05 0.02 -2.11 .061 -0.09 0.02 -3.62 <.001 0.25    
2: Medial temporal cortex -0.07 0.02 -3.19 .008 -0.11 0.02 -4.91 <.001 0.31    
3: Temporal pole -0.07 0.02 -2.80 .015 -0.10 0.02 -4.47 <.001 0.27    
4: Frontal cortex -0.04 0.02 -1.92 .071 -0.11 0.02 -4.93 <.001 0.28    
5: Posterior cingulate cortex -0.04 0.02 -1.77 .092 -0.11 0.02 -4.69 <.001 0.25    
6: Superior parietal cortex -0.02 0.02 -0.84 .423 -0.12 0.02 -4.87 <.001 0.24    
7: Superior temporal cortex -0.01 0.02 -0.57 .567 -0.07 0.02 -3.15 .002 0.26    
8: Dorsomedial prefrontal cortex -0.06 0.02 -2.61 .023 -0.10 0.02 -4.19 <.001 0.30    
9: Insular cortex -0.05 0.02 -1.92 .071 -0.10 0.02 -4.27 <.001 0.22    
10: Fusiform cortex -0.06 0.02 -2.51 .027 -0.12 0.02 -5.13 <.001 0.28    
11: Inferior temporal cortex -0.08 0.02 -3.51 .004 -0.11 0.02 -4.73 <.001 0.33    
12: Right lateral occipital cortex -0.07 0.02 -3.15 .008 -0.11 0.02 -4.76 <.001 0.32    
13: Subgenual cingulate, anterior cingulate, and anterior insula -0.02 0.02 -0.97 .372 -0.10 0.02 -4.19 <.001 0.28    
14: Inferior prefrontal cortex -0.05 0.02 -2.07 .061 -0.10 0.02 -4.31 <.001 0.28    
15: Intraparietal -0.05 0.02 -2.22 .054 -0.09 0.02 -3.85 <.001 0.27    
16: Posterior cingulate (a) and TPJ (b) -0.09 0.02 -3.64 .004 -0.11 0.02 -4.71 <.001 0.26    
17: Parahippocampal -0.05 0.02 -2.05 .061 -0.10 0.02 -4.11 <.001 0.26    
18: Medial occipital cortex -0.07 0.02 -3.00 .010 -0.08 0.02 -3.58 <.001 0.24    

* R2 values are for the full-model. 
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Supplementary Table 3. Sensitivity analysis that includes maternal level of education as an additional covariate and excludes 
11% of the sample on psychiatric psychotropic medications (n=1226, df=1215). 
 

 CT and Fear Volume and Overall Volume and Anxious-misery 
NMF Network B SE t p pfdr R2* B SE t p pfdr B SE t p pfdr R2* 

1: Cingulate cortex -0.05 0.02 -2.14 .033 .056 0.36 -0.07 0.03 -2.79 .005 .007 0.03 0.03 1.15 .250 .300 0.28 
2: Medial temporal cortex -0.06 0.03 -2.19 .029 .056 0.18 -0.08 0.02 -3.42 .001 .001 0.07 0.03 2.59 .010 .035 0.34 
3: Temporal pole -0.05 0.02 -2.12 .034 .056 0.38 -0.09 0.03 -3.43 .001 .001 0.07 0.03 2.83 .005 .028 0.30 
4: Frontal cortex -0.04 0.02 -1.77 .077 .098 0.38 -0.10 0.02 -4.08 <.001 <.001 0.02 0.03 0.85 .395 .418 0.29 
5: Posterior cingulate cortex -0.10 0.02 -3.97 <.001 .001 0.36 -0.09 0.03 -3.60 <.001 .001 0.05 0.03 1.78 .075 .138 0.29 
6: Superior parietal cortex -0.04 0.02 -1.93 .054 .075 0.40 -0.09 0.03 -3.60 <.001 .001 0.05 0.03 1.77 .076 .138 0.27 
7: Superior temporal cortex -0.04 0.03 -1.59 .112 .125 0.17 -0.06 0.02 -2.52 .012 .013 0.00 0.03 0.16 .872 .872 0.28 
8: Dorsomedial prefrontal cortex -0.02 0.02 -0.82 .411 .411 0.35 -0.08 0.02 -3.13 .002 .002 0.05 0.03 1.83 .068 .138 0.32 
9: Insular cortex -0.02 0.02 -1.00 .318 .337 0.30 -0.09 0.03 -3.31 .001 .002 0.07 0.03 2.42 .016 .047 0.25 
10: Fusiform cortex -0.08 0.03 -3.00 .003 .008 0.11 -0.10 0.02 -4.20 <.001 <.001 0.08 0.03 2.90 .004 .028 0.31 
11: Inferior temporal cortex -0.08 0.03 -3.00 .003 .008 0.26 -0.08 0.02 -3.44 .001 .001 0.07 0.03 2.74 .006 .028 0.37 
12: Right lateral occipital cortex -0.08 0.03 -3.09 .002 .008 0.24 -0.08 0.02 -3.49 .001 .001 0.05 0.03 1.77 .077 .138 0.36 
13: Subgenual cingulate, anterior 
cingulate, and anterior insula 

-0.06 0.03 -2.38 .017 .045 0.25 -0.08 0.02 -3.21 .001 .002 0.03 0.03 1.28 .199 .256 0.31 

14: Inferior prefrontal cortex -0.05 0.02 -2.15 .032 .056 0.38 -0.09 0.03 -3.55 <.001 .001 0.04 0.03 1.42 .157 .217 0.30 
15: Intraparietal -0.04 0.02 -1.66 .097 .117 0.34 -0.06 0.02 -2.27 .024 .024 0.02 0.03 0.87 .384 .418 0.30 
16: Precuneus (a) and TPJ (b) -0.08 0.02 -3.46 .001 .003 0.40 -0.09 0.03 -3.52 <.001 .001 0.08 0.03 2.86 .004 .028 0.31 
17: Parahippocampal -0.06 0.03 -2.06 .040 .060 0.12 -0.07 0.03 -2.78 .005 .007 0.04 0.03 1.46 .146 .217 0.29 
18: Medial occipital cortex -0.09 0.03 -3.54 <.001 .003 0.24 -0.06 0.03 -2.49 .013 .014 0.04 0.03 1.64 .102 .167 0.26 

* R2 values are for the full-model. 
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Supplementary Table 4. Structural covariance networks of cortical thickness and volume in relation to traditional diagnostic 
categories. 
 

  Average CT Total Gray Matter Volume 
Diagnostic Category N B SE t p B SE t p 

ADHD 230 -1.83 0.80 -2.43 .015 -15.50 4.66 -3.33 <.001 
Agoraphobia 81 -3.54 1.17 -3.03 .003 -24.20 7.01 -3.45 <.001 
Conduct disorder 121 -3.44 0.94 -3.67 <.001 -34.22 5.86 -5.85 <.001 
Generalized anxiety disorder 27 0.59 1.81 0.33 .744 -1.40 11.03 -0.13 .899 
Major depressive disorder 193 -1.84 0.83 -2.22 .027 -18.49 5.10 -3.63 <.001 
Obsessive-compulsive disorder 43 -4.05 1.49 -2.71 .007 -27.35 8.82 -3.10 .002 
Oppositional defiant disorder 458 -2.20 0.63 -3.52 <.001 -22.10 3.89 -5.69 <.001 
Psychosis 399 -2.10 0.66 -3.19 .001 -22.88 3.95 -5.79 <.001 
Posttraumatic stress disorder 172 -2.65 0.85 -3.11 .002 -26.57 5.30 -5.02 <.001 
Separation anxiety disorder 63 -1.30 1.22 -1.07 .287 -9.72 7.47 -1.30 .194 
Social anxiety disorder 328 -2.61 0.70 -3.74 <.001 -18.99 4.09 -4.65 <.001 
Specific phobia 426 -0.83 0.65 -1.28 .200 -11.24 3.84 -2.93 .003 
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Supplementary Figure 1. Schematic representing network derivation using non-negative matrix factorization. In this schematic, 
X represents the original data matrix as the product of two matrices, B and C. X contains the whole-brain structural data for each 
voxel (rows) and for all subjects (columns). Above the X matrix is an example of the whole-brain cortical thickness data for one 
subject. B is a matrix which contains the reduced number of K networks derived from NMF, and the loadings for each voxel on each 
of these networks. Above B is one example of NMF network loadings. C is a matrix that contains the subject-specific coefficients for 
cortical thickness in each network. The histogram above shows a sample row of the C matrix with scores for all subjects in one 
network. Importantly, both B and C are greater than or equal to 0, thus elements of the factorization are non-negative. Matrices are 
shown with following dimensions: V = number of voxels, N = number of participants; K = number of networks. 
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Supplementary Figure 2. Gradient of reconstruction error for multiple NMF solutions. Reconstruction error is plotted for 
multiple NMF resolutions; the gradient is the difference in reconstruction error as the NMF solution increases by 2 networks. As 
expected, reconstruction error plateaued as the number of networks increased. The differences in reconstruction error for the solutions 
between 14 and 30 networks were fairly similar and the final chosen solution of 18 networks is shown with a dotted line. The 18-
network solution is consistent with prior work (32). Further, a split-half reliability analysis was also conducted and showed an 
Adjusted Rand Index of .93, suggesting the 18-network solution is highly reproducible. 
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Supplementary Figure 3. NMF results are consistent with ROIs derived from JLF. As a sensitivity analysis, structural ROIs were 
derived from the top performing regional parcellation using a multi-atlas labeling system with joint label fusion (JLF) as implemented 
in ANTs. The results show highly similar significant regions compared to non-negative matrix factorization (NMF) for A) cortical 
thickness and fear, B) volume and overall psychopathology, and C) volume and anxious-misery. 	
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Supplementary Figure 4. Structural networks are associated with symptoms above and beyond age, sex, and cognition. We 
tested whether structure (cortical thickness or volume) provided information about psychopathology symptoms (fear, overall 
psychopathology, or anxious-misery) above and beyond demographics (age, sex) and cognitive factors. We compared a null model 
with only age, sex, and the three cognitive factors of 1) executive function and complex reasoning, 2) social cognition, and 3) episodic 
memory to a full model with age, sex, the three cognitive factors, and the 18 structural networks. A) For cortical thickness, we found 
that the proportion of variance in fear explained by the predictors improved in the full model compared to the null model. The 
correlation between the actual fear scores and the predicted fear scores in the full model was .28. B) For volume, the proportion of 
variance in overall psychopathology explained by the predictors also improved in the full model compared to the null model, and 
showed a correlation of .35 between the actual and predicted overall psychopathology scores.	
 
 


