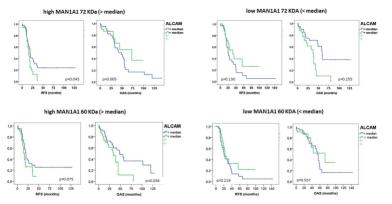

Supplementary Figure S2: Western Blot (A) and PCR (B) analysis showing MANIA1 knock out in the OVCAR8 cell line (CRISPR/Cas9-MANIA1) compared to empty vector (e.v.CRSPR/Cas9). C: DNAsequencing data showing a single base deletion (arrow) in OVCAR8-MANIA1 ko. cells.


Supplementary Figure S3. Box plot showing MAN1A1 expression (72 kDa + 60 kDa) in different tumour types.

Supplementary Figure S4: Kaplan-Meier analysis showing associations of the different MAN1A1 isoforms (60 KDa and 72 KDa) with recurrence-free (A, B and C) and overall survival (D, E and F) in ovarian carcinomas.

Supplementary Figure SS. Kaplan-Meier analysis showing associations of ICAM-1 expression with recurrence-free (A) and overall survival (B) in ovarian carcinomas in the whole cohort and stratified for low (< median, D) or high (> median, C) MANIA1 mRNA expression.

Supplementary Figure S6: Kaplan-Meier analysis showing associations of ALCAM expression with recurrence-free and overall survival in ovarian carcinomas, stratified for low (< median) or high (> median) MAN1A1 mRNA expression of both 72 KDa and 60 KDa isoforms.

		MAN1A1 (72kDa)		MAN1A1 (60kDa)			MAN1A1 (72kDa+60kDa)			
		< median	> median	p=	< median	> median	p=	< median	> median	p=
Clinical stage	FIGO I-II	12	2		8	6		12	2	
	FIGO III	64	61		67	58		63	62	
	FIGO IV	12	25	0.003	13	24	0.122	13	24	0.005
Grading	G1-2	26	29		26	29		28	27	
	G3	60	57	0.624	59	58	0.700	58	59	0.870
Lymph node involvement	NO	26	18		22	22		29	15	
	N1	48	53	0.200	51	50	0.956	42	59	0.007
Distant metastasis	M0	75	63		74	64		74	64	
	M1	12	25	0.018	13	24	0.046	13	24	0.046
	no macroscopically									
Residual tumor after surgery	visible tumor	70	52		67	55		65	57	
	< 1 cm	13	20		13	20		16	17	
	> 1 cm	5	14	0.015	8	11	0.211	7	12	0.397

Supplementary Table S1: Correlations of MAN1A1 protein expression with clinical and histological tumor parameters¹

1, missing values to n=176: no information

Supplementary Material and Methods

Antibodies

Antibody	Company, Catalog No.	Dilution	Incubation
GAPDH	Santa Cruz Biotechnology,	1:5000 in 1.5 % milk	1 hour at room
	Heidelberg, Germany, sc-25778	powder in TBS-T	temperature
anti-α-1,2-	Abcam, Cambridge, UK, ab140613	1:1000 in 1.5 % milk	Over night at
mannosidase-IA		powder in TBS-T	4°C
ALCAM/CD166	Novocastra, Newcastle upon Tyne,	1:400 in 1.5 % milk	Over night at
	UK, NCL-CD166	powder in TBS-T	4°C
ICAM1	Santa Cruz Biotechnology, sc-8439	1:2000 in 1.5 % milk	Over night at
		powder in TBS-T	4°C
Integrin β4	Santa Cruz Biotechnology, sc-55514	1:400 in 1.5 % milk	Over night at
		powder in TBS-T	4°C
β- Actin	Santa Cruz Biotechnology, sc-47778	1:2000 in 1.5 % milk	1 hour at room
		powder in TBS-T	temperature
α-Tubulin	Cell Signalling Technology,	1:10000 in 5 % BSA in	1 hour at room
	Cambridge, UK, #2125	TBS-T	temperature
Lamin A/C	Cell Signalling Technology, #2032,	1:1000 in 1.5 % milk	Over night at
		powder in TBS-T	4°C
ConA	Sigma-Aldrich Chemie GmbH,	prepared in Hanks	30 minutes at
	Hamburg, Germany, #C2272,	solution (Biochrom	room
	working concentration: 0.025 μ g/ml	GmbH, Berlin,	temperature
PHA-E	Vector Laboratories, #B-1125,	Germany) with 1 mM	1 hour at room
	working concentration: 0.5 μg/ml	$MgCl_2$ and 1 mM CaCl_2	temperature

TBS-T Buffer: 20 mM Tris-HCl (pH 7.6), 0.137 M NaCl, 10 % Tween-20

Primer sequences for CRISPR/Cas9 MAN1A1 Knock out

sgRNA top: *MAN1A1_*e4_g1_FP: 5'-CACCAGCAACTATAGTAGATGCCC- 3'

sgRNA bottom: *MAN1A1_*e4_g1_RP: 5'-AAACGGGCATCTACTATAGTTGCT- 3'

Quantitative reverse transcriptase polymerase chain reaction

RNA was isolated with RNeasy Mini Kit (Qiagen, Hilden, Germany) and was reverse transcribed using Maxima First Strand cDNA Synthesis Kit (ThermoFisher Scientific; Pinneberg, Germany). Quantitative reverse transcriptase polymerase chain reaction (qRT–PCR) was performed with SYBR Premix Ex Taq (Takara, Kusatsu, Japan) using the Light Cycler (Roche, Mannheim, Germany). We used the following primer for *MAN1A1*: forward primer, 5′-GAAGGCATGGCCCAACACT-3′; reverse primer, 5′-GTAGCGATGGCTTCAACACC-3′. The data were analysed based on the ΔΔCt method as described

(Oliveira-Ferrer et al, 2014).

Genomic DNA isolation and Sanger sequencing

Isolation of genomic DNA was performed using QIAamp DNA Mini Kit (Qiagen) according to manufacturer's instruction. For amplification of the genomic region targeted by the CRISPR/Cas9, PCR from genomic DNA of control cells (e.v) and MAN1A1 knock out cells and following primers (exon 4) was performed: forward primer, 5'-TATCAGTCGATAGCCCGTGA-3'; reverse primer, 5'-GGGCCCACTACAGAATTTATCCA-3'. Sanger sequencing analysis was done by TGCA company.