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Supplementary Figures 

 

Supplementary Figure 1, Related to Figure 1. Workflow for generating the NCI-60 
proteome maps and predicting phenotypes. (A) Flowchart of experimental design. The 
NCI-60 cell pellets were divided into 12 batches, lysed and digested using the PCT method. 
The peptides were first analyzed in DDA mode to build a SWATH assay library. We also 
included DDA files from U2OS and HeLa cell digests. In total we performed 63 DDA 
injections either from whole cell lysate or fractionated samples. Each sample was analyzed in 
SWATH mode twice. The SWATH data were processed using software tools including 
OpenSWATH and DIA-expert in sequence. Our data were deposited in several public 
databases including CellMiner 2.0. Subsequently, we developed a computational workflow to 
model drug responsiveness using multiple layers of molecular data. The generation of a 
spectral library specifically for the NCI-60 cells consumed ca. 10 working days. For studies 
of this type this step is optional because similar results can be obtained from the use of 
publicly accessible, extensive human spectral libraries such as the pan-human library 
(Rosenberger et al., 2014). (B) raw mass spectrometric signal for the 120 SWATH runs. Total 
ion chromatography graphs are shown. The index of the 120 NCI SWATH files is explained 
in Supplementary Table 1. 
  



 
Supplementary Figure 2, Related to Figure 1. Unsupervised clustering of 6556 

protein groups identified and quantified in the NCI-60 cells. Using the SWATH library 
containing 8056 protein groups, we displayed the identified and quantified protein groups 
after unsupervised clustering of both cells and proteins based on their log10 transformed 
intensity values. 
  



 

 
Supplementary Figure 3, Related to Figure 1. Design and implementation of DIA-

expert, Related to Figure 1. (a) DIA-experts reads output data from OpenSWATH analysis 

of SWATH/DIA maps and then curates and visualizes quantitative ion chromatogram signals. 

(b) DIA-expert analyses each identified peptide precursor in a sample set. In Step ① it 

extracts ion chromatography signals for any number of fragments and the precursor ion 

chromatogram for all samples. In Step ②, it selects reference sample(s) from the sample set 

and refines non-contaminated chromatographic signals by learning the signal characteristics 

of the reference sample(s). In step 3 the system performs pair-wise comparisons of the 

reference sample(s) and a sample to be quantified based on the refined fragments ion set. 

Last, replicates of each sample and proteotypic peptides from the same protein were 

considered to exclude unreliably quantified peptides and minimize missing values for protein 

quantification across the entire data set.  

 
 



 

Supplementary Figure 4, Related to Figure 1. Quantitative accuracy of the NCI-60 
proteome as a function of the number of peptides quantified per protein. (a) Number of 
proteins quantified when minimally 1, 2, 3 and 4 peptides were quantified per protein. The R2 
values of technical replicates are computed. (b) Distribution of protein numbers based on 
increasing number of peptides. (c) The heatmap scatter plot of proteins quantified in two 
technical replicates when the minimal peptide number is limited to 1, 2, 3 and 4. 

 
 
 
 
  



 
 

Supplementary Figure 5, Related to Figure 2. Count of proteins quantified in 
increasing number of cells. This plot shows the number of proteins quantified in the NCI-60 
cells. DDA-LFQ denotes the LFQ-processed DDA data of the NCI-60 cells. SW3171 means 
the SWATH data set presented in this study. Most of the SW3171 proteins were quantified in 
all 60 cells. In DDA-LFQ data set (Gholami et al., 2013b), highest numbers of IPI protein 
groups were quantified in 1 and 59 cells.  
 
 
 
 
 
 
 
  



 

Supplementary Figure 6, Related to Figure 2. Comparison of 8 representative 
proteins which have been consistently quantified across nearly all NCI-60 cell lines by 
DDA. The data are shown in bar plots. Protein intensity values are log10 scaled 



 

Supplementary Figure 7, Related to Figure 2. Comparison of 8 representative 
proteins which have been consistently quantified across nearly all NCI-60 cell lines by 
SWATH. The data are shown in scatter plots. Protein intensity values are log10 scaled. 

 

 

 

 

 



 

Supplementary Figure 8, Related to Figure 2. Bar plots for P62805, which is 
quantified cross all NCI-60 cell lines by SWATH but not quantified by DDA. 

  



 

Supplementary Figure 9, Related to Figure 2. Bar plots for Q562R1, Q9H0A0, 
O60271, P16401, Q6UXV4, Q8WUF5, Q9NXV6 and Q12905, which are quantified cross 
all NCI-60 cell lines by SWATH but not quantified by DDA. 

 

  



 

Supplementary Figure 10, Related to Figure 2. Bar plots for Q9NSI2, P28066, 
P49593, P19338, P62899, P62917, P62841, and Q9Y4A5, which are quantified cross all 
NCI-60 cell lines by SWATH but not quantified by DDA. 

 



 

 

Supplementary Figure 11, Related to Figure 2. Bar plots for P62875, O14735, 
P51991, P18621, Q969G3, P46778, P08621, and P50151, which are quantified cross all 
NCI-60 cell lines by SWATH but not quantified by DDA. 

 

  



 

Supplementary Figure 12, Related to Figure 2. Bar plots for Q5T4S7, P22626, 
P10809, Q13541, P62753, Q9BUQ8, Q13619 and Q8N392, which are quantified cross all 
NCI-60 cell lines by SWATH but not quantified by DDA. 

 

  



 

Supplementary Figure 13, Related to Figure 2. Bar plots for Q15154, Q8NC51, 
Q9NYF8, Q99816, Q96FS4, P46783, Q16543, O14964, which are quantified cross all 
NCI-60 cell lines by SWATH but not quantified by DDA. 

 

  



 

Supplementary Figure 14, Related to Figure 2. Bar plots for Q8WWY3, Q9UJB3, 
O75170, Q9GZZ1, P56545, Q9BVL2, P61313 and Q9H4A3, which are quantified cross 
all NCI-60 cell lines by SWATH but not quantified by DDA. 

 

  



 

Supplementary Figure 15, Related to Figure 2. Bar plots for Q9Y5B9, Q436B4, 
P05204, Q9BQ61, Q8NB16, Q8TDB6, Q6UXH1, and Q69YN2, which are quantified 
cross all NCI-60 cell lines by SWATH but not quantified by DDA. 

 

  



 

Supplementary Figure 16, Related to Figure 2. Bar plots for Q9NUQ8, Q96B26, 
O15460, Q9NVP1, P39D23, Q9Y3B4, Q12906, and P51858, which are quantified cross 
all NCI-60 cell lines by SWATH but not quantified by DDA. 

 

  



 

Supplementary Figure 17, Related to Figure 2. Bar plots for Bar plots for P24386, 
Q7Z3J2, Q9NVT9, Q00403, Q94905, Q9H6R4, O15066, and Q6RFH5, which are 
quantified cross all NCI-60 cell lines by SWATH but not quantified by DDA. 

 



 

Supplementary Figure 18, Related to Figure 2. Bar plots for P57772, P09497, 
Q86X12, O14497, P84022, O15427, Q8WYA6, and P359249, which are quantified cross 
all NCI-60 cell lines by SWATH but not quantified by DDA. 

 

  



 

Supplementary Figure 19, Related to Figure 2. Bar plots for P20073, Q7L2J0, 
Q16539, Q3ZCQ8, P53367, Q8IWA0, 043815 and P16403, which are quantified cross all 
NCI-60 cell lines by SWATH but not quantified by DDA. 

 



 

 

Supplementary Figure 20, Related to Figure 2. Bar plots for Q15582, P98160, 
P49189, Q9Y3Y2, Q02218, Q8WX93, P41227, and Q9UNX4, which are quantified cross 
all NCI-60 cell lines by SWATH but not quantified by DDA. 



 

 

 

Supplementary Figure 21, Related to Figure 2. Bar plots for A0AV96, P22087, 
Q02543, Q8WUH6, Q13190, Q8N8S7, Q5QJE6 and P23588, which are quantified cross 
all NCI-60 cell lines by SWATH but not quantified by DDA. 

 



 

 

Supplementary Figure 22, Related to Figure 2. Bar plots for Q9Y2W1, Q8WUA4, 
P21399, Q13084, P53602, O43272 and P20962, which are quantified cross all NCI-60 cell 
lines by SWATH but not quantified by DDA. 

  



 

Supplementary Figure 23, Related to Figure 2. Bar plots for P67809, P46087, 
Q96IR7, O75494, P10412, Q96T37, O95983, and Q96I25, which are quantified cross all 
NCI-60 cell lines by SWATH but not quantified by DDA. 

 



 

Supplementary Figure 24, Related to Figure 2. Bar plots for P35680, Q9C0C4, 
Q86U90, Q9Y6B6, Q9UHL4, P62244, Q96D53 and Q96EL3, which are quantified cross 
all NCI-60 cell lines by SWATH but not quantified by DDA. 

 



 

 

Supplementary Figure 25, Related to Figure 2. Bar plots for Q14008, Q9NWY4, 
Q9BZX2, Q9NR50, and Q02040, which are quantified cross all NCI-60 cell lines by 
SWATH but not quantified by DDA. 

 

  



 

Supplementary Figure 26, Related to Figure 2. Scatter plots for P62805, Q562R1, 
Q9H0A0, O60271, P16401, Q6UXV4, Q8WUF5, Q9NXV6 , Q12905,Q9NSI2, P28066, 
P49593, P19338, P62899, P62917, P62841, , Q9Y4A5,P62875, O14735, and P51991， 

which are all quantified cross all NCI-60 cell lines by SWATH but not quantified by 
DDA. This figure shows the data completeness difference of the two data sets. 



 

Supplementary Figure 27, Related to Figure 2. Scatter plots for P18621, Q969G3, 
P46778, P08621, P50151, Q5T4S7, P22626, P10809, Q13541, P62753, Q9BUQ8, Q13619 , 
Q8N392, Q15154, Q8NC51, Q9NYF8, Q99816, Q96FS4, P46783, and Q16543, which are 
all quantified cross all NCI-60 cell lines by SWATH but not quantified by DDA. This 
figure shows the data completeness difference of the two data sets. 

 



 

Supplementary Figure 28, Related to Figure 2. Scatter plots for O14964,Q8WWY3, 
Q9UJB3, O75170, Q9GZZ1, P56545, Q9BVL2, P61313, Q9H4A3,Q9NPE3, Q06023, 
Q92576, Q969S3, Q9H089, Q13435, Q8N5N7, Q9Y5B9, Q436B4, and P05204, which are 
all quantified cross all NCI-60 cell lines by SWATH but not quantified by DDA. This 
figure shows the data completeness difference of the two data sets. 

 

 



 

Supplementary Figure 29, Related to Figure 2. Scatter plots for Q9BQ61, Q8NB16, 
Q8TDB6, Q6UXH1, Q69YN2, Q9NUQ8, Q96B26, O15460, Q9NVP1, P39D23, Q9Y3B4, 
Q12906, , P51858, P24386, Q7Z3J2, Q9NVT9, Q00403, Q94905, Q9H6R4, and O15066, 
which are all quantified cross all NCI-60 cell lines by SWATH but not quantified by 
DDA. This figure shows the data completeness difference of the two data sets. 

 



 

Supplementary Figure 30, Related to Figure 2. Scatter plots for Q6RFH5, P57772, 
P09497, Q86X12, O14497, P84022, O15427, Q8WYA6,  P359249, P20073, Q7L2J0, 
Q16539, Q3ZCQ8, P53367, Q8IWA0, 043815 , P16403,Q15582, P98160, and P49189, 
which are all quantified cross all NCI-60 cell lines by SWATH but not quantified by 
DDA. This figure shows the data completeness difference of the two data sets. 

 



Supplementary Figure 31, Related to Figure 2. Scatter plots for Q9Y3Y2, Q02218, 
Q8WX93, P41227, Q9UNX4, A0AV96, P22087, Q02543, Q8WUH6, Q13190, Q8N8S7, 
Q5QJE6 , P23588,Q9Y2W1, Q8WUA4, P21399,Q13084, P53602, and O43272, which are 
all quantified cross all NCI-60 cell lines by SWATH but not quantified by DDA. This 
figure shows the data completeness difference of the two data sets. 



Supplementary Figure 32, Related to Figure 2. Scatter plots for P20962,P67809, 
P46087, Q96IR7, O75494, P10412, Q96T37, O95983, Q96I25,P35680, Q9C0C4, 
Q86U90, Q9Y6B6, Q9UHL4, P62244, Q96D53, Q96EL3, Q14008, Q9NWY4, Q9BZX2, 
Q9NR50, and Q02040, which are all quantified cross all NCI-60 cell lines by SWATH 
but not quantified by DDA. This figure shows the data completeness difference of the two 
data sets. 



Supplementary Figure 33, Related to Figure 2. Access to NCI-60 proteotype in 
Cellminer. To facilitate data access, visualization, and comparison with other forms of 
genomic and pharmacological data for the NCI-60 cancer cell lines, we have incorporated the 
SWATH data within CellMiner 4 5. The CellMiner web site allows the data to be retrieved or 
used in several ways 6.  (A) The “Download Data Sets” tab allows either the total 3,171 
proteins, or the 22,554 peptides data sets to be downloaded. This data will primarily be of use 
in computational biology pipelines. The “Query Genomic Data” tab allows up to 150 proteins 
or peptides to be accessed (using the “Gene” or “Peptide” pull downs), queryable by gene 
name or peptide peak identifier, chromosomal or genomic location. Data is sent in both Excel 
(.xls) and text (.txt) format. The “NCI-60 Analysis Tools” tab (A) provides “Cell line 
signatures”. To obtain “Cell line signatures” for genes, select “Cell line signature” in Step 1, 
and then “Protein SWATH values”. In Step 2, up to 150 genes of interest may be input by 
either typing in the gene names in the “Input the identifier” box, or uploading them as a text 
or Excel file using the “Upload file” radio button. In Step 3, enter your e-mail address, and 
click “Get data”. Results will be sent by e-mail for each gene, with a link to download the 
results. This file contains three worksheets: i) tabular mean centered protein levels ratios as a 
both a bar plot and tabular data, and the peptide peak information for that gene ii) “Bin 
protein levels” with a histogram of the protein levels and iii) and “Footnotes”. (B) provides 
examples of three genes of interest. These “Cell line signatures” can also be used as input for 
the Pattern Comparison tool (also within the NCI-60 Analysis tools section) which provides 
correlated molecular and compound activity data. All available gene and peptide identifiers 
are available as a list within the “Available identifiers and drug mechanism of action 
definitions” as a download within the “NCI-60 Analysis Tools” tab. 



 

Supplementary Figure 34, Related to Figure 2. CellminerCDB snapshot views of 
three genes with highest correlation between expression in SWATH and transcriptome 
data: Myristyolated Alanine-Rich C Kinase (MARCKSL1), Galectin 3 (LGALS3) and 
Integrin b1 (ITGB1) (see Supplementary Table 3). Data are snapshots from 
https://discover.nci.nih.gov/CellMinerCDB. 



 

Supplementary Figure 35, Related to Figure 2 and 4. CellminerCDB view of the 
stoichiometric relationship of the expression of two RNA binding proteins DHX9 
(RNAse A) and FUS (Fused in Sarcoma) in SWATH and transcriptome data. 
https://discover.nci.nih.gov/CellMinerCDB snapshots showing: A. The high stoichiometric 
correlation for both DHX9 and FUS across the NCI-60. B. The lower stoichiometric 
relationship between DHX9 and FUS transcripts. C. The lack of correlation between DHX9 
protein and transcripts across the NCI-60. D. The low stoichiometric relationship between 
FUS protein and transcripts across the NCI-60. 



 

Supplementary Figure 36, Related to Figure 2. CellminerCDB view of XRCC5 and 
XRCC6 expression in SWATH and transcriptome data. 
https://discover.nci.nih.gov/CellMinerCDB snapshots showing: A. The high stoichiometric 
correlation for both Ku subunits XRCC6 (KU70) and XRCC5 (KU80) across the NCI-60. B. 
The lower stoichiometric relationship between XRCC6 and XRCC5 transcripts. C. The lack 
of correlation between XRCC6 protein and transcripts across the NCI-60. D. The lower 
stoichiometric relationship between XRCC5 protein and transcripts across the NCI-60. 
 

 

 

 

 

 



  

Supplementary Figure 37, Related to Figure 2. CellminerCDB snapshot views 
showing co-expression of replication proteins: RPA3 with RPA2 (A) and MCM5 (C) 
whereas transcripts do not show significant correlations (C-D). Data are snapshots from 
https://discover.nci.nih.gov/CellMinerCDB. 
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Supplementary Figure 38, Related to Figure 2. CellminerCDB snapshots showing 
co-expression of replication proteins determined by SWATH and detailing the 
coexpression of FEN1 with PCNA and of PCNA with the replication helicase protein 
MCM3. A. The “Compare pattern” tool was used with PCNA as the “x-axis entry”. 
Snapshots from https://discover.nci.nih.gov/CellMinerCDB showing only the top correlates 
with RPA3 including MCM3 and FEN1. B. Stoichiometric relationship between PCNA and 
FEN1 proteins across the NCI-60. C. Stoichiometric relationship between PCNA and MCM3 
proteins across the NCI-60. 

A
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Supplementary Figure 39, Related to Figure 2. CellminerCDB snapshot showing 
reproducible expression of PCNA determined by SWATH and RPPA (Reverse Phase 
Protein Array). The snapshot from https://discover.nci.nih.gov/CellMinerCDB shows PCNA 
protein levels across the NCI-60. 

 

 

 

 

 

 



 

Supplementary Figure 40, Related to Figure 2 and 4. CellminerCDB snapshot of 
FUS and DHX9 transcript expression (https://discover.nci.nih.gov/CellMinerCDB) across 
the MGH-Sanger cell lines. 

 



 

Supplementary Figure 41, Related to Figure 2. Snapshot views showing co-
expression of the NuRF (Nucleosome Remodeling Factors) proteins determined by 
SWATH (top) and transcripts (bottom). The “Cross-correlations” tool of CellMiner was 
used with the listed proteins or genes (left column). Snapshots from the Excel files obtained 
from http://discover.nci.nih.gov/cellminer. 
 

 

 

 

 

 

 

 

 

 

 

 

SWATH
Pearsons correlation
Identifier RBBP7 RBBP4 MTA3 MTA1 HDAC2 HDAC1 GATAD2B GATAD2A MBD3 CHD4 ZMYND8
RBBP7 1 0.226 -0.031 0.064 -0.01 0.197 0.127 -0.053 -0.019 0.12 -0.136
RBBP4 0.178 1 -0.091 0.245 0.271 0.539 0.073 0.18 0.168 0.343 -0.063
MTA3 -0.245 -0.099 1 0.325 0.039 0.076 -0.036 -0.254 -0.159 -0.083 0.016
MTA1 0.228 0.047 -0.173 1 0.457 0.214 0.147 -0.017 0.125 0.106 -0.364
HDAC2 0.133 0.026 -0.043 0.518 1 0.419 -0.067 0.307 0.286 0.351 -0.118
HDAC1 0.391 0.497 -0.127 0.189 -0.004 1 0.05 0.36 0.049 0.497 0.027
GATAD2B 0.24 0.29 -0.088 0.226 0.219 0.271 1 0.218 -0.069 0.366 0.047
GATAD2A 0.274 0.179 0.061 0.306 0.277 0.294 0.095 1 0.248 0.451 0.297
MBD3 0.316 0.447 -0.086 0.443 0.313 0.434 0.438 0.421 1 0.171 -0.084
CHD4 0.269 0.238 -0.201 0.311 0.138 0.382 0.402 0.419 0.506 1 0.316
ZMYND8 ND ND ND ND ND ND ND ND ND ND 1

Transcripts
Pearsons correlation
Identifier RBBP7 RBBP4 MTA3 MTA1 HDAC2 HDAC1 GATAD2B GATAD2A MBD3 CHD4 ZMYND8
RBBP7 1 0.226 -0.031 0.064 -0.01 0.197 0.127 -0.053 -0.019 0.12 -0.136
RBBP4 0.226 1 -0.091 0.245 0.271 0.539 0.073 0.18 0.168 0.343 -0.063
MTA3 -0.031 -0.091 1 0.325 0.039 0.076 -0.036 -0.254 -0.159 -0.083 0.016
MTA1 0.064 0.245 0.325 1 0.457 0.214 0.147 -0.017 0.125 0.106 -0.364
HDAC2 -0.01 0.271 0.039 0.457 1 0.419 -0.067 0.307 0.286 0.351 -0.118
HDAC1 0.197 0.539 0.076 0.214 0.419 1 0.05 0.36 0.049 0.497 0.027
GATAD2B 0.127 0.073 -0.036 0.147 -0.067 0.05 1 0.218 -0.069 0.366 0.047
GATAD2A -0.053 0.18 -0.254 -0.017 0.307 0.36 0.218 1 0.248 0.451 0.297
MBD3 -0.019 0.168 -0.159 0.125 0.286 0.049 -0.069 0.248 1 0.171 -0.084
CHD4 0.12 0.343 -0.083 0.106 0.351 0.497 0.366 0.451 0.171 1 0.316
ZMYND8 -0.136 -0.063 0.016 -0.364 -0.118 0.027 0.047 0.297 -0.084 0.316 1



Supplementary Figure 42, Related to Figure 2. CellminerCDB snapshot showing 
stoichiometry expression of MBD3 and CHD4 determined by SWATH. The 
https://discover.nci.nih.gov/CellMinerCDB snapshot show MBD3 and CHD4 protein levels 
across the NCI-60. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 Supplementary Figure 43, Related to Figure 2 and 4. CellminerCDB snapshot 
showing co-expression of cell adhesion proteins determined by SWATH. The “Compare 
pattern” tool was used with b-catenin (CTNNB1) as the “x-axis entry” 
(https://discover.nci.nih.gov/CellMinerCDB). Only the top correlates are shown among over 
3,000 proteins in the database. 
 
 

 

 

 

 

 

 

 



 

Supplementary Figure 44, Related to Figure 4. Predictive protein biomarkers for 
cisplatin (NSC119875) activity. The snapshots from 
https://discover.nci.nih.gov/CellMinerCDB show: A. Results obtained with the “Regression 
Model” tool of CellMinerCDB using cisplatin as “Response Identifier” for the query. B. 
Significant negative correlation between EPCAM protein expression determined by SWATH 
and activity of cisplatin. C. Highly significant negative correlation between EPCAM protein 
expression and EPCAM promoter methylation across the NCI-60. 
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Supplementary Figure 45, Related to Figure 4. ABCB1 (PGP; P-glycoprotein) 
protein levels across the NCI-60 and prediction of drug response. 
https://discover.nci.nih.gov/CellMinerCDB snapshots showing: A. The correlation between 
ABCB1 protein and gene expression across the NCI-60. B-D. The significant negative 
correlations between ABCB1 protein levels and response to doxorubicin, depsipeptide and 
taxol across the NCI-60. 
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Supplementary Figure 46, Related to Figure 2. CellminerCDB snapshot views 
showing co-expression of replication proteins determined by SWATH. The “Compare 
pattern” tool was used with RPA3 as the “x-axis entry”. Snapshots from 
https://discover.nci.nih.gov/CellMinerCDB showing the top correlates with RPA3. 
 

 



 
Supplementary Figure 47, Related to Figure 2. Proteins interacting with DHFR and 

MBD3. Proteins interacting with DHFR (A) and MBD3 (B) from STRING. 

  



Supplementary Figure 48, Related to Figure 3. Global cancer signaling pathway 
maps based on Atlas of Cancer Signaling Network (ACSN) pathways (Kuperstein et al., 
2015) (www. acsn.curie.fr). The annotations of the pathway map are shown in the upper 
panel. ROMA representation of the pathway activities are shown in the lower panel. 
 
 
 
 
 
 
 
 



Supplementary Figure 49, Related to Figure 3. Fifty-eight protein kinases 
quantified in the NCI-60 cell panel. Expression of 58 protein kinases, represented by log10 
transformed protein intensity values, in the NCI-60. Values are clustered without supervision 
across both proteins and cell lines. 
 

 



 

 

Supplementary Figure 50, Related to Figure 3. Predictive power of different omics 
data combinations for the activity of 224 compounds, based on elastic net (multivariate 
linear regression) modeling of the drug response. Each column indicates the input data 
gene expression and mutation alone and in combination with proteomic abundances; 
each row represents a compound. The color indicates the predictive power, measured by 
Pearson correlation of cross-validation predicted and observed drug response values. 
Rows specifying compound-specific response prediction accuracies are sorted by 
mechanism of action and additional annotations are provided 1) whether the inclusion 
of the SWATH data improved the overall model and 2) the clinical status of the 
compound whether FDA approved or in clinical trial.  

 
 



Supplementary Table Legends 

All the supplementary tables are provided as separate Excel spreadsheet. 

Supplementary Table 1, Related to Figure 1. Quantitative proteome maps of the NCI-60 
cell lines. (A) Information for PCT-SWATH analysis of the NCI-60 cells (B) List of peptide 
precursors appeared in the library. (C) Quantitative values of 22,554 peptide precursors in the 
NCI-60 cells in duplicates. (D) Quantitative values of 3,171 proteins in the NCI-60 cells in 
duplicates. (E) Averaged protein intensity in the NCI-60 cells. 

Supplementary Table 2, Related to Figure 2. Count of proteins in each cell line in the 
DDA data and the SWATH data. This table shows the count of IPI protein group 
number from the DDA data set quantified using iBAQ and LFQ algorithms 1, and the 
count of SwissProt proteotypic proteins from the SWATH data as reported in this 
data(Gholami et al., 2013a). 

Supplementary Table 3, Related to Figure 2. Correlation between NCI-60 transcript 
expression and SWATH-MS protein expression for indicated gene. 

Supplementary Table 4, Related to Figure 2. Stoichiometry of 101 protein complexes in 
the NCI-60 proteotype. Average Abundance (log10) means the averaged log 10 scaled 
protein abundance signal for proteins in a complex. Standard Deviation means the standard 
deviation of log 10 scaled protein abundance signal for proteins in a complex. Average 
Pearson Correlation means the averaged Pearson corelation value for each pair of proteins in 
a complex. 

Supplementary Table 5, Related to Figure 2. The activity of apoptosiswas found 
significantly higher in ovarian cell lines. (A) The modules that show a significant dispersion 
are reported here. (B) A t-test is performed for cell lines from one cancer type vs. all other 
cancer cell lines. 

Supplementary Table 6, Related to Figure 3. Cellminer data for the NCI-60 cells used in 
this study. (A) Exome data of the NCI-60 cells. (B) Log2 scaled mRNA expression data of 
the NCI-60 cells. (C) Common features at three different levels, i.e. DNA, mRNA and 
protein. 

Supplementary Table 7, Related to Figure 3. Elastic net results.  

 

 

 



Transparent Methods 

PCT-assisted sample preparation for MS analyses  

 The NCI-60 cells were obtained as frozen, non-viable cell pellets from the 
Developmental Therapeutics Program (DTP), National Cancer Institute (NCI-NIH) and 
processed using Barocycler® NEP2320 (PressureBioSciences Inc, South Easton, MA). The 
IDs of the NCI-60 cells in our study matching to the IDs in Cellminer and a previous 
proteomic study by the Kuster group are provided in Supplementary Table 1. Briefly, cell 
pellets were lysed in a buffer containing 8M urea, 0.1M ammonium bicarbonate, and 
CompleteTM protease inhibitor using barocycler program (20 seconds 45 kpsi, 10 seconds 0 
kpsi, 120 cycles) at 35°C (Guo et al., 2015). Whole cell lysates were sonicated for 25 seconds 
with 1 min interval on ice for 3 times. Cellular debris was removed by centrifugation and 
sample protein concentration was determined by BCA assay prior to protein reduction with 10 
mM TCEP for 20 min at 35°C, and alkylation with 40 mM iodoacetamide in the dark for 30 
min at room temperature. Lys-C digestion (1/50, w/w) was performed in 6 M urea using PCT 
program (25 seconds 25 kpsi, 10 seconds 0 kpsi 75 cycles) at 35°C; whereas trypsin digestion 
(1/30, w/w) was performed in further diluted urea (1.6M) using PCT program (25 seconds 25 
kpsi, 10 seconds 0 kpsi, 160 cycles) at 35°C. Digestion was stopped by acidification with 
trifluoroacetic acid to a final pH of around 2 before C18 column desalting using SEP-PAK 
C18 cartridges (Waters Corp., Milford, MA, USA). 

 

Off-gel electrophoresis  

 To create a comprehensive spectral library for SWATH-MS analysis, we pooled 20-40% 
of desalted peptide solutions from each NCI-60 sample and performed off-gel fractionation. 
Briefly, pooled peptides were resolubilised in OGE buffer containing 5% (v/v) glycerol, 0.7% 
(v/v) acetonitrile (ACN) and 1% (v/v) carrier ampholytes mixture (IPG buffer pH 3.0-10.0, 
GE Healthcare). Fractionation was performed on a 3100 OFFGEL (OGE) Fractionator 
(Agilent Technologies) using a 24 cm pH3-10 IPG strip (Immobilised pH Gradient strip from 
GE Healthcare) according to manufacturer’s instructions using a program of 1 h rehydration 
at a maximum of 500 V, 50 µA and 200 mW followed by separation at a maximum of 8000 
V, 100 µA and 300 mW until 50 kVh were reached. Each of 24 fraction was recovered and 
cleaned up by C18 reversed-phase MicroSpin columns (The Nest Group Inc.). Based on the 
sample complexity (based on Nanodrop, A280 measurement), for each strip, the following 
fractions were pooled into 12 samples for MS injections: pool 1 (fraction 1-2), pool 2 
(fraction 3), pool 3 (fraction 4), pool 4 (fraction 5), pool 5 (fraction 6-7), pool 6 (fraction 8-9), 
pool 7 (fraction 10-11), pool 8 (fraction 12-15), pool 9 (fraction 16-19), pool 10 (fraction 20-



21), pool 11 (fraction 22), pool 12 (fraction 23-24). Those were injected in quadruplicate, 
resulting in 48 DDA injections of fractionated samples. 

 

DDA MS for spectral library generation 

 For spectral library generation, a SCIEX TripleTOF 5600 System mass spectrometer was 
operated essentially as described before (Schubert et al., 2015): all samples were analyzed on 
an Eksigent nanoLC (AS-2/1Dplus or AS-2/2Dplus) system coupled with a SWATH-MS-
enabled AB SCIEX TripleTOF 5600 System. The HPLC solvent system consisted of buffer A 
(2% ACN and 0.1% formic acid, v/v) and buffer B (95% ACN with 0.1% formic acid, v/v). 
Samples were separated in a 75 μm diameter PicoTip emitter (New Objective) packed with 20 
cm of Magic 3 μm, 200A C18 AQ material (Bischoff Chromatography). The loaded material 
was eluted from the column at a flow rate of 300 nL min-1 with the following gradient: linear 
2 - 35% B over 120 min, linear 35 - 90% B for 1 min, isocratic 90% B for 4 min, linear 90 - 
2% B for 1 min and isocratic 2% solvent B for 9 min. The mass spectrometer was operated in 
DDA mode using a top20 method, with 500 ms and 150 ms acquisition time for the MS1 and 
MS2 scans respectively, and 20 s dynamic exclusion for the fragmented precursors. Rolling 
collision energy using the following equation (0.0625 × m/z - 3.5) with a collision energy 
spread of 15 eV was used for fragmentation regardless of the charge state of the precursors, to 
mimic as close as possible the fragmentation conditions of the precursors in SWATH-MS 
mode. Altogether, we had 66 DDA-MS injections, including the 48 OGE samples and another 
18 pooled peptide samples from the unfractionated cell lysate of the NCI-60 cells. 

 

Spectral and assay library generation 

 All raw instrument data were centroided using Proteowizard msconvert (version 2.0). 
The assay library was generated using an established protocol (Schubert et al., 2015). In short, 
the shotgun data sets were searched individually using X!Tandem (Craig and Beavis, 2003) 
(2011.12.01.1) with k-score plugin (MacLean et al., 2006), Myrimatch (Tabb et al., 2007) 
(2.1.138), OMSSA (Geer et al., 2004) (2.1.8) and Comet (Eng et al., 2013) (2013.02r2) 
against the reviewed UniProtKB/Swiss-Prot (2014_02) protein sequence database containing 
20,270 proteins appended with 11 iRT peptides and decoy sequences. Carbamidomethyl was 
used as a fixed modification and oxidation as the variable modification. Maximally two 
missed cleavages were allowed. Peptide mass tolerance was set to 50 ppm, fragment mass 
error to 0.1 Da. The search identifications were combined and statistically scored using 
PeptideProphet (Keller et al., 2002) and iProphet (Shteynberg et al., 2011) available within 
the Trans-Proteomics Pipeline (TPP) toolset (version 4.7.0) (Keller et al., 2005). MAYU 



(Reiter et al., 2009) (v. 1.07) was used to determine the iProphet cutoff (0.999354) 
corresponding to a protein FDR of 1.03%. SpectraST was used in library generation mode 
with CID-QTOF settings and iRT normal-isation at import against the iRT Kit (Escher et al., 
2012) peptide sequences (-c_IRTirt.txt -c_IRR) and a consensus library was consecutively 
generated. An in-house python script, spec-trast2tsv.py31 (msproteomicstools 0.2.2) was then 
used to generate the assay library with the following settings: -l 350,2000 -s b,y -x 1,2 -o 6 -n 
6 -p 0.05 -d -e -w swath32.txt -k openswath (fragment ions between 350 and 2000 m/z, b and 
y ions authorized, fragment charges 1+ and 2+, 6 most intense transitions, precision of 
fragment ion retrieved 0.05 Da, exact fragment ion mass calculated, exclude fragments in the 
swath window). The OpenSWATH tool, ConvertTSVToTraML converted the TSV file to 
TraML format; Open-SwathDecoyGenerator generated the decoy assays in shuffle mode and 
appended them to the TraML assay library. In this study, we built a SWATH assay library 
containing 86,209 proteotypic peptide precursors in 8,056 proteotypic SwissProt proteins. 
This library is supplied in PRIDE project PXD003539. 

 

SWATH-MS 

 The SWATH-MS data acquisition in a Sciex TripleTOF 5600 mass spectrometer was 
performed as described before (Gillet et al., 2012), using 32 windows of 25 Da effective 
isolation width (with an additional 1 Da overlap on the left side of the window) and with a 
dwell time of 100 ms to cover the mass range of 400 - 1200 m/z in 3.3 s. The collision energy 
for each window was set using the collision energy of a 2+ ion centered in the middle of the 
window (equation: 0.0625 x m/z - 3.5) with a spread of 15 eV. The sequential precursor 
isolation window setup was as follows: [400-425], [424-450], [449-475], …, [1174-1200].  

 

Protein identification using OpenSWATH 

We analyzed the SWATH data using OpenSWATH software (Rost et al., 2014) using 
parameters as described previously (Ori et al., 2016). We identified 48,374 peptides from 
6,556 protein groups from the NCI-60 panel with < 1% false discovery rate at both peptide 
and protein level evaluated by OpenSWATH (Rost et al., 2014)and Mayu (Reiter et al., 2009) 
(supplied in PRIDE project PXD003539).  

 

DIA-expert analyses 

The DIA-expert software read OpenSWATH output result file which contains statistical 
scores (i.e. mProphet score or mScore) indicating the confidence of identification for each 



peptide precursor in each sample, and from there selected the sample in which a peptide 
precursor was identified with highest confidence. It then obtained extracted ion 
chromatograms (XICs) for the target peptide precursor and all associated annotated b and y 
fragments in the reference sample, and refined fragments based on the peak shape of each 
fragment and its peak boundary. The refined fragments and precursor XIC traces from each of 
the rest samples were subsequently compared with the reference peak group using empirical 
expert rules, based on which the best matched peak group in each sample was picked and 
visualized. Duplicated measurements were used to evaluate the accuracy of peptide and 
protein quantification. The protein quantity was normalized based on total ion 
chromatography of the MS1 spectra from each raw SWATH file. All codes are provided in 
Github https://github.com/tiannanguo/dia-expert.  

 

PRM analysis 

PRM quantification strategy was used to quantify selected proteins. Biognosys-11 iRT 
peptides (Biognosys, Schlieren, CH) were spiked into peptide samples at the final 
concentration of 10% prior to MS injection for RT calibration. Peptides were separated at 300 
nL/min along a 45min 8–35% linear LC gradient (buffer A: 2% ACN, 0.1% formic acid; 
buffer B: 20% ACN, 0.1% formic acid). The Q Exactive HF-X Hybrid Quadrupole-Orbitrap 
Mass Spectrometer was operated in the MS/MS mode with time-scheduled acquisition for 54 
peptides in a +/- 5 min retention time window. The full MS mode was measured at resolution 
60,000 at m/z 200 in the Orbitrap, with AGC target value of 3E6 and maximum IT of 55ms. 
Target ions were submitted to MS/MS in the HCD cell (1.2 amu isolation width, 30% 
normalized collision energy). MS/MS spectra were acquired at resolution 30,000 (at m/z 200) 
in the Orbitrap using AGC target value of 2E5, a max IT of 100ms. 

 

Quantitative proteomics and transcriptomics analysis of protein complexes components 

 Technical replicates were averaged to generate the NCI-60 proteotypes. To assess the 
coverage of protein complexes by NCI-60 proteotypes, we first retrieved a large resource of 
mammalian protein complexes assembled from CORUM (Ruepp et al., 2010), COMPLEAT 
(Vinayagam et al., 2013) and literature-curated complexes (Ori et al., 2013; Ori et al., 2016). 
This resource contains 2,041 proteins as members of 279 distinct complexes and it is 
available at http://variablecomplexes.embl.de/. 101 complexes were represented in the NCI-
60 proteotypes with at least 5 members quantified. These complexes, in total, contain 1,045 
distinct proteins quantified in the NCI-60 proteotypes. Pearson’s correlation coefficient was 
calculated for all the pairwise comparisons of 3,171 proteins across the NCI-60 cell lines. All 



pairwise comparisons were classified into two categories: either two proteins were members 
of the same complex or not. Average abundance, standard deviation and average Pearson 
correlation of each complex were calculated based on the abundance of complex members in 
the NCI-60 proteotypes. 

 An extended list of protein-protein interactions (PPIs) was generated based on 
information acquired from 6 resources: 1) 17,556 PPIs were retrieved from the CORUM 
database of human protein complexes (Ruepp et al., 2010); 2) 16’345 PPIs were composed 
from the interaction pairs annotated as ‘complex’ members in the Reactome database 
(Fabregat et al., 2018); 3) 12,664 PPIs were retrieved from the STRING database (Szklarczyk 
et al., 2015) considering only high confidence interactions (score ≥ 700). 4) 1’378 interaction 
pairs were obtained from Interactome3D (Mosca et al., 2013). These interactors corresponded 
to experimentally observed interactions with a support in the form of structural data or 
structural models. 5) 309 PPIs were obtained by considering interactions identified in at least 
3 independent APMS experiments. For this, we included studies deposited in the BioGrid 
database (Chatr-Aryamontri et al., 2017), interactions listed in the BioPlex portal (Huttlin et 
al., 2015), and interactions observed in the large-scale Polycomb (Hauri et al., 2016) and 
Kinome studies (manuscript in preparation). 6) 122 PPIs were retrieved from the EMBL-EBI 
complex portal (Park et al., 2017). The latter (smallest) set of interactions is manually curated 
and of high confidence. 

 Combining information from the different databases, a list of 35,693 unique interactions 
(encompassing 1,766 proteins) was generated. The Spearman coefficient of correlation of 
protein abundances (Spearman’s r) and the associated p-value were calculated for all the 
5,026,035 protein pairs that can be formed from the 3171 proteins measured in the proteomics 
dataset. For this, the cor.mtest function from the package corrplot was applied with the 
Benjamini-Hochberg correction for multiple testing. Distribution of pairwise correlation 
values for three different sets was visualized with the density plots. The sets represented pairs 
found to interact in the respective database, all background NCI60 pairs (common to all 
analysis) and protein pairs that were both measured by NCI60 and present in the respective 
database, but not reported as interacting. The mean correlation values between the datasets 
were compared with the Wilcoxon test in R.  

 Pairwise correlation analysis of the mRNA levels was based on the expression data 
retrieved from the CellMiner. Cell lines with missing values (CNS.SF_539, ME.MDA_N and 
LC.NCI_H23) and transcripts for which the matching proteins were not measured were 
excluded from the analysis. Therefore, the final analysis was performed on a complete matrix 
with 57 cell lines and 2,835 transcripts. The Spearman’s r and associated p-values were 
calculated as above for the 4,017,195 mRNA pairs that can be formed from the 2835 



measured transcripts. Distribution of correlation values was compared between the set of true 
interaction partners and the corresponding background sets as described above. 

 

Pathway activity analysis 

 The activity of pathways, as they are described in ACSN, has been computed using 
ROMA (Martignetti et al., 2016). Among all the modules defined in ACSN, only 11 show a 
significant dispersion over the data set: AKT_MTOR, HR (Homologous Recombination), 
NER (nucleotide Excision Repair), TNF response, Death Receptors regulators, Apoptosis, 
caspases, E2F3 and E2F4 targets, HIF1 and cytoskeleton polarity. For these modules, the 
mean activity score for each type of cancer cell lines was computed and mapped onto the atlas 
(from bright green for low values to bright red for high values). To assess module differential 
activity between proteotypes, we computed a t-test on the activity scores in cell lines of a 
cancer type versus the activity of all other cancer cell lines. The definition of genes 
composing each module can be found in http://acsn.curie.fr  

 

Drug sensitivity prediction using elastic net 

 The elastic net regularized regression algorithm was applied to predict drug response for 
240 FDA-approved or investigational NSC-designated compounds. Some widely studied 
drugs are represented by more than one NSC identifier, with each identifier associated with a 
distinct compound sample and series of NCI-60 drug activity assays. For each compound, two 
sets of input data were evaluated. These included NCI-60 mRNA expression, gene-level 
mutation alone and in combination with SWATH-MS protein expression. mRNA expression 
data was available for 25,040 genes, and derived from CellMiner 
(discover.nci.nih.gov/cellminer and discover.nci.nih.gov/cellminecdb) (Rajapakse et al., 
2018; Reinhold et al., 2012; Reinhold et al., 2015; Reinhold et al., 2017), with missing values 
imputed using the impute.knn function (with default parameters) of the Bioconductor impute 
package. Gene-level mutation profiles were available for 9,307 genes, and were obtained 
from CellMiner exome sequencing data, with values indicating the percent conversion to a 
variant form for the case of expected function-impacting alterations (frameshift, nonsense, 
splice-sense, missense mutations by SIFT/PolyPhen2 analysis). SWATH-MS based protein 
expression data from the current study was also included.  

Elastic net analysis was done using the glmnet R package (Friedman et al., 2010). The elastic 
net analysis was conducted using a multi-step pipeline involving cross-validations performed 
in a nested manner. The “outer” cross-validation is a leave-one-out cross validation that is 
conducted over all computational steps present in the “inner” pipeline, and it is used to 



validate model performance. The “inner” cross-validation are conducted to select elastic net 
hyperparameters (alpha and lambda) and for predictor set trimming, using data from a set of 
~59 cell lines.  

The elastic net parameters alpha and lambda were selected by minimizing the cross-validation 
error (average of 10 replicates of 10-fold cross-validation) within the “inner” pipeline. The 
selected alpha and lambda parameters were then applied to 200 runs of the elastic net 
algorithm, each using a random data subset derived from 90% of the available cell lines. The 
200 resulting coefficient vectors were then averaged, and predictors were ranked by the 
magnitude of their average coefficient weight. To select a limited number of predictors with 
potential to generalize to new data, top k-element predictor sets (by average coefficient 
weight magnitude) were evaluated using standard linear regression and 10-fold cross-
validation. The appropriate k was set to the smallest value yielding a cross-validation error 
within one standard deviation of the minimum cross-validation error.  

To obtain a robust estimate of performance on unseen data, leave-one-out cross-validation 
was applied to the overall procedure as part of the “outer” pipeline. Specifically, drug 
response for each cell line was predicted using an elastic net model derived using the 
remaining held out data (and the steps outlined above). The vector of predicted response 
values was then correlated with the actual response values, with the Pearson’s correlation 
coefficient providing an estimate of the predictive value of the applied input data 
combination. More details of the elastic net algorithm are provided in Supplementary Note 6. 

Elastic net analysis was done using the rcellminerElasticNet R package 
(https://bitbucket.org/cbio_mskcc/rcellminerelasticnet), which facilitates the application of 
the glmnet R package (which provides the elastic net algorithm code) to data from the 
rcellminer and rcellminerData packages (Luna et al., 2016). rcellminerElasticNet also 
provides utility functions for summarizing and visualizing elastic net results.  

Results for the elastic net analysis are available from this URL: 
https://discover.nci.nih.gov/cellminerreviewdata/swath_analysis/swathOutput_062316_all.tar.
gz. This compressed file contains results for the analysis run with all features and selected 
common features. Each drug compound has three files for each combination of molecular 
features used in a particular run of the elastic net algorithm: 1) a knitr report R Markdown 
(.Rmd) file containing the code that was run, 2) an RData (.Rdata) file containing the results 
of each elastic net run (see elasticNet() documentation in the rcellminerElasticNet package), 
3) the rendered knitr report as a webpage (.html).  

Beyond the knitr report containing code, the elastic net pipeline is made reproducible using a 
Docker image. Docker (www.docker.com) is an emerging platform for conducting 
reproducible research in the biomedical research community. All necessary software and 



dependencies to run the described analysis have been embedded in the available Docker 
container to provide readers an environment that runs on all major operating systems 
(including Windows, OSX, and Linux), making Docker containers self-contained, portable, 
and capable of performing at levels similar to the host system. 
      The Docker container is available at the Docker Hub repository: cannin/swath 
(https://hub.docker.com/r/cannin/swath/). Key dependencies installed, include: RStudio 
Server (https://www.rstudio.com/), rcellminer/rcellminerData (Luna et al., 2016), and 
rcellminerElasticNet. With these installed dependencies, readers have the opportunity to 1) re-
run analysis for specific drug compounds and modify the code in order to extend the analysis 
using RStudio Server, a web-based version of the RStudio R editor, and 2) use an R Shiny 
app web-based data explorer to further understand described results. Instructions on the usage 
of the Docker container are located at the rcellminerElasticNet project page 
(https://bitbucket.org/cbio_mskcc/rcellminerelasticnet).  

 

 
 

 

 

 

 

 

 

 

 

  



Supplementary References 

Chatr-Aryamontri, A., Oughtred, R., Boucher, L., Rust, J., Chang, C., Kolas, N.K., 
O'Donnell, L., Oster, S., Theesfeld, C., Sellam, A., et al. (2017). The BioGRID interaction 
database: 2017 update. Nucleic acids research 45, D369-D379. 
Craig, R., and Beavis, R.C. (2003). A method for reducing the time required to match 
protein sequences with tandem mass spectra. Rapid Commun Mass Spectrom 17, 
2310-2316. 
Eng, J.K., Jahan, T.A., and Hoopmann, M.R. (2013). Comet: an open-source MS/MS 
sequence database search tool. Proteomics 13, 22-24. 
Escher, C., Reiter, L., MacLean, B., Ossola, R., Herzog, F., Chilton, J., MacCoss, M.J., and 
Rinner, O. (2012). Using iRT, a normalized retention time for more targeted 
measurement of peptides. Proteomics 12, 1111-1121. 
Fabregat, A., Korninger, F., Viteri, G., Sidiropoulos, K., Marin-Garcia, P., Ping, P., Wu, G., 
Stein, L., D'Eustachio, P., and Hermjakob, H. (2018). Reactome graph database: Efficient 
access to complex pathway data. PLoS Comput Biol 14, e1005968. 
Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization Paths for Generalized 
Linear Models via Coordinate Descent. J Stat Softw 33, 1-22. 
Geer, L.Y., Markey, S.P., Kowalak, J.A., Wagner, L., Xu, M., Maynard, D.M., Yang, X., Shi, 
W., and Bryant, S.H. (2004). Open mass spectrometry search algorithm. J Proteome Res 
3, 958-964. 
Gholami, A.M., Hahne, H., Wu, Z., Auer, F.J., Meng, C., Wilhelm, M., and Kuster, B. 
(2013a). Global proteome analysis of the NCI-60 cell line panel. Cell Rep 4, 609-620. 
Gholami, A.M., Hahne, H., Wu, Z.X., Auer, F.J., Meng, C., Wilhelm, M., and Kuster, B. 
(2013b). Global Proteome Analysis of the NCI-60 Cell Line Panel. Cell Rep 4, 609-620. 
Gillet, L.C., Navarro, P., Tate, S., Rost, H., Selevsek, N., Reiter, L., Bonner, R., and 
Aebersold, R. (2012). Targeted data extraction of the MS/MS spectra generated by 
data-independent acquisition: a new concept for consistent and accurate proteome 
analysis. Molecular & cellular proteomics : MCP 11, O111 016717. 
Guo, T., Kouvonen, P., Koh, C.C., Gillet, L.C., Wolski, W.E., Rost, H.L., Rosenberger, G., 
Collins, B.C., Blum, L.C., Gillessen, S., et al. (2015). Rapid mass spectrometric conversion 
of tissue biopsy samples into permanent quantitative digital proteome maps. Nature 
medicine. 
Hauri, S., Comoglio, F., Seimiya, M., Gerstung, M., Glatter, T., Hansen, K., Aebersold, R., 
Paro, R., Gstaiger, M., and Beisel, C. (2016). A High-Density Map for Navigating the 
Human Polycomb Complexome. Cell Rep 17, 583-595. 
Huttlin, E.L., Ting, L., Bruckner, R.J., Gebreab, F., Gygi, M.P., Szpyt, J., Tam, S., Zarraga, G., 
Colby, G., Baltier, K., et al. (2015). The BioPlex Network: A Systematic Exploration of the 
Human Interactome. Cell 162, 425-440. 
Keller, A., Eng, J., Zhang, N., Li, X.J., and Aebersold, R. (2005). A uniform proteomics 
MS/MS analysis platform utilizing open XML file formats. Mol Syst Biol 1, 2005 0017. 
Keller, A., Nesvizhskii, A.I., Kolker, E., and Aebersold, R. (2002). Empirical statistical model 
to estimate the accuracy of peptide identifications made by MS/MS and database 
search. Anal Chem 74, 5383-5392. 



Kuperstein, I., Bonnet, E., Nguyen, H.A., Cohen, D., Viara, E., Grieco, L., Fourquet, S., 
Calzone, L., Russo, C., Kondratova, M., et al. (2015). Atlas of Cancer Signalling Network: 
a systems biology resource for integrative analysis of cancer data with Google Maps. 
Oncogenesis 4, e160. 
Luna, A., Rajapakse, V.N., Sousa, F.G., Gao, J., Schultz, N., Varma, S., Reinhold, W., 
Sander, C., and Pommier, Y. (2016). rcellminer: exploring molecular profiles and drug 
response of the NCI-60 cell lines in R. Bioinformatics 32, 1272-1274. 
MacLean, B., Eng, J.K., Beavis, R.C., and McIntosh, M. (2006). General framework for 
developing and evaluating database scoring algorithms using the TANDEM search 
engine. Bioinformatics 22, 2830-2832. 
Martignetti, L., Calzone, L., Bonnet, E., Barillot, E., and Zinovyev, A. (2016). ROMA: 
Representation and Quantification of Module Activity from Target Expression Data. 
Front Genet 7, 18. 
Mosca, R., Ceol, A., and Aloy, P. (2013). Interactome3D: adding structural details to 
protein networks. Nat Methods 10, 47-53. 
Ori, A., Banterle, N., Iskar, M., Andres-Pons, A., Escher, C., Khanh Bui, H., Sparks, L., 
Solis-Mezarino, V., Rinner, O., Bork, P., et al. (2013). Cell type-specific nuclear pores: a 
case in point for context-dependent stoichiometry of molecular machines. Mol Syst Biol 
9, 648. 
Ori, A., Iskar, M., Buczak, K., Kastritis, P., Parca, L., Andres-Pons, A., Singer, S., Bork, P., 
and Beck, M. (2016). Spatiotemporal variation of mammalian protein complex 
stoichiometries. Genome Biol 17, 47. 
Park, Y.M., Squizzato, S., Buso, N., Gur, T., and Lopez, R. (2017). The EBI search engine: 
EBI search as a service-making biological data accessible for all. Nucleic acids research 
45, W545-W549. 
Rajapakse, V.N., Luna, A., Yamade, M., Loman, L., Varma, S., Sunshine, M., Iorio, F., 
Sousa, F.G., Elloumi, F., Aladjem, M.I., et al. (2018). CellMinerCDB for Integrative Cross-
Database Genomics and Pharmacogenomics Analyses of Cancer Cell Lines. iScience 10, 
247-264. 
Reinhold, W.C., Sunshine, M., Liu, H.F., Varma, S., Kohn, K.W., Morris, J., Doroshow, J., 
and Pommier, Y. (2012). CellMiner: A Web-Based Suite of Genomic and Pharmacologic 
Tools to Explore Transcript and Drug Patterns in the NCI-60 Cell Line Set. Cancer Res 
72, 3499-3511. 
Reinhold, W.C., Sunshine, M., Varma, S., Doroshow, J.H., and Pommier, Y. (2015). Using 
CellMiner 1.6 for Systems Pharmacology and Genomic Analysis of the NCI-60. Clinical 
cancer research : an official journal of the American Association for Cancer Research 21, 
3841-3852. 
Reinhold, W.C., Varma, S., Sunshine, M., Rajapakse, V., Luna, A., Kohn, K.W., Stevenson, 
H., Wang, Y., Heyn, H., Nogales, V., et al. (2017). The NCI-60 Methylome and Its 
Integration into CellMiner. Cancer Res 77, 601-612. 
Reiter, L., Claassen, M., Schrimpf, S.P., Jovanovic, M., Schmidt, A., Buhmann, J.M., 
Hengartner, M.O., and Aebersold, R. (2009). Protein identification false discovery rates 
for very large proteomics data sets generated by tandem mass spectrometry. Molecular 
& cellular proteomics : MCP 8, 2405-2417. 



Rosenberger, G., Koh, C.C., Guo, T., Röst, H.L., Kouvonen, P., Collins, B.C., Heusel, M., Liu, 
Y., Caron, E., and Vichalkovski, A. (2014). A repository of assays to quantify 10,000 
human proteins by SWATH-MS. Scientific data 1, 140031. 
Rost, H.L., Rosenberger, G., Navarro, P., Gillet, L., Miladinovic, S.M., Schubert, O.T., 
Wolskit, W., Collins, B.C., Malmstrom, J., Malmstrom, L., et al. (2014). OpenSWATH 
enables automated, targeted analysis of data-independent acquisition MS data. Nature 
Biotechnology 32, 219-223. 
Ruepp, A., Waegele, B., Lechner, M., Brauner, B., Dunger-Kaltenbach, I., Fobo, G., 
Frishman, G., Montrone, C., and Mewes, H.W. (2010). CORUM: the comprehensive 
resource of mammalian protein complexes--2009. Nucleic acids research 38, D497-
501. 
Schubert, O.T., Gillet, L.C., Collins, B.C., Navarro, P., Rosenberger, G., Wolski, W.E., Lam, 
H., Amodei, D., Mallick, P., MacLean, B., et al. (2015). Building high-quality assay libraries 
for targeted analysis of SWATH MS data. Nat Protoc 10, 426-441. 
Shteynberg, D., Deutsch, E.W., Lam, H., Eng, J.K., Sun, Z., Tasman, N., Mendoza, L., 
Moritz, R.L., Aebersold, R., and Nesvizhskii, A.I. (2011). iProphet: multi-level integrative 
analysis of shotgun proteomic data improves peptide and protein identification rates 
and error estimates. Molecular & cellular proteomics : MCP 10, M111 007690. 
Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., 
Simonovic, M., Roth, A., Santos, A., Tsafou, K.P., et al. (2015). STRING v10: protein-
protein interaction networks, integrated over the tree of life. Nucleic acids research 43, 
D447-452. 
Tabb, D.L., Fernando, C.G., and Chambers, M.C. (2007). MyriMatch: highly accurate 
tandem mass spectral peptide identification by multivariate hypergeometric analysis. J 
Proteome Res 6, 654-661. 
Vinayagam, A., Hu, Y., Kulkarni, M., Roesel, C., Sopko, R., Mohr, S.E., and Perrimon, N. 
(2013). Protein complex-based analysis framework for high-throughput data sets. 
Science signaling 6, rs5. 

 


