Supplementary Material for

Alternative Splicing of UCP1 by Non-Cell-Autonomous Action of PEMT

Jordan M. Johnson, Anthony R.P. Verkerke, J. Alan Maschek, Patrick J. Ferrara, Chien-Te Lin, Kimberly A. Kew, P. Darrell Neufer, Irfan J. Lodhi, James E. Cox, Katsuhiko Funai*

*Corresponding author Email: <u>kfunai@health.utah.edu</u>

This file includes:

Fig S1. Mitochondrial phenotyping of TAZKD and PEMTKO mice fed standard-chow Fig S2. Phenotyping of PEMT-BKO mice fed HFD Fig S3. Prolonged cold exposure does not rescue UCP1 protein levels in PEMTKO mice Table S1. Antibodies used in western blotting Table S2. Primers used in PCR reactions

Figure S1

Figure S1. Mitochondrial phenotyping of TAZKD and PEMTKO mice fed a standard-chow diet. (A) UCP1-dependent respiration in BAT mitochondria from TAZKD mice, n=5-6. (B) ATP production in BAT mitochondria from TAZKD mice, n=5-6. (C) O₂ utilization in BAT mitochondria from TAZKD mice, n=5-6. (D) ATP/O ratio in BAT mitochondria from TAZKD mice, n=5-6. (E) UCP1-dependent respiration in BAT mitochondria from PEMTKO mice, n=4-5. (F) ATP production in BAT mitochondria from PEMTKO mice, n=4-5. (G) O₂ utilization in BAT mitochondria from PEMTKO mice, n=4-5. (G) O₂ utilization in BAT mitochondria from PEMTKO mice, n=4-5. (H) ATP/O ratio in BAT mitochondria from PEMTKO mice, n=4-5. (G) O₂ utilization in BAT mitochondria from PEMTKO mice, n=4-5. (H) ATP/O ratio in BAT mitochondria from PEMTKO mice, n=4-5. (H) ATP/O ratio in BAT mitochondria from PEMTKO mice, n=4-5. (H) ATP/O ratio in BAT mitochondria from PEMTKO mice, n=4-5. (H) ATP/O ratio in BAT mitochondria from PEMTKO mice, n=4-5. (H) ATP/O ratio in BAT mitochondria from PEMTKO mice, n=4-5. (H) ATP/O ratio in BAT mitochondria from PEMTKO mice, n=4-5. (H) ATP/O ratio in BAT mitochondria from PEMTKO mice, n=4-5. (H) ATP/O ratio in BAT mitochondria from PEMTKO mice, n=4-5. (H) ATP/O ratio in BAT mitochondria from PEMTKO mice, n=4-5. (H) ATP/O ratio in BAT mitochondria from PEMTKO mice, mice, n=4-5. (H) ATP/O ratio in BAT mitochondria from PEMTKO mice, mice, n=4-5. (H) ATP/O ratio in BAT mitochondria from PEMTKO mice, mice, n=4-5. (H) ATP/O ratio in BAT mitochondria from PEMTKO mice, mice

Figure S2

Figure S2. Phenotyping of PEMT-BKO mice fed HFD. (A) Body mass through 10 weeks of HFD in PEMT-BKO mice, n=11-14. (B-C) Fat mass and lean mass in PEMT-BKO mice following 10 weeks of HFD, n=11-13. (D) Whole-body VO₂ measured by CLAMS, n=4. (E) RER, n=4. (F) Activity counts measured by beam breaks in the CLAMS system, n=4. (G) Food intake, n=4. (H) Cold tolerance test, n=8-11. (I) Histology images of BAT sections stained with hematoxylin and eosin. (J) Protein levels of UCP1 and CS. (K) Protein levels of ETS complexes. (L) UCP1-dependent respiration in BAT mitochondria from PEMT-BKO mice, n=7-11. (M) ATP production in BAT mitochondria from PEMT-BKO mice, n=7-11. (P) Glucose tolerance test in PEMT-BKO mice, n=11-14. (Q) Lipidomic analysis of CL, n=7-11. (R) Lipidomic analysis of mitochondrial PC, n=7-11. Data are expressed as mean \pm SEM, * p<0.05.

Figure S3

Figure S3. Prolonged cold exposure does not rescue UCP1 protein levels in PEMTKO mice. (A) UCP1 protein abundance in BAT from mice housed at 6.5° C for 7 days following cold acclimation. (B) UCP1 protein levels in iWAT following 7 days of cold exposure. 2 µg of BAT protein was used as a positive control for UCP1 expression. (C) Protein levels of membrane-bound ST2, soluble ST2 (sST2) and IL-33 in whole blood from WT and PEMTKO mice housed at room temperature. (D) IL-33 or ST2 was undetectable in BAT depots from both WT and PEMTKO mice, despite long exposure (25 mins) and concentrated protein load (60 µg).
 Table S1: Antibodies used in western blotting.

Antibody	Source	Catalogue Number
Rabbit Anti-Mouse UCP1	Alpha Diagnostic	Cat# UCP11-A
Rabbit Anti-UCP1	ABCAM	Cat# ab23841
Rabbit Anti-UCP1	ABCAM	Cat# ab10983
Rabbit Anti-Mouse UCP1	Cell Signaling	Cat# 14670S
Total OXPHOS Rodent WB	ABCAM	Cat# ab110413
Antibody Cocktail		
Anti-Citrate Synthetase	ABCAM	Cat# ab96600
Anti-Actin	Sigma	Cat# A2228
Anti-PERK	Cell Signaling	Cat# 3192
Anti-IREα	Cell Signaling	Cat# 3294
Anti-Chop	Santa Cruz	Cat# SC-793
Anti-Tubulin	Santa Cruz	Cat# SC-9104
Anti-ST2	R&D Systems	Cat# AF1004
Anti-IL-33	R&D Systems	Cat# AF3626

 Table S2: Primers used in PCR reactions.

Primers			
Gene	Forward	Reverse	
UCP1	TCTCTGCCAGGACAGTACCC	AGAAGCCACAAACCCTTTGA	
PEMT	GGTTACATGGACCCCACAGA	AGTTCTCTGCTCCCATCTCG	
TAZ	CCCTCCATGTGAAGTGGCCATTCC	TGGTGGTTGGAGACGGTGATAAGG	
CRLS1	TGACCTATGCAGATCTTATTCCA	TGGCAGAGTTCGGTATCTGA	
ALCAT1	TGGACCGCCTAAGAGAAGGGAA	CGGTAACATGCAAGTTCAATGA	
PRDM16	ATGGGAGATGCTGACGGATA	ACGCAGAACTTCTCGCTACC	
PGC1α	TGTAGCGACCAATCGGAAAT	TGAGGACCGCTAGCAAGTTT	
PGC1β	GCTCTCGTCCTTCTTCCTCA	GAGGTCAAGCTCTGGCAAGT	
ΡΡΑΠα	AGTTCGGGAACAAGACGTTG	CAGTGGGGAGAGAGGACAGA	
ΡΡΑΠδ	AGATGAAGACAAACCCACGG	CTGTGGCTGTTCCATGACTG	
PPARγ	TGCACTGCCTATCAGCACTT	GAATGCGAGTGGTCTTCCAT	
C/EBPa	CCAAGAAGTCGGTGGACAAG	TTGTTTGGCTTTATCTCGGC	
C/EBPβ	GTTTCGGGACTTGATGCAAT	GGCCCGGCTAGACAGTTAC	
UCP1 Splice Variant A	TGTAAACAACAAAATACTGGCAGATG	GACCCGAGTCGCAGAAAAG	
UCP1 Splice Variant B	TGTAAACAACAAAATACTGGCAGCTC	GACCCGAGTCGCAGAAAAG	
UCP1 Splice Variant C	TGTAAACAACAAAATACTGGCAGGAC	GACCCGAGTCGCAGAAAAG	
UCP1 Splice Variant D	TGTAAACAACAAAATACTGGCAGGGT	GACCCGAGTCGCAGAAAAG	
UCP1 Exon 5 genomic	CGTCCCCTGCCATTTACTGT	CTTTGAAAAAGGCCGTCGGT	
DNA			
UCP1 Exon 5 cDNA	TGTAAACAACAAAATACTGGCAG	GACCCGAGTCGCAGAAAAG	
Cre	GCAAGAACCTGATGGACAGTTCAG	GCAATCCCCAGAAATGCCAGATTAC	
FABP	TGGACAGGACTGGACCTCTCGCTTTCC	TAGAGCTTTGCCACATCACAGGTCAT	
LoxP PEMT	CTGGGAGTGAAAACACCATCC	GAGGTGGAGACTGGGCTGATA	