Supplemental Information

Development of an AAV-Based MicroRNA Gene

Therapy to Treat Machado-Joseph Disease

Raygene Martier, Marina Sogorb-Gonzalez, Janice Stricker-Shaver, Jeannette Hübener-Schmid, Sonay Keskin, Jiri Klima, Lodewijk J. Toonen, Stefan Juhas, Jana Juhasova, Zdenka Ellederova, Jan Motlik, Eva Haas, Sander van Deventer, Pavlina Konstantinova, Huu Phuc Nguyen, and Melvin M. Evers

Supplemental material

Groups	Treatment	Route of injection	Number of	Amount of
			animals (n)	injection (µl)
1	AAV5-mi <i>ATXN3</i> _7	ICV	3	10
2		Cisterna magna	3	10
3		Bilateral DCN	3	4 = 2+2
4	AAV5-mi <i>ATXN3</i> _9	ICV	3	10
5		Cisterna magna	3	10
6		Bilateral DCN	3	4 = 2+2
7	AAV5-mi <i>ATXN3</i> _11	ICV	3	10
8		Cisterna magna	3	10
9		Bilateral DCN	3	4 = 2+2
10	AAV5-GFP	Bilateral DCN	3	4 = 2+2
11	No treatment	Not applicable	3	0

Table S1. Treatment group design of the *in vivo* investigations. AAV5-mi*ATXN3*_7, -9 and -11 were tested *in vivo* and delivered to the SCA3 knock-in mice by 3 different routes of administration.

Treatment	Transcript (Blast)	% coverage (Blast)	Fold Change (treatment vs PBS)	p-value (treatment vs PBS)
miATXN3_7	ATXN3	100%	-1.2	9.4E-03
miATXN3_7	GNPTAB	63%	1.1	4.2E-03
miATXN3_7	SOX5	63%	-1.1	2.6E-02
miATXN3_7	GNPTAB	63%	1.1	4.2E-03
miATXN3_7	CTSC	63%	1.3	2.2E-16
miATXN3_9	ATXN3	100%	-1.5	3.4E-16
miATXN3_9	TNFRSF6B	59%	1.3	4.4E-02
miATXN3_9	FGD6	59%	-1.2	9.1E-03
miATXN3_11	ATXN3	100%	-1.3	1.0E-06
miATXN3_11	ICA1	68%	1.3	4.8E-03
miATXN3_11	CACNA1D	63%	1.5	2.9E-02

Table S2. Prediction of off-target genes based on BLAST search and RNA sequencing. BLAST search was performed with the guide sequences of mi*ATXN3*_7, mi*ATXN3*_9 and mi*ATXN3*_11. The blast results were then compared to RNA sequencing expression values obtained from human-derived frontal brain-like neurons treated with the AAV5-mi*ATXN3* candidates or the formulation buffer. P-values >0.05 were excluded

Gene name	TPOTS value	8mer	7mer- M8	7mer- 1A	6mer	Fold Change (mi7 vs PBS)	p-value (mi7 vs PBS)
WDR72	0.816	1	1	9	1	-1.4	9.5E-03
SCAI	0.615	1	0	7	0	-1.3	3.4E-05
GDA	0.547	3	0	1	2	-2.3	6.9E-03
FOXP2	0.526	2	2	1	1	-1.3	2.9E-02
DNAL1	0.525	0	1	7	0	-1.3	1.5E-02
AAK1	0.522	2	0	3	7	1.1	3.3E-02
KCNMA1	0.488	1	0	5	3	1.3	1.8E-03
ONECUT2	0.487	1	0	5	2	-1.2	6.9E-04
FBXL20	0.428	1	1	3	3	-1.2	3.6E-03
IKZF2	0.426	1	1	3	1	-1.4	3.2E-02
BMPR1B	0.426	1	1	3	1	-1.3	1.6E-04
CSRNP3	0.403	0	2	4	3	-1.3	1.4E-02
LIFR	0.367	1	2	1	2	-1.4	1.5E-03
ZNF652	0.36	1	1	2	0	-1.1	3.1E-03
LONRF2	0.36	1	0	3	5	1.2	8.9E-05
CPNE3	0.36	1	1	2	0	-1.2	7.7E-03
PHF6	0.357	1	0	3	2	-1.2	1.3E-02
C21orf91	0.357	1	0	3	2	-1.2	1.2E-02
TMEM47	0.356	1	0	3	1	-1.3	1.3E-02
ARL3	0.355	1	0	3	0	-1.1	2.0E-03
ATXN3	0.295	1	1	1	0	-1.2	9.4E-03

Table S3. Prediction of off-target genes in human by siSPOTR and RNA sequencing after AAV5-miATXN3_7 treatment. A search was performed on siSPOTR with the seed sequence of miATXN3_7 to check for binding within 3'UTR of human transcripts. The top 20 genes with highest tPOTS were

compared to RNA sequencing expression values in human-derived frontal brain-like neurons. RNA sequencing was performed on RNA isolated from human-derived frontal brain-like neurons treated with AAV5-mi $ATXN3_7$ or the formulation buffer for 7 days. The genes with p-value < 0.05 were excluded.

Gene name	TPOTS	8mer	7mer-	7mer-	6mer	Fold Change	p-value
	value		M8	1A		(mi9 vs PBS)	(mi9 vs PBS)
РНС3	0.651	2	1	4	1	-1.3	1.2E-03
HIF3A	0.617	3	1	1	2	-1.4	3.1E-02
ONECUT2	0.606	0	3	6	6	-1.2	3.4E-13
UBE2R2	0.515	2	0	3	0	-1.1	1.5E-04
H6PD	0.493	1	1	4	3	-1.2	6.0E-16
RAB3B	0.43	1	1	3	5	-1.3	6.3E-10
PTGS1	0.427	1	1	3	2	-3.4	1.3E-121
KSR2	0.412	0	4	2	2	1.4	2.1E-04
TTC14	0.391	2	1	0	1	-1.1	1.9E-05
BBX	0.391	2	1	0	1	-1.2	3.2E-04
ZNF286B	0.385	2	0	1	0	-1.2	3.4E-03
SYT2	0.385	2	0	1	0	-1.2	2.2E-05
SYP	0.385	2	0	1	0	1.3	0.0E+00
THY1	0.365	1	2	1	0	1.3	7.2E-03
TFDP2	0.365	1	2	1	0	-1.4	1.3E-17
PRLR	0.357	1	0	3	2	-1.2	8.0E-03
FMN1	0.328	0	0	5	3	2.1	2.6E-05
PRX	0.326	0	0	5	1	-1.2	1.1E-02
NCALD	0.326	0	0	5	1	-1.1	1.9E-05
ATXN3	0.001	0	0	0	1	-1.5	3.4E-16

Table S4. Prediction of off-target genes in human by siSPOTR and RNA sequencing for AAV5-mi*ATXN3*_9 treatment. Performed as described in table S3 for AAV5-mi*ATXN3*_9.

Gene name	TPOTS	8mer	7mer-	7mer-	6mer	Fold Change	p-value
	value		M8	1 A		(mi11 vs PBS)	(mi11 vs PBS)
SPTY2D1	0.615	3	1	1	0	-1.1	9.3E-05
ENAH	0.586	2	1	3	1	1.2	3.0E-08
TDRD6	0.55	3	1	0	0	-1.6	2.8E-02
PRKAB2	0.546	3	0	1	1	1.1	9.2E-05
TAB3	0.525	2	2	1	0	-1.2	5.4E-04
C1orf21	0.518	2	0	3	3	-1.3	4.7E-57
SMAD2	0.517	2	0	3	2	-1.1	2.4E-03
BRWD1	0.515	2	0	3	0	-1.1	4.0E-17
EXD2	0.498	1	2	3	3	-1.2	4.1E-05
NFYA	0.497	1	2	3	2	-1.3	1.0E-35
AAK1	0.484	0	5	2	4	1.2	8.7E-06
RRAGD	0.456	2	1	1	1	-1.2	6.7E-03
RBM43	0.455	2	1	1	0	-1.4	2.3E-07
ATRNL1	0.455	2	1	1	0	-1.1	8.8E-04
ZFHX3	0.451	2	0	2	1	1.1	1.5E-02
LYSMD3	0.451	2	0	2	1	-1.2	3.6E-02

LOX	0.451	2	0	2	1	1.8	1.6E-12
LPP	0.446	1	4	0	6	1.2	1.1E-02
PAPOLG	0.432	1	2	2	2	-1.1	2.9E-02
C21orf91	0.426	1	1	3	1	-1.2	4.9E-02
ATXN3	0	0	0	0	0	-1.3	9.96E-07

Table S5. Prediction of off-target genes in human by siSPOTR and RNA sequencing for AAV5-mi*ATXN3*_11 treatment. Performed as described in table S3 for AAV5-mi*ATXN3*_11.

Gene name	TPOTS	8mer	7mer-	7mer-	6mer	Fold Change	p-value
	value		M8	1A		(mi9 vs	(mi9 vs
						untreated)	untreated)
Ncl	0.657	2	2	3	2	1.3	8.3E-03
Aak1	0.51	1	4	1	5	-1.6	5.0E-05
Onecut2	0.497	1	2	3	2	-1.2	1.3E-03
Nhsl2	0.461	0	1	6	1	-1.5	1.5E-04
Cacna1e	0.458	2	1	1	3	-1.0	5.0E-05
Nav1	0.435	1	2	2	5	-1.4	5.0E-05
Ttc14	0.422	1	0	4	2	-1.6	5.0E-05
Fzd3	0.408	0	3	3	3	-1.3	5.0E-05
Srgap3	0.396	0	1	5	1	-0.8	3.0E-04
Pde5a	0.391	2	1	0	1	-1.0	2.0E-03
Lonrf2	0.385	2	0	1	0	-1.3	5.0E-05
Zfp704	0.37	1	2	1	5	-1.1	5.0E-05
Mecp2	0.368	1	2	1	3	-1.5	5.0E-05
Cldn12	0.362	1	1	2	2	-1.3	5.0E-05
Dnajc18	0.361	1	1	2	1	-0.6	1.2E-02
0610030E20Rik	0.361	1	1	2	1	-1.2	2.0E-04
Dhx33	0.36	1	1	2	0	-0.7	5.8E-03
Pdzd2	0.356	1	0	3	1	-1.2	5.0E-05
D430041D05Rik	0.355	1	0	3	0	-1.4	5.0E-05
Atxn3	0.16	1	0	0	0	-1.7	5.0E-05

Table S6. Prediction of off-target genes in mice by siSPOTR and RNA sequencing for AAV5-miATXN3_9 treatment. Performed as described in table S3. siSPOTR search was performed against mouse transcripts. RNA sequencing was performed on RNA isolated from brain stem of SCA3 knockin mice treated with AAV5-miATXN3_9 or control (untreated) by injection in the cisterna magna.

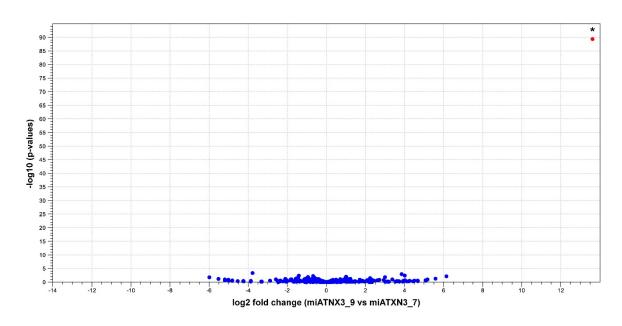


Figure S1: Volcano plot of miRNA expression levels between miATXN3_09 vs miATXN3_07 transduced neurons. IPSC-derived neurons were treated with AAV5-miATXN3 candidates, after which small RNA sequencing was performed. Differential expression analysis on miRNAs revealed miATXN3_9 as the only significantly altered miRNA, whereas endogenous miRNAs were at comparable levels. * = FDR <0.05. n = 2 per treatment condition, total of 787 individual miRNAs per sample.