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Appendix A. Proofs

In this section, we denote γ = (β′,ρc′)′ and assume the over-dispersion parameter φ is known

without loss of generality. Before presenting the proofs of Theorems 2.1 and 2.2, we give the

following lemma, which is the key to the derivation of asymptotic behavior of our proposal.

Lemma (1): Denote the true values of the parameters (β′,ρ′,θ′)′ as (β′0,ρ
′
0,θ

′
0)
′, and

ρ̂ijk(β0,θ0) as eij(β0)eik(β0)Rik/ωik(θ0) with ρ0jk = E{ρ̂ijk(β0,θ0)} for 1 6 j < k 6 T , we

have E{ρ̂ijk(β0,θ0)−ρ0jkφ(1−p/n)} = O(n−1) for longitudinal data with dropout missingness

under MAR, provided that the mean structure and the dropout model are correctly specified.

Proof. According to Robins et al. (1995), Rik/ωik = 1 +
∑k

t=2

(
Rit − λitRi(t−1)

)
ω−1it , 2 6

k 6 T . Also, denote Mi(t) =
∑T

j=2

(
Rij − λijRi(j−1)

)
ω−1ij , thus under MAR, Mi(t) is realized

to be a mean zero martingale process with respect to the filtration process which is defined

by Fi(t) = σ
{
Ri1, . . . , Ri(t−1),Yi,Xi,Hi

}
. It indicates that eij(β0)eik(β0)(Rik/ωik − 1) is

also a mean zero martingale with respect to Fi(t). Hence, for i = 1, . . . , n,

E
{
ρ̂ijk(β0,θ0)− ρ0jkφ(1− p

n
)
}

=E
{
eij(β0)eik(β0)

}
− ρ0jkφ(1− p

n
) + E

{
Mi(k)eij(β0)eik(β0)

}
=O(n−1).

Under Lemma (1), we can easily get E
{
g
(
Xi,Yi,β0,ρ0;θ0

)}
= O(n−1) for WGEE model

and E
{
GF (XFi,Yi, β̃0,ρ

c
0;θ0)

}
= O(n−1) in our proposed empirical likelihood ratio criteria.
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A.1 Notations and Conditions

For simplicity, we ignore the subscript of i for the following proof, and the estimating

equations below are subject-level if no further clarification. Without loss of generality, we set

XF = (X,Z) with corresponding parameters β̃ = (β′,0′)′. Now, we denote the estimating

equations gF in GF = (g′F , s
′(θ))′ and g based on WGEE candidate model by

gF (XF ,Y, β̃,ρc,θ) =


g1

g2

g3

 =

 gF1

g3

 , g(X,Y,γ,ω) =

 g1

g∗3

 ,

where g1 = X′
{
∂µ(Xβ)/∂(Xβ)′

}′
V−1W

{
Y−µ(Xβ)

}
, g2 = Z′

{
∂µ(Xβ)/∂(Xβ)′

}′
V−1W

{
Y−

µ(Xβ)
}

, g3 = Ui(β̃)− h(ρc)φ with notation ρc defined as (ρc1, . . . , ρ
c
T−1)

′. The notation g∗3

is the estimating equations for correlation coefficients in WGEE candidate model. Note that

both g3 and g∗3 involve the sample size n. Next, some conditions are provided following to

facilitate the proofs of our main results. It is worth mentioning that condition (2) to (4) are

set to simplify the proof for the theorems; however, relaxation of these assumptions could

also be possible but with the sacrifice of heavier algebra. Here, we denote η = (β′, (ρc)′,θ′)′

with η̂EL = (β̂′EL, (ρ̂
c)′EL, θ̂

′
EL)′ as the empirical likelihood estimators.

The Conditions for Theorem Proofs

(1) E(GFG′F ) is a positive definite matrix. (∂2GF )/(∂η′∂η) is continuous in a neighborhood

of the true value η0. ‖(∂GF )/(∂η′)‖, ‖(∂2GF )/(∂η′∂η)‖, and ‖GF‖3 are bounded by some

integrable function around the true value η0, and the rank of E
{

(∂GF )/(∂η′)
}

is p̃.

(2) Cov
{
Ui(β̃) − h(ρc)φ

}
= Diag

[{
σ2 + o(1)

}
φ2(T − j − p/n)

]
for some finite σ2 > 0 and

j = 1, . . . , T − 1.

(3) E(gF1g
′
3) = 0, E(g3s

′) = 0, E(∂g3/∂β
′) = 0.

(4) The covariates Z is redundant and independent of X, Y, and H.

For condition (2), it asks for independent estimating equations g3 with equal variances for
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correlation coefficients, which could be easily released by adding a weight matrix into the esti-

mating equation to adjust for its poten- tial heterogeneity. However, the variance-covariance

matrix for correlation coefficients is usually unclear in practice. Thus, for simplicity, we

assume homogeneity holds for estimating equation of those correlation coefficients. Condition

(3) requires more moment restrictions between estimating equations of marginal mean model

(gF1), correlation efficients (g3), and drop-out model for missingness (s). Condition (4)

focuses on those redundant covariates which are independent of the outcomes and the other

associated covariates. It says the redundant covariates should not carry information about

the system. Again, conditions (2)-(4) are exploratory and somewhat strong assumptions to

guarantee a stronger result for Theorem 2. They might not hold in practice, but provide

some insights on the context under which the plug-in estimators and empirical-likelihood-

based estimators are exactly equivalent in asymptotic manner. Here, we regard the plug-in

estimators as a reasonable choice for our proposal due to avoid of computational issues and

good approximation, which has been justified by extensive numerical analysis via simulation.

A.2 Proof of Theorem 2.1

Proof. Denote

Q1n(η,λ) =
1

n

n∑
i=1

1

1 + λ′GF (XFi,Yi, β̃,ρc,θ)
GF (XFi,Yi, β̃,ρ

c,θ)

Q2n(η,λ) =
1

n

n∑
i=1

1

1 + λ′GF (XFi,Yi, β̃,ρc,θ)

{∂GF (XFi,Yi, β̃,ρ
c,θ)

∂η′

}′
λ.

Along the lines with the proof of Lemma 1 in Qin and Lawless (1994) under the condition

(1), we can get η and λ such that λ = O(n−1/3) and ‖η − η0‖ 6 n−1/3 with probability

1, which satisfies Q1n(η,λ) = 0 and Q2n(η,λ) = 0. By the first-order Taylor expansion of

Q1n(η,λ) = 0 and Q2n(η,λ) = 0 at (η′0,0
′)′, we can further solve (η̂′EL, λ̂

′)′ as λ̂

η̂EL − η0

 = Λ−1n

−Q1n(η0,0) + op(εn)

op(εn)

 , (A.1)
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where εn is of order Op(n
−1/2) and

Λn =

 ∂Q1n

∂λ′
∂Q1n

∂η′

∂Q2n

∂λ′ 0


(η0,0)

−→ Λ =

 Λ11 Λ12

Λ21 Λ22

 =

 −E(GFG′F ) E(∂GF

∂η′ )

E(∂GF

∂η′ )′ 0

 .

Further expansion according to the equation (A.1), we can get

η̂EL − η0 =−
[
E(
∂GF

∂η′
)′
{
E(GFG′F )

}−1
E(
∂GF

∂η′
)
]−1

× E(
∂GF

∂η′
)′
{
E(GFG′F )

}−1
Q1n(η0,0) + op(n

− 1
2 ).

Notice that Q1n(η0,0) =
(
1/n

∑n
i=1 g′F (Xi,Yi, β̃,ρ

c,θ),S′nθ
)′

with Snθ defined in (1) from

the main body of the paper. After some algebra, we rewrite the formula above as

η̂EL − η0 =

 γ̂EL − γ0

θ̂EL − θ0

 =

 −V∗A∗Q
∗
n

ΩSnθ

+ op(n
− 1

2 ) (A.2)

with notations defined in Theorem 2.1. It completes the first part in Theorem 2.1. For the

second part, with Lemma (1), asymptotic normality can be directly derived by (A.2) with the

condition (1). Furthermore, the calculations show that Cov(Q∗n,Snθ) converges to zero, which

means γ̂EL and θ̂EL are asymptotically independent. Asymptotic χ2 of RF (β̂EL, ρ̂
c
EL, θ̂EL)

in the third part can be showed by the similar arguments in Theorem 2 in Qin and Lawless

(1994). The basic idea is sketched as follows: First we apply the second-order Taylor expan-

sion to −2 logRF (β̂EL, ρ̂
c
EL, θ̂EL) and then, after a little algebra, it reduces to a quadratic

form with negligible term. Finally, we show the matrix in the quadratic term is symmetric

and idempotent with the rank of L̃− p̃, which finally justifies that −2 logRF (β̂EL, ρ̂
c
EL, θ̂EL)

follows up χ2 with the degree of freedom L̃− p̃.

A.3 Proof of Theorem 2.2

In order to prove Theorem 2.2, we need the lemma below:

Lemma (2): Under the conditions in Section A.1, we have: V−1∗ = V−1∗∗ and A∗Q
∗
n =
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A∗∗Q
∗∗
n as n→∞, where

V−1∗∗ =E
( ∂g

∂γ ′
)′{

Egg′ − E
( ∂g

∂θ′
)(
Ess′

)−1
E
( ∂g

∂θ′
)′}−1

E
( ∂g

∂γ ′
)
,

A∗∗ =E
( ∂g

∂γ ′
)′{

Egg′ − E
( ∂g

∂θ′
)(
Ess′

)−1
E
( ∂g

∂θ′
)′}−1

,

where Q∗∗n = 1/n
∑n

i=1 g(Xi,Yi,γ0) + E
(
∂g/∂θ′

)
E(ss′)−1Snθ with V−1∗ , A∗, Q∗n, and Snθ

defined in the main body of the paper. The notation ∗ and ∗∗ correspond to the estimators

from the empirical likelihood and WGEE candidate model, respectively.

Proof. Here, we only present the proof of V−1∗ = V−1∗∗ in Lemma (2), and A∗ = A∗∗ can be

obtained based on upon similar argument. In addition, without loss of generality, we assume

all covariates (excluding intercept) are centered by their means.

First, by generalized information equality, we have E
(
∂gF/∂θ

′) = −E(gF s′) (Pierce,

1982). Thus, by E(gF1g
′
3) = 0, E(g3s

′) = 0, E(∂g3/∂β
′) = 0 in the condition (3) and

some algebra, we have

V−1∗ =

 V∗11 0

0 V∗22


with V∗11 = E

(
∂gF1/∂β

′)′{EgF1g
′
F1−E

(
∂gF1/∂θ

′)(Ess′
)−1

E
(
∂gF1/∂θ

′)′}−1E(∂gF1/∂β
′)

and V∗22 = E
{
∂g3/∂(ρc)′

}′(
Eg3g

′
3

)−1
E
{
∂g3/∂(ρc)′

}
. Also, by the result E

(
∂g2/∂β

′) =

E(g1g
′
2) = E(g2s

′) = 0 induced by the condition (4), V∗11 can be further simplified as

V∗11 = E
(∂g1

∂β′
)′{

Eg1g
′
1 − E

(∂g1

∂θ′
)(
Ess′

)−1
E
(∂g1

∂θ′
)′}−1

E
(∂g1

∂β′
)
.

Similarly, applying the condition (3), we can derive

V−1∗∗ =

 V∗∗11 0

0 V∗∗22

 ,

where V∗∗11 = V∗11 and V∗∗22 = E
{
∂g∗3/∂(ρc)′

}′(
Eg∗3g

∗T
3

)−1
E
{
∂g∗3/∂(ρc)′

}
.

Now it remains to show V∗22 = V∗∗22 as n→∞. In this following proof, we will consider

two specific cases with c denoted as exchangeable (EXC) and AR1 correlation structures

since these are commonly used in practice and of most interest for researchers. Then g∗3 =
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∑T−1
j=1

{
Uij(β)/φ(T − j − p/n) − ρEXC

}
can be applied to estimate ρEXC . By calculation

and the condition (2), we have

lim
n→∞

E
( ∂g3

∂ρEXC

)′(
Eg3g

′
3

)−1
E
( ∂g3

∂ρEXC

)
= lim

n→∞
E
( ∂g∗3
∂ρEXC

)′{
E(g∗3)2

}−1
E
( ∂g∗3
∂ρEXC

)
,

which justifies that V−1∗ = V−1∗∗ under EXC case as n→∞.

Now consider the second scenario when the true correlation is AR1. Theoretically, g∗3 =∑T−1
j=1 j(ρ

AR1)j−1
{
Ûij(β)/φ(T − j − p/n)− (ρAR1)j

}
can be applied to estimate ρAR1. Then,

after some algebra and the condition (2), we have

lim
n→∞

E
( ∂g3

∂ρAR1

)′(
Eg3g3

′)−1E( ∂g3

∂ρAR1

)
= lim

n→∞
E
( ∂g∗3
∂ρAR1

){
E(g∗3)2

}−1
E
( ∂g∗3
∂ρAR1

)
.

Hence, V−1∗ = V−1∗∗ as n→∞.

Along with the result from Lemma (2), it is ready to prove Theorem 2.2. Please see the

details of the proof below:

Proof. Based upon Theorem 2.1, we have derived the empirical likelihood estimators as

γ̂EL − γ0 = −V∗A∗Q
∗
n + op(n

−1/2),

On the other hand, by the Taylor expansion, the estimators from WGEE candidate model

(Robins et al., 1995) can be written as

γ̂ − γ0 = −
{
E
( ∂g

∂γ ′
)′}−1

Q∗∗n + op(n
− 1

2 ).

Based upon some algebra, we have
{
E
(
∂g/∂γ ′

)′}−1
Q∗∗n = V∗∗A∗∗Q

∗∗
n . Thus, together

with Lemma (2) of V∗ = V∗∗ and A∗Q
∗
n = A∗∗Q

∗∗
n , the proof is completed.

Appendix B. Additional Simulation Studies

B.1 The case with EXC and Gaussian outcomes

In this case, we consider Gaussian outcomes. The true marginal mean model is

µij = β0 + xi1β1 + xij2β2, for i = 1, . . . , n; j = 1, . . . , T,
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where all the setups for marginal mean model including the parameters β, covariates and

the true correlation structure are the same as the binary scenario in the main material. The

dropout model is also similar as above but considers different parameter set-ups with θ =

(0.4, 0.5,−1)′ for m = 0.3 and θ = (1.15, 0.5,−1)′ for m = 0.2. The results are summarized

in table 1

[Table 1 about here.]

B.2 The case with AR1 with Binary outcomes

The setups arethe same to Table 1 in the main manuscript except that the true correlation

structure is AR1. The results are summarized in table 2

[Table 2 about here.]

B.3 The case with AR1 with Gaussian outcomes

The setups are the same to subsection B.1 in the Supporting Information except that the

true correlation structure is AR1. The results are summarized in table 3

[Table 3 about here.]

B.4 The case under missing not at random

The marginal model is for binary outcomes with the true marginal mean structure as

log
( µij

1− µij

)
= β0 + xi1β1 + xij2β2, for i = 1, ..., n, j = 1, ..., T,

where xi1 is the subject (cluster) level covariate generated from U [0, 1] and xij2 = j − 1 is a

time-dependent covariate. The number of observations (i.e., cluster size) is T = 3. The true

parameter vector β = (−1, 1, 0.4)′. The true correlation structure is EXC with a correlation

coefficient ρ0 = 0.5. The sample size (n) is 100 and 200, respectively. The true dropout model

is given by

log
( λij

1− λij
)

= θ0 + yi(j−1)θ1 + hijθ2 + yijθ3, for i = 1, ..., n, j = 2, ..., T.
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where hij follows up U [−0.5, 0.5]. We adjust θ = (1.29, 0.5,−0.8,−0.5)′ for missing pro-

portion (m) around 0.3 and θ = (1.97, 0.5,−0.8,−0.5)′ for missing proportion (m) around

0.2. After data generation, we still use the original dropout model shown below in the main

manuscript to fit the data.

log
( λij

1− λij
)

= θ0 + yi(j−1)θ1 + hijθ2, for i = 1, ..., n, j = 2, ..., T.

The results are summarized in table 4

[Table 4 about here.]

B.5 The case with more variables

The true marginal mean is given below:

log
( µij

1− µij

)
= β0 + xij1β1 + xij2β2, for i = 1, ..., n, j = 1, ..., T,

where xij1 = j−1 and (xij2, xij3, ..., xij8)
′ follows up MVN(0,Σ) where Σ is a var-covariance

matrix of AR(1) with both variance and correlation coefficient as 0.5. Obviously, the variables

except xij1 and xij2 are redundant. The number of observations (i.e., cluster size) is T =

3, and the sample size is 200. The parameters in the true marginal mean model is β =

(β0, β1, β2)
′ = (−0.25, 0.15, 0.25)′. The true correlation structure for longitudinal data is

exchangeable (EXC) with a correlation coefficient ρ0 = 0.5. The true dropout model is given

by

log
( λij

1− λij
)

= θ0 + yi(j−1)θ1 + hijθ2, for i = 1, ..., n, j = 2, ..., T,

where hij follows up U [−0.5, 0.5]. θ = (1.7, 0.5,−0.8)′ is set for missing proportion around 0.2

and θ = (1.05, 0.5,−0.8)′ is set for missing proportion around 0.3. The results are summarized

in table 5

[Table 5 about here.]



9

B.6 Impact on Marginal Mean Selection

The model set-ups are exactly the same as Table 1 in the main manuscript. Here, Here, JEAIC

and JEBIC are used for sole marginal mean selection under the full estimating equations

(3) in the main manuscript, given a pre-specified correlation structure (e.g., AR1, EXC,

and IND) with EXC as the true correlation structure. The selected rates are summarized in

Table 6. We can find that both JEAIC and JEBIC under EXC correlation structure perform

much better and more stable compared to the ones under AR1 and IND. It implies that

correctly specifying the correlation structure is essential in terms of improving the marginal

mean structure selection rates. More interestingly, in Table 1 in the main manuscript, the

marginal selection rates for mean structures (column total) regardless of correlation structure

selection is as high as, sometimes even a little better than the oracle one under which the

true correlation structure is specified in Table 6 here. This findings strongly favor our joint

selection that, even if the marginal mean structure is our sole interest, implementing joint

selection would promise a high selection rate.

[Table 6 about here.]

Appendix C. Code and Data Resources

The IMPS data example analyzed in Section 4.2 and R codes implementing our method are

available with this article at the Biometrics website on Wiley Online Library.
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Table 1
Performance of JEAIC and JEBIC compared with MLIC and QICWr: Percentage of selecting six candidate models
with Gaussian outcomes over 500 runs; T = 3, ρ = 0.3. The model with {x1, x2} and an EXC correlation structure

is the true model. Notation n and m denote the sample size and the missing probability, respectively.

Setups Method C(ρ) x1 x3 x1,x2 x1, x3 x2, x3 x1, x2, x3 Total

n=100 JEAIC AR1 0 0 0.144 0 0.006 0.038 0.188
m=0.2 EXC 0 0 0.578 0 0.016 0.218 0.812

IND 0 0 0 0 0 0 0
Total 0 0 0.722 0 0.022 0.256 1

JEBIC AR1 0 0 0.172 0 0.008 0.008 0.188
EXC 0 0 0.71 0 0.024 0.078 0.812
IND 0 0 0 0 0 0 0
Total 0 0 0.882 0 0.032 0.086 1

MLIC AR1 0 0 0.334 0 0.084 0.018 0.436
EXC 0 0 0.452 0 0.088 0.022 0.562
IND 0 0 0.002 0 0 0 0
Total 0 0 0.788 0 0.172 0.040 1

QICWr AR1 0 0 0.314 0 0.044 0.024 0.382
EXC 0 0 0.500 0 0.082 0.034 0.616
IND 0 0 0.002 0 0 0 0
Total 0 0 0.816 0 0.126 0.058 1

n=100 JEAIC AR1 0 0 0.19 0.002 0.006 0.072 0.271
m=0.3 EXC 0.002 0 0.507 0 0.022 0.196 0.727

IND 0 0 0.002 0 0 0 0.002
Total 0.002 0 0.699 0.002 0.028 0.269 1

JEBIC AR1 0.006 0.002 0.234 0 0.008 0.02 0.271
EXC 0.004 0 0.623 0 0.028 0.068 0.723
IND 0.002 0 0.002 0.002 0 0 0.006
Total 0.012 0.002 0.86 0.002 0.036 0.088 1

MLIC AR1 0.014 0.008 0.354 0 0.096 0.01 0.482
EXC 0.006 0.002 0.39 0 0.106 0.008 0.512
IND 0 0 0.002 0 0.002 0.002 0.006
Total 0.02 0.01 0.746 0 0.204 0.02 1

QICWr AR1 0.006 0 0.318 0 0.054 0.03 0.408
EXC 0.004 0 0.476 0 0.088 0.022 0.59
IND 0 0 0.002 0 0 0 0.002
Total 0.01 0 0.796 0 0.142 0.052 1

n=200 JEAIC AR1 0 0 0.08 0 0 0.03 0.11
m=0.2 EXC 0 0 0.712 0 0 0.178 0.89

IND 0 0 0 0 0 0 0
Total 0 0 0.792 0 0 0.208 1

JEBIC AR1 0 0 0.106 0 0 0.006 0.112
EXC 0 0 0.85 0 0 0.038 0.888
IND 0 0 0 0 0 0 0
Total 0 0 0.956 0 0 0.044 1

MLIC AR1 0 0 0.432 0 0.008 0.018 0.458
EXC 0 0 0.53 0 0.004 0.004 0.538
IND 0 0 0 0 0 0.004 0.004
Total 0 0 0.962 0 0.012 0.026 1

QICWr AR1 0 0 0.36 0 0.004 0.024 0.388
EXC 0 0 0.584 0 0.006 0.018 0.608
IND 0 0 0.002 0 0 0.002 0.004
Total 0 0 0.946 0 0.01 0.044 1

n=200 JEAIC AR1 0 0 0.154 0 0 0.04 0.194
m=0.3 EXC 0 0 0.629 0 0 0.176 0.806

IND 0 0 0 0 0 0 0
Total 0 0 0.784 0 0 0.216 1

JEBIC AR1 0 0 0.188 0 0 0.014 0.202
EXC 0 0 0.745 0 0.002 0.05 0.798
IND 0 0 0 0 0 0 0
Total 0 0 0.934 0 0.002 0.064 1

MLIC AR1 0.002 0 0.422 0 0.006 0.02 0.45
EXC 0 0 0.516 0 0.02 0.01 0.546
IND 0 0 0.004 0 0 0 0.004
Total 0.002 0 0.942 0 0.026 0.03 1

QICWr AR1 0 0 0.384 0 0.004 0.03 0.418
EXC 0 0 0.538 0 0.006 0.034 0.578
IND 0 0 0 0 0.002 0.002 0.004
Total 0 0 0.922 0 0.012 0.066 1
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Table 2
Performance of JEAIC and JEBIC compared with MLIC and QICWr: Percentage of selecting six candidate models

with Binary outcomes across 500 Monte Carlo datasets; T = 3, ρ = 0.5. The model with {x1, x2} and an AR1
correlation structure is the true model. Notation n and m denote the sample size and the missing probability,

respectively.

Setups Method C(ρ) x1 x3 x1,x2 x1, x3 x2, x3 x1, x2, x3 Total

n=100 JEAIC AR1 0.068 0.038 0.487 0.004 0.174 0.07 0.842
m=0.3 EXC 0.006 0.008 0.078 0.004 0.05 0.012 0.158

IND 0 0 0 0 0 0 0
Total 0.074 0.046 0.565 0.008 0.224 0.082 1

JEBIC AR1 0.182 0.078 0.423 0.004 0.154 0.008 0.85
EXC 0.018 0.022 0.064 0 0.04 0.006 0.15
IND 0 0 0 0 0 0 0
Total 0.2 0.1 0.487 0.004 0.194 0.014 1

MLIC AR1 0.054 0.036 0.288 0.006 0.174 0.088 0.646
EXC 0.026 0.026 0.118 0.002 0.088 0.034 0.294
IND 0.002 0.006 0.03 0 0.018 0.004 0.06
Total 0.082 0.068 0.436 0.008 0.28 0.126 1

QICWr AR1 0.02 0.016 0.23 0.002 0.116 0.094 0.478
EXC 0.008 0.012 0.228 0.004 0.126 0.09 0.468
IND 0.002 0.002 0.022 0 0.016 0.012 0.054
Total 0.03 0.03 0.48 0.006 0.258 0.196 1

n=200 JEAIC AR1 0.014 0 0.652 0 0.102 0.156 0.924
m=0.3 EXC 0 0 0.054 0 0.008 0.014 0.076

IND 0 0 0 0 0 0 0
Total 0.014 0 0.706 0 0.11 0.17 1

JEBIC AR1 0.074 0.004 0.692 0.002 0.138 0.014 0.924
EXC 0.004 0 0.058 0 0.014 0 0.076
IND 0 0 0 0 0 0 0
Total 0.078 0.004 0.75 0.002 0.152 0.014 1

MLIC AR1 0.006 0.004 0.422 0.002 0.126 0.12 0.68
EXC 0.002 0 0.154 0.002 0.05 0.052 0.26
IND 0 0 0.032 0.002 0.008 0.018 0.06
Total 0.008 0.004 0.608 0.006 0.184 0.19 1

QICWr AR1 0 0 0.28 0.002 0.068 0.104 0.454
EXC 0.002 0 0.308 0 0.07 0.124 0.504
IND 0 0 0.022 0 0.006 0.014 0.042
Total 0.002 0 0.61 0.002 0.144 0.242 1

n=100 JEAIC AR1 0.046 0.014 0.552 0.01 0.166 0.094 0.882
m=0.2 EXC 0.004 0.002 0.08 0.002 0.014 0.016 0.118

IND 0 0 0 0 0 0 0
Total 0.05 0.016 0.632 0.012 0.18 0.11 1

JEBIC AR1 0.174 0.046 0.496 0 0.166 0.006 0.888
EXC 0.02 0.006 0.07 0 0.016 0 0.112
IND 0 0 0 0 0 0 0
Total 0.194 0.052 0.566 0 0.182 0.006 1

MLIC AR1 0.04 0.03 0.382 0.002 0.192 0.096 0.742
EXC 0.006 0.004 0.088 0.004 0.072 0.04 0.214
IND 0.002 0.002 0.026 0 0.006 0.008 0.044
Total 0.048 0.036 0.496 0.006 0.27 0.144 1

QICWr AR1 0.022 0.01 0.33 0 0.152 0.088 0.602
EXC 0.002 0.008 0.172 0.004 0.08 0.076 0.342
IND 0 0.002 0.028 0 0.012 0.014 0.056
Total 0.024 0.02 0.53 0.004 0.244 0.178 1

n=200 JEAIC AR1 0.006 0 0.706 0 0.09 0.156 0.958
m=0.2 EXC 0 0 0.036 0 0 0.006 0.042

IND 0 0 0 0 0 0 0
Total 0.006 0 0.742 0 0.09 0.162 1

JEBIC AR1 0.04 0.004 0.792 0.002 0.11 0.012 0.96
EXC 0 0 0.038 0 0 0.002 0.04
IND 0 0 0 0 0 0 0
Total 0.04 0.004 0.83 0.002 0.11 0.014 1

MLIC AR1 0.004 0 0.496 0 0.114 0.14 0.754
EXC 0.002 0 0.12 0 0.018 0.044 0.184
IND 0 0 0.034 0.002 0.008 0.018 0.062
Total 0.006 0 0.65 0.002 0.14 0.202 1

QICWr AR1 0 0 0.37 0.002 0.086 0.134 0.592
EXC 0.002 0 0.24 0 0.032 0.074 0.348
IND 0 0 0.036 0.002 0.006 0.016 0.06
Total 0.002 0 0.646 0.004 0.124 0.224 1
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Table 3
Performance of JEAIC and JEBIC compared with MLIC and QICWr: Percentage of selecting six candidate linear
models across 500 Monte Carlo datasets; T = 3, ρ = 0.5. The model with {x1, x2} and an AR1 correlation structure

is the true model. Notation n and m denote the sample size and the missing probability, respectively.

Setups Method Cor.Str. x1 x3 x1,x2 x1, x3 x2, x3 x1, x2, x3 Total

n=100 JEAIC AR1 0.004 0 0.606 0 0.014 0.187 0.811
m=0.3 EXC 0 0 0.143 0 0.008 0.032 0.183

IND 0.004 0 0.002 0 0 0 0.006
Total 0.008 0 0.751 0 0.022 0.219 1

JEBIC AR1 0.014 0 0.717 0 0.018 0.058 0.807
EXC 0 0 0.161 0 0.008 0.014 0.183
IND 0.004 0 0.006 0 0 0 0.01
Total 0.018 0 0.884 0 0.026 0.072 1

MLIC AR1 0.018 0.006 0.48 0.002 0.098 0.012 0.616
EXC 0.002 0 0.3 0 0.064 0.01 0.376
IND 0.002 0 0.004 0 0.002 0 0.008
Total 0.022 0.006 0.784 0.002 0.164 0.022 1

QICWr AR1 0.006 0 0.476 0.002 0.064 0.036 0.584
EXC 0 0.002 0.342 0 0.048 0.016 0.408
IND 0 0 0.002 0 0.002 0.004 0.008
Total 0.006 0.002 0.82 0.002 0.114 0.056 1

n=200 JEAIC AR1 0 0 0.665 0 0 0.182 0.848
m=0.3 EXC 0 0 0.122 0 0 0.03 0.152

IND 0 0 0 0 0 0 0
Total 0 0 0.788 0 0 0.212 1

JEBIC AR1 0 0 0.816 0 0.002 0.036 0.854
EXC 0 0 0.138 0 0 0.008 0.146
IND 0 0 0 0 0 0 0
Total 0 0 0.954 0 0.002 0.044 1

MLIC AR1 0.002 0 0.506 0 0.01 0.006 0.524
EXC 0.002 0 0.442 0 0.014 0.014 0.472
IND 0 0 0.004 0 0 0 0.004
Total 0.004 0 0.952 0 0.024 0.02 1

QICWr AR1 0 0 0.482 0 0.004 0.026 0.512
EXC 0.002 0 0.442 0 0.01 0.028 0.482
IND 0 0 0.006 0 0 0 0.006
Total 0.002 0 0.93 0 0.014 0.054 1

n=100 JEAIC AR1 0 0 0.644 0 0.014 0.202 0.86
m=0.2 EXC 0 0 0.098 0 0.006 0.036 0.14

IND 0 0 0 0 0 0 0
Total 0 0 0.742 0 0.02 0.238 1

JEBIC AR1 0 0 0.764 0 0.026 0.08 0.87
EXC 0 0 0.114 0 0.008 0.008 0.13
IND 0 0 0 0 0 0 0
Total 0 0 0.878 0 0.034 0.088 1

MLIC AR1 0.002 0.002 0.486 0 0.078 0.016 0.584
EXC 0 0 0.354 0 0.058 0.002 0.414
IND 0 0 0.002 0 0 0 0.002
Total 0.002 0.002 0.842 0 0.136 0.018 1

QICWr AR1 0.002 0.002 0.47 0 0.06 0.024 0.558
EXC 0 0 0.39 0 0.042 0.008 0.44
IND 0 0 0.002 0 0 0 0.002
Total 0.002 0.002 0.862 0 0.102 0.032 1

n=200 JEAIC AR1 0 0 0.73 0 0 0.19 0.92
m=0.2 EXC 0 0 0.058 0 0 0.022 0.08

IND 0 0 0 0 0 0 0
Total 0 0 0.788 0 0 0.212 1

JEBIC AR1 0 0 0.902 0 0 0.024 0.926
EXC 0 0 0.066 0 0 0.008 0.074
IND 0 0 0 0 0 0 0
Total 0 0 0.968 0 0 0.032 1

MLIC AR1 0 0 0.544 0 0.008 0.012 0.564
EXC 0 0 0.424 0 0.004 0.008 0.436
IND 0 0 0 0 0 0 0
Total 0 0 0.968 0 0.012 0.02 1

QICWr AR1 0 0 0.518 0 0.006 0.02 0.544
EXC 0 0 0.438 0 0.002 0.016 0.456
IND 0 0 0 0 0 0 0
Total 0 0 0.956 0 0.008 0.036 1
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Table 4
Performance of JEAIC and JEBIC when the missing mechanism is missing not at random (MNAR): Percentage of

selecting six candidate logistic models across 500 Monte Carlo datasets; T = 3, ρ = 0.5. The model with {x1, x2} and an
EXC correlation structure is the true model. Notation n and m denote the sample size and the missing probability,

respectively.

Setups Method C(ρ) x1 x3 x1,x2 x1, x3 x2, x3 x1, x2, x3 Total

n=100,m=0.2 JEAIC AR1 0.002 0.006 0.072 0.002 0.014 0.006 0.102
EXC 0.058 0.024 0.51 0.008 0.198 0.1 0.898
IND 0 0 0 0 0 0 0
Total 0.06 0.03 0.582 0.01 0.212 0.106 1

JEBIC AR1 0.028 0.014 0.058 0 0.014 0.002 0.116
EXC 0.188 0.062 0.456 0.002 0.17 0.006 0.884
IND 0 0 0 0 0 0 0
Total 0.216 0.076 0.514 0.002 0.184 0.008 1

n=200,m=0.2 JEAIC AR1 0 0 0.028 0 0.006 0.008 0.042
EXC 0.01 0 0.712 0 0.112 0.124 0.958
IND 0 0 0 0 0 0 0
Total 0.01 0 0.74 0 0.118 0.132 1

JEBIC AR1 0.002 0 0.03 0.002 0.008 0 0.042
EXC 0.036 0.004 0.764 0.002 0.14 0.012 0.958
IND 0 0 0 0 0 0 0
Total 0.038 0.004 0.794 0.004 0.148 0.012 1

n=100, m=0.3 JEAIC AR1 0.04 0.008 0.062 0.01 0.018 0.006 0.144
EXC 0.104 0.042 0.418 0.036 0.174 0.082 0.856
IND 0 0 0 0 0 0 0
Total 0.144 0.05 0.48 0.046 0.192 0.088 1

JEBIC AR1 0.064 0.028 0.05 0.002 0.016 0 0.16
EXC 0.242 0.108 0.334 0.012 0.134 0.008 0.838
IND 0 0 0 0.002 0 0 0.002
Total 0.306 0.136 0.384 0.016 0.15 0.008 1

n=200, m=0.3 JEAIC AR1 0.012 0.006 0.07 0.002 0.014 0.006 0.11
EXC 0.042 0.004 0.622 0.006 0.112 0.104 0.89
IND 0 0 0 0 0 0 0
Total 0.054 0.01 0.692 0.008 0.126 0.11 1

JEBIC AR1 0.04 0.018 0.054 0 0.008 0.002 0.122
EXC 0.176 0.022 0.556 0.006 0.11 0.008 0.878
IND 0 0 0 0 0 0 0
Total 0.216 0.04 0.61 0.006 0.118 0.01 1
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Table 5
Performance of JEAIC and JEBIC compared with MLIC and QICWr when there are more variables: Percentage of

selecting six candidate logistic models across 500 Monte Carlo datasets; T = 3, ρ = 0.5. The model with {x1, x2} and an
EXC correlation structure is the true model. Notation n and m denote the sample size and the missing probability,

respectively.

Setups Method C(ρ) x1 x3 x1,x2 x1, x3 x2, x3 x1, x2, x3 Total

n=200, m=0.2 JEAIC AR1 0.004 0.004 0.036 0 0.06 0.002 0.052
EXC 0.114 0.11 0.546 0.076 0.042 0.06 0.948
IND 0 0 0 0 0 0 0
Total 0.118 0.114 0.582 0.076 0.048 0.062 1

JEBIC AR1 0.004 0.006 0.042 0 0 0 0.052
EXC 0.138 0.13 0.67 0.01 0 0 0.948
IND 0 0 0 0 0 0 0
Total 0.142 0.136 0.712 0.01 0 0 1

MLIC AR1 0.046 0.02 0.134 0.022 0.022 0.024 0.268
EXC 0.122 0.094 0.348 0.056 0.034 0.032 0.686
IND 0.01 0.006 0.022 0.004 0 0.004 0.046
Total 0.178 0.12 0.504 0.082 0.056 0.06 1

QICWr AR1 0.018 0.024 0.088 0.024 0.01 0.036 0.2
EXC 0.092 0.088 0.33 0.056 0.036 0.07 0.672
IND 0.02 0.002 0.058 0.014 0.014 0.02 0.128
Total 0.13 0.114 0.476 0.094 0.06 0.126 1

n=200, m=0.3 JEAIC AR1 0.018 0.018 0.068 0.002 0.002 0.004 0.112
EXC 0.116 0.12 0.478 0.072 0.048 0.054 0.888
IND 0 0 0 0 0 0 0
Total 0.134 0.138 0.546 0.074 0.05 0.058 1

JEBIC AR1 0.02 0.02 0.074 0 0 0 0.114
EXC 0.142 0.144 0.586 0.01 0.002 0.002 0.886
IND 0 0 0 0 0 0 0
Total 0.162 0.164 0.66 0.01 0.002 0.002 1

MLIC AR1 0.034 0.05 0.126 0.016 0.01 0.014 0.25
EXC 0.106 0.094 0.31 0.054 0.036 0.028 0.628
IND 0.028 0.014 0.048 0.014 0.008 0.01 0.122
Total 0.168 0.158 0.484 0.084 0.054 0.052 1

QICWr AR1 0.042 0.044 0.104 0.026 0.02 0.026 0.262
EXC 0.062 0.056 0.218 0.038 0.032 0.052 0.458
IND 0.032 0.026 0.102 0.032 0.02 0.068 0.28
Total 0.136 0.126 0.424 0.096 0.072 0.146 1
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Table 6
Performance of JEAIC and JEBIC in sole marginal mean selection given AR1, EXC, and IND correlation structures,

respectively: Percentage of selecting six candidate models with binary outcomes over 500 runs; T = 3, ρ = 0.5. The model
with {x1, x2} and an EXC correlation structure is the true model. Notation n and m denote the sample size and the

missing probability, respectively.

Setups Method C(ρ) x1 x3 x1,x2 x1, x3 x2, x3 x1, x2, x3

n=100,m=0.2 JEAIC AR1 0.134 0.008 0.602 0.004 0.19 0.062
EXC 0.096 0.008 0.658 0.002 0.208 0.028
IND 0.156 0.056 0.426 0.034 0.188 0.14

JEBIC AR1 0.044 0.046 0.526 0.004 0.182 0.198
EXC 0.004 0.036 0.638 0.002 0.218 0.102
IND 0.066 0.122 0.366 0.014 0.146 0.286

n=100,m=0.3 JEAIC AR1 0.136 0.036 0.536 0.008 0.204 0.08
EXC 0.112 0.03 0.57 0.004 0.236 0.048
IND 0.132 0.062 0.412 0.038 0.186 0.17

JEBIC AR1 0.026 0.092 0.466 0.008 0.19 0.218
EXC 0.014 0.08 0.526 0.002 0.226 0.152
IND 0.052 0.124 0.344 0.01 0.162 0.308

n=200,m=0.2 JEAIC AR1 0.154 0 0.742 0 0.1 0.004
EXC 0.134 0 0.76 0 0.106 0
IND 0.134 0.014 0.65 0.012 0.118 0.072

JEBIC AR1 0.016 0.006 0.82 0 0.13 0.028
EXC 0.018 0 0.846 0 0.126 0.01
IND 0.016 0.066 0.55 0.006 0.1 0.262

n=200,m=0.3 JEAIC AR1 0.162 0 0.68 0 0.142 0.016
EXC 0.138 0 0.708 0 0.148 0.006
IND 0.12 0.046 0.506 0.024 0.15 0.154

JEBIC AR1 0.018 0.022 0.714 0 0.16 0.086
EXC 0.01 0.006 0.776 0.002 0.168 0.038
IND 0.024 0.108 0.418 0.014 0.122 0.314
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