SUPPORTING INFORMATION

Directed, Palladium(II)-Catalyzed Enantioselective *anti*-Carboboration of Alkenyl Carbonyl Compounds

Zhen Liu, Xiaohan Li, Tian Zeng, Keary M. Engle*

*keary@scripps.edu

Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States

Table of Contents

General Information	S-2
Experimental Procedures	S-2
Chiral Ligand Synthesis	S-2
Alkene Substrate Synthesis	S-9
Indole Nucleophile Synthesis.	S-12
Reaction Optimization Details	S-13
General Procedure for Asymmetric Alkene Carboboration	S-14
Unsuccessful Non-Indole Carbon Nucleophiles	S-20
Large-Scale Synthesis and Recrystallization	S-21
Procedures for Transformations of Borylated Products	S-22
Determination of Absolute Stereochemistry of 4a by Mosher Ester Analysis	S-25
Mechanistic Studies of Alkene <i>E</i> / <i>Z</i> Isomerization	S-26
X-Ray Crystallography	S-29
References	S-48
NMR Spectra and SFC Chromatograms	S-50
· · · ·	

GENERAL INFORMATION

Unless otherwise noted, all materials were used as received from commercial sources without further purification. All commercial carbon nucleophiles, boron reagents, ligands and solvents were purchased from Aldrich, Alfa Aesar, Oakwood, and Combi-Blocks. $Pd(OAc)_2$ was obtained from Johnson Matthey. NMR spectra were recorded on Bruker AV-400, DRX-500 and AV-600 instruments. ¹H and ¹³C spectra were internally referenced to SiMe₄ or solvent signals. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, sept = septet, m = multiplet. High-resolution mass spectra (HRMS) for new compounds were recorded on a Waters LC-TOF mass spectrometer, and the reported masses were automatically calibrated to be the neutral adduct of [M+H] by adding the mass of an electron. Enantiomeric ratios (*er*) were determined on a Waters UPC² system using commercially available chiral columns.

EXPERIMENTAL PROCEDURES

Chiral Ligand Synthesis

Table S1. Chiral ligands L6-11, L15-23, L27-28, L30 and L34.

Chiral ligands L6–11,¹⁻³ L15–23,⁴⁻⁷ L27–28,⁷ L30⁷ and L34⁷ were prepared according to literature procedures.

Scheme S1: Synthesis of (S)-4-((1H-indol-3-yl)methyl)-2-ethyl-4,5-dihydrooxazole (L24).⁷

(*S*)-4-((1*H*-indol-3-yl)methyl)-2-ethyl-4,5-dihydrooxazole (L24): The title compound was prepared from S1 (475 mg, 2.5 mmol) and triethyl orthopropionate (529 mg, 3 mmol) according to a literature procedure.⁷ Purification using silica gel column chromatography with 1:1.5 hexanes:EtOAc as the eluent gave the product as a light-yellow solid

L24 hexanes:EtOAc as the eluent gave the product as a light-yellow solid (457 mg, 80% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.19 (s, 1H), 7.64 (dt, J = 7.9, 0.9 Hz, 1H), 7.35 (dp, J = 8.2, 0.9 Hz, 1H), 7.20 (ddt, J = 8.0, 7.0, 0.9 Hz, 1H), 7.15–7.09 (m, 1H), 7.02 (dt, J = 4.4, 1.9 Hz, 1H), 4.55–4.45 (m, 1H), 4.16 (ddd, J = 9.3, 8.4, 0.9 Hz, 1H), 3.98 (ddd, J = 8.3, 7.2, 1.0 Hz, 1H), 3.26 (ddt, J = 14.5, 4.8, 0.8 Hz, 1H), 2.79 (ddt, J = 14.5, 8.8, 0.9 Hz, 1H), 2.32–2.25 (m, 2H), 1.19 (t, J = 7.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.0, 136.3, 127.6, 122.2, 122.0, 119.4, 118.9, 112.2, 111.1, 72.0, 66.3, 31.4, 21.5, 10.4; HRMS (ESI-TOF) Calcd for C₁₄H₁₇N₂O [M+H] 229.1341, found 229.1336.

Scheme S2: Synthesis of (S)-2-methyl-4-((1-tosyl-1H-indol-3-yl)methyl)-4,5-dihydrooxazole (L25).⁸

(S)-2-methyl-4-((1-tosyl-1*H*-indol-3-yl)methyl)-4,5-dihydrooxazole (L25): The title compound was prepared from L23 (107 mg, 0.5 mmol) and tosyl chloride (105 mg, 0.55 mmol) according to a literature procedure.⁸ Purification using silica gel column chromatography with 1:1 hexanes:EtOAc as the eluent gave the product as a colorless oil (184 mg, 78% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, *J* = 8.3

Hz, 1H), 7.76 (d, J = 8.4 Hz, 2H), 7.54 (dt, J = 7.8, 0.9 Hz, 1H), 7.40 (d, J = 1.1 Hz, 1H), 7.34 (ddd, J = 8.3, 7.2, 1.2 Hz, 1H), 7.28–7.21 (m, 3H), 4.45 (ddddd, J = 9.7, 8.5, 7.2, 5.0, 1.3 Hz, 1H), 4.19 (dd, J = 9.4, 8.6 Hz, 1H), 3.91 (dd, J = 8.5, 7.2 Hz, 1H), 3.12 (ddd, J = 14.8, 4.9, 1.2 Hz, 1H), 2.75 (ddd, J = 14.8, 8.6, 0.8 Hz, 1H), 2.36 (s, 3H), 1.97 (d, J = 1.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 165.3, 144.8, 135.2, 135.2, 130.9, 129.8, 126.7, 124.8, 123.6, 123.1, 119.5, 118.9, 113.7, 71.9, 65.6, 31.0, 21.5, 13.9; HRMS (ESI-TOF) Calcd for C₂₀H₂₁N₂O₃S [M+H] 369.1273, found 369.1276.

Scheme S3: Synthesis of *tert*-butyl (S)-3-((2-methyl-4,5-dihydrooxazol-4-yl)methyl)-1*H*-indole-1carboxylate (L26).⁹

tert-butyl (*S*)-3-((2-methyl-4,5-dihydrooxazol-4-yl)methyl)-1*H*indole-1-carboxylate (L26): The title compound was prepared from L23 (107 mg, 0.5 mmol) and Boc₂O (218 mg, 1 mmol) according to a literature procedure.⁹ Purification using silica gel column chromatography with 1:1 hexanes:EtOAc as the eluent gave the product as a colorless oil (157 mg, 99% yield). ¹H NMR (600 MHz,

CDCl₃) δ 8.11 (s, 1H), 7.55 (dt, J = 7.8, 1.0 Hz, 1H), 7.41 (s, 1H), 7.31 (ddd, J = 8.4, 7.2, 1.3 Hz, 1H), 7.26–7.19 (m, 1H), 4.48 (ddddd, J = 9.7, 8.5, 7.0, 6.1, 1.3 Hz, 1H), 4.23 (dd, J = 9.4, 8.5 Hz, 1H), 3.97 (dd, J = 8.5, 7.2 Hz, 1H), 3.12 (ddd, J = 14.8, 5.2, 1.2 Hz, 1H), 2.74 (ddd, J = 14.7, 8.5, 0.9 Hz, 1H), 1.98 (d, J = 1.3 Hz, 3H), 1.67 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 165.2, 149.7, 135.5, 130.6, 124.4, 123.3, 122.4, 119.0, 116.8, 115.2, 83.5, 72.2, 65.8, 31.2, 28.2, 13.9; **HRMS** (ESI-TOF) Calcd for C₁₈H₂₃N₂O₃ [M+H] 315.1709, found 315.1711.

Scheme S4: Synthesis of (S)-4-((1-benzyl-1H-indol-3-yl)methyl)-2-methyl-4,5-dihydrooxazole (L29).¹⁰

(S)-4-((1-benzyl-1*H*-indol-3-yl)methyl)-2-methyl-4,5dihydrooxazole (L29): The title compound was prepared from L23 (214 mg, 1 mmol) and BnBr (256 mg, 1.5 mmol) according to a literature procedure.¹⁰ Purification using silica gel column chromatography with 2:1 hexanes:EtOAc as the eluent gave the product as a colorless oil (234 mg, 77% yield). ¹H NMR (600 MHz,

CDCl₃) δ 7.67–7.62 (m, 1H), 7.32–7.26 (m, 4H), 7.19 (tt, *J* = 8.0, 0.9 Hz, 1H), 7.15–7.06 (m, 3H), 6.97 (s, 1H), 5.29 (d, *J* = 2.4 Hz, 2H), 4.53–4.44 (m, 1H), 4.17 (dd, *J* = 9.3, 8.5 Hz, 1H), 4.01–3.92 (m, 1H), 3.35–3.16 (m, 1H), 2.80 (dd, *J* = 14.6, 8.6 Hz, 1H), 1.96 (t, *J* = 0.9 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 164.89, 137.6, 136.6, 128.7, 128.3, 127.6, 126.7, 126.3, 121.8, 119.1, 119.0, 111.3, 109.7, 72.2, 66.6, 49.9, 31.2, 13.9; HRMS (ESI-TOF) Calcd for C₂₀H₂₁N₂O [M+H] 305.1654, found 305.1653.

Scheme S5: Synthesis of L31–33 and L36.⁷

(*S*)-4-((1-(3,5-di-*tert*-butylphenyl)-1*H*-indol-3-yl)methyl)-2methyl-4,5-dihydrooxazole (L31): The title compound was prepared from L23 (107 mg, 0.5 mmol) and 1,3-di-*tert*-butyl-5iodobenzene¹¹ (237 mg, 1.5 mmol) according to a literature procedure.⁷ Purification using silica gel column chromatography with 3:1 hexanes:EtOAc as the eluent gave the product as a colorless oil (151 mg, 75% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.71 (dt, *J* = 7.9, 0.9 Hz, 1H), 7.55 (dt, *J* = 8.2, 0.9 Hz, 1H), 7.43

(t, *J* = 1.8 Hz, 1H), 7.33 (d, *J* = 1.8 Hz, 2H), 7.27–7.23 (m, 2H), 7.20 (ddd, *J* = 8.0, 7.0, 1.0 Hz, 1H), 4.62–4.52 (m, 1H), 4.26 (dd, *J* = 9.3, 8.5 Hz, 1H), 4.07 (dd, *J* = 8.4, 7.3 Hz, 1H),

3.33 (ddd, J = 14.6, 4.9, 1.0 Hz, 1H), 2.87 (dd, J = 14.6, 8.9 Hz, 1H), 2.03 (d, J = 1.2 Hz, 3H), 1.40 (s, 18H); ¹³C NMR (150 MHz, CDCl₃) δ 165.0, 152.4, 139.0, 136.2, 128.9, 126.2, 122.4, 120.4, 119.8, 119.1, 118.7, 112.7, 110.7, 72.4, 66.6, 35.1, 31.4, 31.4, 14.0; **HRMS** (ESI-TOF) Calcd for C₂₇H₃₅N₂O [M+H] 403.2749, found 403.2750.

(S)-4-((1-(3,5-dimethylphenyl)-1*H*-indol-3-yl)methyl)-2methyl-4,5-dihydrooxazole (L32): The title compound was prepared from L23 (107 mg, 0.5 mmol) and 1-iodo-3,5dimethylbenzene (174 mg, 1.5 mmol) according to a literature procedure.⁷ Purification using silica gel column chromatography with 2:1 hexanes:EtOAc as the eluent gave the product as a colorless oil (156 mg, 98% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.67 (dt, *J* = 7.8, 1.0 Hz, 1H), 7.56 (dt, *J* = 8.3, 0.9 Hz, 1H), 7.24–

7.19 (m, 1H), 7.19–7.15 (m, 2H), 7.10 (d, J = 1.5 Hz, 2H), 6.98 (s, 1H), 4.57–4.44 (m, 1H), 4.23 (t, J = 8.9 Hz, 1H), 4.03 (dd, J = 8.4, 7.3 Hz, 1H), 3.29 (ddd, J = 14.6, 4.9, 1.0 Hz, 1H), 2.82 (dd, J = 14.6, 8.9 Hz, 1H), 2.40 (s, 6H), 2.00 (d, J = 1.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 165.0, 139.6, 139.3, 136.1, 128.9, 127.9, 126.0, 122.4, 121.8, 119.9, 119.1, 112.9, 110.7, 72.4, 66.5, 31.4, 21.3, 14.0; HRMS (ESI-TOF) Calcd for C₂₁H₂₃N₂O [M+H] 319.1810, found 319.1810.

(S)-2-methyl-4-((1-(3,4,5-trimethoxyphenyl)-1*H*-indol-3yl)methyl)-4,5-dihydrooxazole (L33): The title compound was prepared from L23 (107 mg, 0.5 mmol) and 5-iodo-1,2,3trimethoxybenzene (221 mg, 1.5 mmol) according to a literature procedure.⁷ Purification using silica gel column chromatography with 1.5:1 hexanes:EtOAc as the eluent gave the product as a colorless oil (182 mg, 96% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.67 (dt, J = 7.8, 1.0 Hz, 1H), 7.54 (dt, J = 8.2, 0.9 Hz, 1H),

7.24 (ddd, J = 8.3, 7.0, 1.2 Hz, 1H), 7.20–7.14 (m, 2H), 6.69 (s, 2H), 4.52 (ddddd, J = 9.7, 8.5, 6.9, 5.4, 1.3 Hz, 1H), 4.24 (dd, J = 9.4, 8.5 Hz, 1H), 4.02 (dd, J = 8.5, 7.2 Hz, 1H), 3.90 (d, J = 9.6 Hz, 9H), 3.26 (ddd, J = 14.6, 5.3, 1.0 Hz, 1H), 2.85 (ddd, J = 14.6, 8.5, 0.8 Hz, 1H), 2.00 (d, J = 1.3 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 165.1, 153.8, 136.5, 136.3, 135.5, 128.9, 126.1, 122.6, 120.0, 119.2, 113.1, 110.6, 102.0, 72.4, 66.5, 61.0, 56.3, 31.3, 14.0; **HRMS** (ESI-TOF) Calcd for C₂₂H₂₅N₂O₄ [M+H] 381.1814, found 381.1812.

(*S*)-4-((1-(3,5-dinitrophenyl)-1*H*-indol-3-yl)methyl)-2-methyl-4,5-dihydrooxazole (L36): The title compound was prepared from L23 (214 mg, 1 mmol) and 1-iodo-3,5-dinitrobenzene (441 mg, 1.5 mmol) according to a literature procedure.⁷ Purification using silica gel column chromatography with 1:1 hexanes:EtOAc as the eluent gave the product as a yellow solid (289 mg, 76% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.95 (t, *J* = 2.0 Hz, 1H), 8.73 (d, *J* = 2.0 Hz, 2H), 7.74 (dt, *J* = 7.9, 0.9 Hz, 1H), 7.66 (dd,

J = 8.2, 0.8 Hz, 1H), 7.41–7.37 (m, 2H), 7.33 (ddd, J = 7.9, 7.1, 0.9 Hz, 1H), 4.56 (p, J = 7.1 Hz, 1H), 4.34 (dd, J = 9.4, 8.5 Hz, 1H), 4.03 (dd, J = 8.4, 7.4 Hz, 1H), 3.19 (ddd, J = 14.8, 6.4, 1.1 Hz, 1H), 2.97 (dd, J = 14.8, 7.1 Hz, 1H), 2.03 (d, J = 1.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 165.4, 149.4, 142.1, 135.3, 130.1, 124.5, 124.4, 122.5, 122.0, 120.1, 117.4, 114.8, 109.8, 72.2, 66.1, 31.2, 14.0; HRMS (ESI-TOF) Calcd for C₁₉H₁₇N₄O₅ [M+H] 381.1199, found 381.1198.

Scheme S6: Synthesis of (*S*)-2-methyl-4-((1-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)-1*H*-indol-3-yl)methyl)-4,5-dihydrooxazole (**L35**).¹²

(S)-2-methyl-4-((1-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)-1*H*-indol-3-yl)methyl)-4,5dihydrooxazole (L35): The title compound was prepared from L23 (214 mg, 1 mmol) and 1,2,3,4,5-pentafluoro-6-(trifluoromethyl)benzene (472 mg, 2 mmol) according to a literature procedure.¹² Purification using silica gel column chromatography with 2:1 hexanes:EtOAc as the eluent gave the product as a yellow solid (301 mg, 70% yield). ¹H NMR (600 MHz,

CDCl₃) δ 7.69 (d, J = 7.8 Hz, 1H), 7.34–7.27 (m, 2H), 7.14 (dd, J = 7.0, 3.9 Hz, 1H), 7.08 (s, 1H), 4.52 (q, J = 7.6 Hz, 1H), 4.26 (t, J = 9.0 Hz, 1H), 4.00 (t, J = 7.9 Hz, 1H), 3.22 (dd, J = 14.8, 5.4 Hz, 1H), 2.89 (dd, J = 14.8, 8.0 Hz, 1H), 1.99 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 165.4, 144.9 (dd, J_{C-F} = 260.5, 14.9 Hz), 142.6 (dd, J_{C-F} = 255.1, 14.3 Hz), 136.0, 129.0, 125.4, 123.8, 122.6 (t, J_{C-F} = 13.3 Hz), 121.6, 120.7 (q, J_{C-F} = 275.3 Hz), 119.5, 116.5, 110.8 (t, J_{C-F} = 2.7 Hz), 108.0 (dtd, J_{C-F} = 47.8, 35.1, 12.6 Hz), 72.1, 66.0, 31.0, 13.9; ¹⁹F NMR (376 MHz, CDCl₃) δ –56.2 (t, J_{F-F} = 21.7 Hz, 3F), –136.0–(–140.4) (m, 2F), –142.8–(–145.5) (m, 2F); HRMS (ESI-TOF) Calcd for C₂₀H₁₄F₇N₂O [M+H] 431.0994, found 431.0993.

Scheme S7: Synthesis of L37 and L38.^{7,13–15}

(4*S*,5*R*)-4-((1-(3,5-bis(trifluoromethyl)phenyl)-1*H*-indol-3yl)methyl)-2-methyl-5-phenyl-4,5-dihydrooxazole (L37): The title compound was prepared by adapting several literature procedures.

*Benzyl protection:*¹³ A solution of benzyl bromide (1.88g, 11 mmol) in MeCN (1 mL) was prepared and added dropwise to a solution of *L*-tryptophanol (**S1**, 950 mg, 5 mmol) and K₂CO₃ (1.5 g, 11 mmol) in MeCN (10 mL) at 0 °C. The reaction mixture

was filtered, concentrated under vacuum, and purified by silica gel column chromatography (4:1 hexanes:EtOAc) to afford 900 mg (48% yield) of **S2**.

*Ullmann coupling:*⁷ To a 50-mL round-bottom flask equipped with a Teflon-coated magnetic stir bar, were added **S2** (371 mg, 1 mmol), CuI (17 mg, 9 mol%), K₃PO₄ (423 mg, 2 mmol), *N*,*N*'-dimethyl-1,2-cyclohexanediamine (28.5 mg, 20 mol%), and 1-iodo-3,5-bis(trifluoromethyl)-benzene (510 mg, 1.5 mmol). The reaction flask was evacuated and backfilled with N₂ (×3), followed by addition of anhydrous toluene (5 mL). After being allowed to stir at 80 °C for 24 h, the reaction mixture was diluted with EtOAc and filtered through a plug of silica gel. The solvent was removed in *vacuo* to leave a brown residue, which upon purification by silica gel column chromatography (5:1 hexanes:EtOAc), afforded **S3** (545 mg, 94%).

Swern oxidation:¹⁴ A solution of DMSO (0.16 mL, 2 mmol) in DCM (6 mL) was added dropwise to a solution of oxalyl chloride (0.11 mL, 1.2 mmol) in DCM (3 mL) at -78 °C and stirred for 15 min. To the reaction mixture, was added dropwise a solution of **S3** (545 mg, 0.94 mmol) in DCM (6.7 mL) at -78 °C, and the resulting solution was stirred for another 35 min. Et₃N was then added, and reaction was slowly warmed to room temperature before treated with sat. NH₄Cl. The organic layer was separated, washed with sat. NaHCO₃ (20 mL, ×1) and brine (20 mL, ×1), dried over Na₂SO₄, and concentrated to afford **S4**, which was brought on to the next step without further purification.

*Grignard addition:*¹⁵ To aldehyde **S4** in THF (1.4 mL), was slowly added PhMgBr (0.5 mL, 3 M in diethyl ether) at 0 °C. The mixture was stirred for 12 h, followed by addition of sat. NH₄Cl. The organic layer was separated, and the aqueous layer was extracted with EtOAc (10 mL, \times 1). The combined organic layers were then washed with brine (20 mL, \times 1) and dried over Na₂SO₄. The resulting organic solution was concentrated under vacuum and purified by silica gel column chromatography (10:1 hexanes:EtOAc) to afford **S5** (271 mg, 35% over two steps).

*Benzyl deprotection*¹⁵ and L37 synthesis:⁷ In a 50-mL round-bottom flask, S5 (165 mg, 0.25 mmol) was first treated with a solution of HCl in diethylether to generate a white salt. After removal of the solvent, Pd/C (10 wt.%, 26 mg) and MeOH (2.5 mL) were added, and the reaction mixture was vigorously stirred under an H₂ atmosphere (1 atm) at 40 °C for 48 h. The Pd/C catalyst was removed by filtration through a plug of celite, and the resulting solution was concentrated under vacuum. The crude product was carried forward to the next step without further purification. Finally, oxazoline formation was completed according to a literature procedure.⁷ Purification using silica gel column chromatography with 2:1 hexanes:EtOAc as the eluent gave the product (L37) as a light-yellow solid (70 mg, 56% over two steps). ¹H NMR (600 MHz, CDCl₃) δ 7.87 (d, *J* = 1.5 Hz, 2H), 7.78 (s, 1H), 7.53 (d, *J* = 7.8 Hz, 1H), 7.48 (d, *J* = 8.2 Hz, 1H), 7.41–7.33 (m, 3H), 7.27 (dd, *J* = 3.2, 1.4 Hz, 2H), 7.25 (d, *J* = 4.0 Hz, 1H), 7.18 (t, *J* = 7.6 Hz, 1H), 6.62 (s, 1H), 5.63 (d, *J* = 9.8 Hz, 1H), 4.83–4.73 (m, 1H), 2.74–2.53 (m, 2H), 2.16 (d, *J* = 1.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 164.8, 141.2, 136.7, 135.3, 133.1 (q, *J*_{C-F} = 33.8 Hz), 129.5, 128.3, 128.2, 127.0, 125.0, 123.6, 123.2 (q, *J*_{C-F} = 3.9 Hz), 123.0 (q, *J*_{C-F} = 272.8 Hz), 121.0, 119.6, 118.9 (sept, *J*_{C-F} = 3.8 Hz),

116.3, 109.8, 83.9, 69.1, 28.0, 14.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.2 (s, 6F); HRMS (ESI-TOF) Calcd for C₂₇H₂₁F₆N₂O [M+H] 503.1558, found 503.1559.

(4S,5R)-4-((1-(3,5-bis(trifluoromethyl)phenyl)-1H-indol-3yl)methyl)-2,5-dimethyl-4,5-dihydrooxazole (L38): The title compound was prepared from S3 (493 mg, 0.85 mmol) according to the above synthetic sequence, using MeMgBr as the Grignard reagent in lieu of PhMgBr (Scheme S7). Purification using silica gel column chromatography with 2:1 hexanes:EtOAc as the eluent gave the product as a colorless oil (137 mg, 37% yield over 4 steps). ¹**H NMR** (600 MHz, CDCl₃) δ 7.97 (d, J = 1.6 Hz, 2H),

7.80 (s, 1H), 7.68 (dt, J = 7.8, 0.9 Hz, 1H), 7.53 (dt, J = 8.3, 0.8 Hz, 1H), 7.33 (d, J = 1.1 Hz, 1H), 7.30 (ddd, J = 8.3, 7.0, 1.2 Hz, 1H), 7.24 (ddd, J = 7.9, 7.0, 0.9 Hz, 1H), 4.82 (dq, J =9.2, 6.6 Hz, 1H), 4.51 (tdd, J = 9.2, 6.2, 1.6 Hz, 1H), 3.06–2.92 (m, 2H), 2.00 (d, J = 1.4 Hz, 3H), 1.36 (d, J = 6.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 164.5, 141.3, 135.5, 133.2 (q, $J_{C-F} = 33.9$ Hz), 129.7, 124.8, 122.9 (q, $J_{C-F} = 272.8$ Hz), 123.6, 123.5 (q, $J_{C-F} = 3.4$ Hz), 121.1, 119.6, 119.1 (sept, $J_{C-F} = 7.7$, 3.6 Hz), 117.2, 109.8, 78.5, 67.5, 26.0, 15.2, 14.3; ¹⁹F **NMR** (376 MHz, CDCl₃) δ –63.2 (s, 6F); **HRMS** (ESI-TOF) Calcd for C₂₂H₁₉F₆N₂O [M+H] 441.1402, found 441.1409.

L39

(4S,5S)-4-((1-(3,5-bis(trifluoromethyl)phenyl)-1H-indol-3vl)methyl)-2-methyl-5-phenyl-4,5-dihydrooxazole (L39): The compound was prepared by adapting a literature title procedure.^{15–17} Benzyl deprotection of **S5** (107 mg, 0.16 mmol) was first conducted with 17 mg of Pd/C (10 wt.%) under H₂ atmosphere (1 atm) according to the above procedure. *N-Acetylation:*¹⁶ The crude product was dissolved in *i*-

PrOH (1.2 mL), and the resulting solution was added to a solution of NaOH (18 mg, 0.45 mmol) in water (0.2 mL). To this combined solution, was gradually added acetic anhydride (44 μ L, 0.45 mmol), while maintaining the pH at approximately 8.

After stirring at room temperature for 30 min, the reaction mixture was concentrated, extracted with EtOAc (5 mL, \times 2), washed with water (5 mL, \times 1) and brine (5 mL, \times 1), and concentrated under vacuum again to afford crude S7, which was brought on to the next step without further purification.

Oxazoline ring formation:¹⁷ To a flame-dried reaction tube equipped with a magnetic stir bar, were added S7, trimethylamine (55 µL, 0.48 mmol), and anhydrous DCM (0.8 mL) under N₂. Methanesulfonyl chloride (14.5 µL, 0.18 mmol) was slowly added at 0 °C. The reaction was stirred at 0 °C for 5 min and then heated up to 50 °C for 24 h. Upon completion, the reaction was quenched with sat. NaHCO₃ (2 mL) and extracted with DCM (5 mL, \times 2). The combined organic layers were dried over Na₂SO₄, concentrated under vacuum, and purified by column chromatography (3:1 hexanes:EtOAc) to afford L39 as a colorless oil

(53.2 mg, 65% yield over 3 steps). ¹**H NMR** (600 MHz, CDCl₃) δ 7.88 (d, *J* = 1.5 Hz, 2H), 7.81 (s, 1H), 7.67 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.52 (d, *J* = 8.3 Hz, 1H), 7.33–7.28 (m, 4H), 7.26–7.22 (m, 1H), 7.16 (s, 1H), 7.12 (dd, *J* = 7.5, 2.0 Hz, 2H), 5.11 (d, *J* = 7.2 Hz, 1H), 4.44 (tdd, *J* = 7.5, 6.1, 1.5 Hz, 1H), 3.29 (ddd, *J* = 15.0, 6.3, 1.1 Hz, 1H), 3.15–3.04 (m, 1H), 2.11 (d, *J* = 1.3 Hz, 3H); ¹³**C NMR** (150 MHz, CDCl₃) δ 164.5, 141.2, 140.6, 135.4, 133.2 (q, *J*_{C-F} = 33.9 Hz), 129.9, 128.7, 128.3, 125.7, 125.3, 123.7, 123.5 (q, *J*_{C-F} = 3.8 Hz), 122.9 (q, *J*_{C-F} = 279.35 Hz), 121.3, 119.7, 119.2 (sept, *J*_{C-F} = 3.8 Hz), 115.4, 109.8, 86.1, 74.9, 31.1, 14.2; ¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.2 (s, 6F); **HRMS** (ESI-TOF) Calcd for C₂₇H₂₁F₆N₂O [M+H] 503.1558, found 503.1560.

Alkene Substrate Synthesis

Table S2. Alkene substrates 1a-b, 1d, 1i, and 1k.

Alkene substrates 1a-b, 1d, 1i, and 1k were prepared according to literature procedures.^{18,19}

Scheme S9: General depiction of amide coupling.¹⁸

General Procedure for Amide Coupling: The appropriate carboxylic acid (1.05 equiv) was charged into a 25-mL round-bottom flask equipped with a Teflon-coated magnetic stir bar containing DCM (0.67 M). The appropriate amine (1 equiv), pyridine (2 equiv), and HATU (1.5 equiv) were added sequentially, and the reaction was stirred at ambient temperature for 20 h. The deep brown solution was diluted with EtOAc (30 mL), washed with sat. NaHCO₃ (20 mL, \times 2) and brine (20 mL, \times 1), and dried over Na₂SO₄. The solvent was removed under vacuum and the resulting residue was purified by column chromatography (10:1 hexanes:EtOAc) to afford the corresponding amide.

 (Z)-N-(quinolin-8-yl)pent-3-enamide (1c): The title compound was prepared from (Z)-pent-3-enoic acid (1 g, 10 mmol) and 8-aminoquinoline (1.4 g, 9.8 mmol) according to the general amide coupling procedure. Compound 1c was isolated as a light-brown oil (908 mg, 41% yield). ¹H NMR (600 MHz, CDCl₃) δ 10.05 (s, 1H), 8.84–8.72

(m, 2H), 8.15 (dd, $_J$ = 8.3, 1.7 Hz, 1H), 7.56–7.47 (m, 2H), 7.44 (ddd, J = 8.4, 4.2, 1.3 Hz, 1H), 5.98–5.88 (m, 1H), 5.81 (dtd, J = 11.0, 7.4, 1.9 Hz, 1H), 3.43–3.28 (m, 2H), 1.87–1.72 (m, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.6, 148.2, 138.5, 136.2, 134.5, 129.6, 127.9, 127.4, 122.3, 121.5, 121.5, 116.4, 36.5, 13.1; HRMS (ESI-TOF) Calcd for C₁₄H₁₅N₂O [M+H] 227.1184, found 227.1180.

(Z)-N-(5-methoxyquinolin-8-yl)hex-3-enamide (1e): The title compound was prepared from (Z)-hex-3-enoic acid (376 mg, 3.3 mmol) and 5-methoxyquinolin-8-amine (523 mg, 3 mmol) according to the general amide coupling procedure. Compound 1e was isolated as a brown oil (324 mg, 40% yield). ¹H NMR (600 MHz, CDCl₃) δ

9.81 (s, 1H), 8.80 (dq, J = 4.4, 1.6 Hz, 1H), 8.69 (dd, J = 8.5, 1.3 Hz, 1H), 8.56 (dq, J = 8.4, 1.8 Hz, 1H), 7.42 (dt, J = 8.1, 3.8 Hz, 1H), 6.83 (dd, J = 8.6, 3.2 Hz, 1H), 5.82 (ddd, J = 10.5, 6.1, 1.5 Hz, 1H), 5.78–5.67 (m, 1H), 4.03–3.93 (m, 3H), 3.32 (d, J = 7.5 Hz, 2H), 2.26–2.15 (m, 2H), 1.07 (td, J = 7.5, 1.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.2, 150.2, 148.6, 139.2, 137.0, 131.1, 127.9, 120.8, 120.6, 120.4, 116.5, 104.3, 55.7, 36.7, 20.8, 14.0; HRMS (ESI-TOF) Calcd for C₁₆H₁₉N₂O₂ [M+H] 271.1447, found 271.1446.

Scheme S10: Synthesis of (Z)-alkenyl carboxylic acid.^{18,20}

General Procedure for Alkyne Semireduction²⁰ and Jones Oxidation:¹⁸ To a stirred solution of alkyne substrate in anhydrous MeOH (0.33 M), were added Lindlar's catalyst (5 mol%) and quinoline (7 mol%). The reaction mixture was stirred under H₂ atmosphere (1 atm) for 3 days at room temperature. After the reaction had reacted completion (as monitored by TLC), the resulting suspension was filtered through a plug of celite and concentrated under vacuum. The crude alcohol was oxidized to the corresponding carboxylic acid following a literature procedure.

(Z)-N-(quinolin-8-yl)oct-3-enamide (1f): The title compound was prepared from (Z)-oct-3-en-1-ol (1.28 g, 10 mmol) according to the general Jones oxidation and amide coupling procedures. Compound 1f was isolated as a brown oil (1.09 g, 41% yield over 2 steps). ¹H NMR (600 MHz, CDCl₃) δ 10.05 (s, 1H), 8.81–8.73 (m, 2H), 8.15 (dt, J = 8.4,

1.4 Hz, 1H), 7.57–7.48 (m, 2H), 7.44 (ddd, J = 8.2, 4.2, 0.9 Hz, 1H), 5.88–5.82 (m, 1H), 5.81–5.71 (m, 1H), 3.35 (dd, J = 7.4, 1.2 Hz, 2H), 2.20 (qd, J = 7.2, 1.3 Hz, 2H), 1.45 (tt, J = 7.4, 5.8 Hz, 2H), 1.41–1.32 (m, 2H), 0.89 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.7, 148.2, 138.6, 136.2, 135.6, 134.5, 127.9, 127.4, 121.5, 121.5, 121.5, 116.4, 36.9, 31.5, 27.3, 22.3, 14.0; HRMS (ESI-TOF) Calcd for C₁₇H₂₁N₂O [M+H] 269.1654, found 269.1653.

(Z)-6-phenyl-N-(quinolin-8-yl)hex-3-enamide (1g): The title compound was prepared from 6-phenylhex-3-yn-1-ol (523 mg, 3 mmol) according to the general semi-reduction, Jones oxidation, and amide coupling procedures. Compound 1g was isolated as a light-brown oil (209 mg, 22% yield over 3 steps). ¹H NMR (600 MHz, CDCl₃) δ 10.00 (s, 1H), 8.82–8.73 (m, 2H), 8.15 (dd, J = 8.3, 1.7 Hz, 1H), 7.57–

7.47 (m, 2H), 7.44 (dd, J = 8.3, 4.2 Hz, 1H), 7.28–7.23 (m, 2H), 7.23–7.18 (m, 2H), 7.14 (td, J = 7.2, 1.5 Hz, 1H), 5.91–5.84 (m, 1H), 5.84–5.77 (m, 1H), 3.28 (dd, J = 7.3, 1.2 Hz, 2H), 2.79 (t, J = 7.7 Hz, 2H), 2.55–2.48 (m, 2H); ¹³**C NMR** (150 MHz, CDCl₃) δ 169.5, 148.2, 141.5, 138.6, 136.3, 134.4, 134.2, 128.5, 128.4, 127.9, 127.4, 125.9, 122.1, 121.6, 121.6, 116.4, 36.8, 35.5, 29.4; **HRMS** (ESI-TOF) Calcd for C₂₁H₂₁N₂O [M+H] 317.1654, found 317.1658.

(Z)-7-oxo-7-(quinolin-8-ylamino)hept-4-en-1-yl benzoate (1h): Internal alkyne 7-hydroxyhept-4-yn-1-yl benzoate was synthesized following a literature procedure.²¹ The title compound was prepared from 7-hydroxyhept-4-yn-1-yl benzoate (232 mg, 1 mmol) according to the general semi-reduction, Jones oxidation, and amide coupling procedures. Compound 1h was isolated as a

light-yellow oil (124 mg, 33% yield over 3 steps). ¹H NMR (600 MHz, CDCl₃) δ 10.03 (s, 1H), 8.76 (ddd, J = 8.7, 5.8, 1.5 Hz, 2H), 8.14 (dd, J = 8.3, 1.6 Hz, 1H), 8.04–7.94 (m, 2H), 7.56–7.46 (m, 3H), 7.46–7.35 (m, 3H), 5.87 (q, J = 6.2 Hz, 2H), 4.39 (t, J = 6.4 Hz, 2H), 3.38 (d, J = 6.1 Hz, 2H), 2.40 (q, J = 6.9 Hz, 2H), 2.01–1.91 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 169.4, 166.7, 148.4, 138.6, 136.5, 136.4, 134.5, 134.0, 133.0, 130.4, 129.6, 128.5, 128.1, 127.5, 122.8, 121.7, 116.6, 64.4, 37.0, 28.6, 24.2; HRMS (ESI-TOF) Calcd for C₂₃H₂₃N₂O₃ [M+H] 375.1709, found 375.1710.

(*Z*)-5-phenyl-*N*-(quinolin-8-yl)pent-3-enamide (1j): The title compound was prepared from 5-phenylpent-3-yn-1-ol (368 mg, 2.3 mmol) according to the general semi-reduction, Jones oxidation, and amide coupling procedure. 1j was isolated as a light-brown oil (158 mg, 23% yield for 3 steps). ¹H NMR (600 MHz, CDCl₃) δ 9.98 (s, 1H), 8.76–8.64 (m, 2H), 8.05 (dt, *J* = 8.2, 1.6 Hz, 1H), 7.48–7.38 (m,

2H), 7.34 (ddd, J = 8.2, 4.2, 1.4 Hz, 1H), 7.21–7.13 (m, 4H), 7.09 (ddt, J = 8.0, 3.6, 2.1 Hz, 1H), 5.92 (dtt, J = 10.1, 7.2, 1.4 Hz, 1H), 5.84 (dtq, J = 10.7, 7.5, 1.6 Hz, 1H), 3.47 (dd, J = 7.6, 1.7 Hz, 2H), 3.38 (dd, J = 7.6, 1.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 169.2, 148.2, 139.9, 138.4, 136.2, 134.4, 133.4, 128.5, 128.4, 127.9, 127.3, 126.1, 122.3, 121.5, 121.5, 116.4, 36.8, 33.7; HRMS (ESI-TOF) Calcd for C₂₀H₁₉N₂O [M+H] 303.1497, found 303.1495.

Scheme S11: Synthesis of 5-(4-(tert-butyl)phenyl)-1-methyl-1H-indole (2h).²²

t-Bu Йe 2h

5-(4-(*tert*-butyl)phenyl)-1-methyl-1*H*-indole (2h):²² To a 50-mL Schlenk flask equipped with a magnetic stir bar, were added 5-bromo-1-methyl-1H-indole (210 mg, 1 mmol), (4-(tert-butyl)phenyl)boronic acid (214 mg, 1.2 mmol), Pd(PPh₃)₄ (23 mg, 2 mol%), and K₃PO₄ (425 mg, 2 mmol). The reaction flask was evacuated and backfilled with N₂ (\times 3), followed by addition of DME and water (5 mL, 4:1 v/v). The reaction mixture was

stirred at 65 °C overnight, after which it was allowed to cool down to room temperature, concentrated under vacuum, and diluted with EtOAc (5 mL). The resulting solution was washed with sat. NaHCO₃ (10 mL, \times 1) and brine (10 mL, \times 1) and dried over Na₂SO₄. The organic solvent was removed under vacuum, and the residue was purified by column chromatography (10:1 hexanes: EtOAc) to afford the product as a light-orange solid (166 mg, 63% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.85–7.80 (m, 1H), 7.62–7.55 (m, 2H), 7.47 (td, J = 8.3, 1.9 Hz, 3H), 7.36 (d, J = 8.5 Hz, 1H), 7.06 (d, J = 3.1 Hz, 1H), 6.52 (d, J = 3.0 Hz, 1H), 3.81 (s, 3H), 1.37 (d, J = 0.9 Hz, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 149.1, 139.7, 136.1, 132.7, 129.3, 128.9, 127.0, 125.6, 121.4, 119.2, 109.3, 101.2, 34.4, 32.9, 31.4; HRMS (ESI-TOF) Calcd for C₁₉H₂₂N [M+H] 264.1752, found 264.1752.

Reaction Optimization Details

	+ + B ₂ pin ₂	Pd(OAc) ₂ (10 mol%) L23 (20 mol%), KF (2 equiv)	HN Bpin O
1a (0.05 mmol)	2b (3 equiv) 3a (4 equiv)	solvent, 60 °C, 2 d	4b
Entry	Solvent	Yield ^b (%)	er ^c
1	toluene	22	63:37
2	THF	17	66:34
3	MeCN	18	59:41
4	MeOH	trace	
5	DMF	trace	
6	HFIP	60	57:43
7	THF/HFIP (1:1)	62	78:22
8	THF/HFIP (1:2)	62	74:26
9	THF/HFIP (2:1)	33	78:22

Table S3. Optimization of reaction solvent.^a

^aReaction conditions: **1a** (0.1 mmol), **2b** (3 equiv), **3a** (4 equiv), $Pd(OAc)_2$ (10 mol%), **L23** (20 mol%), BQ (20 mol%), KF (2 equiv), O₂ (1 atm), 2 d. ^bYields were determined by ¹H NMR analysis of the crude reaction mixture using CH_2Br_2 as internal standard. ^cThe *er* was determined by 2D LC/SFC analysis.

Table S4. Optimization of palladium source.^a

		Pd catalyst (10 mol%) L34 (20 mol%), KF (2 equiv)	MeN Bpin O
AQ 1b (0.05 mmol)	2a (3 equiv) 3a (4 equiv)	BQ (20 mol%), O ₂ (1 atm) HFIP/THF (1:1), 60 °C, 2 d	Me 4d
Entry	Pd Source	Yield ^b (%)	er ^c
1	Pd(TFA) ₂	44	90:10
2	PdCl ₂	trace	
3	Pd(MeCN) ₄ (BF ₄) ₂	65	90:10
4	Pd(PhCN) ₂ Cl ₂	58	92:8
5	PdBr ₂	35	90:10
6	Pd(OAc) ₂	77	91:9

^aReaction conditions: **1b** (0.1 mmol), **2a** (3 equiv), **3a** (4 equiv), **L34** (20 mol%), BQ (20 mol%), KF (2 equiv), HFIP/THF (1:1, 0.2 mL), O₂ (1 atm), 2 d. ^bYields were determined by ¹H NMR analysis of the crude reaction mixture using CH₂Br₂ as internal standard. ^cThe *er* was determined by 2D LC/SFC analysis.

General Procedure for Asymmetric Alkene Carboboration

General Procedure: To an 8-mL reaction tube equipped with a Teflon-coated magnetic stir bar were added the alkene substrate (0.1 mmol), the appropriate carbon nucleophile (0.3 mmol), bis(pinacolato)diboron (0.4 mmol), Pd(OAc)₂ (10 mol%), L34 (20 mol%), benzoquinone (20 mol%), and NaF (0.2 mmol). The tube was sealed with a screw-top septum cap and was then evacuated and backfilled with O₂ (×3). Under positive O₂ pressure, HFIP/THF/DMF (0.2 mL, 2:2:1, v/v/v) was added. All needle inlets/outlets were removed, and the reaction was placed in a heating block that was pre-heated to 45 °C. After 5 days, the dark black reaction mixture was allowed to cool to room temperature and directly purified by rapid silica gel column chromatography—with a total residence time less than 20 min to prevent alkyl boronate decomposition—affording the pure product.

*Notes:*²³ Column chromatography should be performed quickly to prevent product decomposition on silica. The recommended residence time is 10-15 min for reactions on 0.1 mmol scale. It is also important to use a short bed of silica gel (approximately 6 cm of silica for a 2.5 cm diameter column). If pinacol is still present after column, it can be removed by azetropic distillation.

(S)-4-(1-methyl-1*H*-indol-3-yl)-*N*-(quinolin-8-yl)-3-(4,4,5,5tetramethyl-1,3,2-dioxaborolan-2-yl)butanamide (4a): The title compound was prepared from 1a (21.2 mg, 0.1 mmol), *N*methylindole (39.2 mg, 0.3 mmol), and bis(pinacolato)diboron (101.6 mg, 0.4 mmol) according to the general asymmetric

carboboration procedure. Purification using silica gel column chromatography with 3:1 hexanes:EtOAc as the eluent gave the product as a yellow oil (37.1 mg, 79% yield, 86:14 *er*). $[\alpha]_D^{20} = +9.4$ (c = 0.35 Chloroform, 86:14 *er*). SFC (chiral column) The enantiomeric ratio was determined by chiral SFC on a Daicel IB column (3 µm, 4.6×250 mm), 35% MeOH/CO₂, 4.0 mL/min, $\lambda = 241$ nm, t (major) = 2.088 min, t (minor) = 2.499 min.

(S)-4-(1*H*-indol-3-yl)-*N*-(quinolin-8-yl)-3-(4,4,5,5tetramethyl-1,3,2-dioxaborolan-2-yl)butanamide (4b): The title compound was prepared from 1a (21.2 mg, 0.1 mmol), indole (35.1 mg, 0.3 mmol), and bis(pinacolato)diboron (101.6 mg, 0.4 mmol) according to the general asymmetric

carboboration procedure. Purification using silica gel column chromatography with 3:1 hexanes:EtOAc as the eluent gave the product as a light-orange solid (32.3 mg, 71% yield, 83:17 *er*). $[\alpha]_D^{20} = +10.6$ (c = 0.35 Chloroform, 83:17 *er*). SFC (chiral column) The enantiomeric ratio was determined by chiral SFC on a Daicel IB column (3 µm, 4.6×250 mm), 35% MeOH/CO₂, 4.0 mL/min, $\lambda = 241$ nm, t (major) = 2.296 min, t (minor) = 2.539 min.

(S)-5-benzoyl-6-oxo-6-phenyl-N-(quinolin-8-yl)-3-(4,4,5,5tetramethyl-1,3,2-dioxaborolan-2-yl)hexanamide (4c): The title compound was prepared from 1a (21.2 mg, 0.1 mmol), 1,3diphenylpropane-1,3-dione (67.3 mg, 0.3 mmol), and bis(pinacolato)diboron (101.6 mg, 0.4 mmol) according to the

general asymmetric carboboration procedure. Purification using silica gel column chromatography with 7:1 hexanes: acetone as the eluent gave the product as a white solid (16.8 mg, 30% yield, 75:25 er). SFC (chiral column) The enantiomeric ratio was determined

by chiral SFC on a Daicel IBN column (3 µm, 4.6×250 mm), 30% MeOH/CO₂, 4.0 mL/min, $\lambda = 241$ nm, t (major) = 2.319 min, t (minor) = 2.515 min.

(3R,4R)-4-(1-methyl-1H-indol-3-yl)-N-(quinolin-8-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentanamide (4d): The title compound was prepared from 1b (22.6 mg, 0.1 mmol). *N*-methylindole (39.2 0.3 mg, mmol). and bis(pinacolato)diboron (101.6 mg, 0.4 mmol) according to the

general asymmetric carboboration procedure. Purification using silica gel column chromatography with 4:1 hexanes:EtOAc as the eluent gave the product as a yellow oil (38.1 mg, 79% yield, 91:9 er). $[a]_{D}^{20} = +16.3$ (c = 0.4 Chloroform, 91:9 er). This product was isolated as an inseparable 20:1 mixture of diastereomers. The reported dr was determined by ¹H NMR analysis of purified **4d** and is consistent with that of the crude reaction mixture. The following analytical data correspond to the mixture. ¹H NMR (600 MHz, CDCl₃) δ 9.68 (s, 1H), 9.47 (s, 0.05H), 8.79–8.67 (m, 2.1H), 8.12 (dd, J = 8.3, 1.6 Hz, 1.05H), 7.69 (dd, J = 7.9, 1.0 Hz, 1.05H), 7.52–7.39 (m, 3.15H), 7.24–7.12 (m, 2.1H), 7.05 (ddd, J = 7.8, 6.9, 1.0 Hz, 1.05H), 6.98 (s, 1H), 6.88 (s, 0.05H), 3.71 (s, 3.15H), 3.43 (t, J = 6.9 Hz, 1H), 3.17 (dd, J =10.8, 6.9 Hz, 0.05H), 2.76 (dd, J = 15.2, 10.6 Hz, 1H), 2.67 (dd, J = 15.2, 5.5 Hz, 1H), 2.63– 2.58 (m, 0.1H), 2.09 (dt, J = 10.5, 6.0 Hz, 1H), 1.94 (td, J = 10.3, 5.8 Hz, 0.05H), 1.47 (d, J = 10.35 (d, J 6.9 Hz, 0.15H), 1.43 (d, J = 7.0 Hz, 3H), 1.31 (s, 0.3H), 1.28 (s, 0.3H), 1.12 (s, 6H), 1.06 (s, 0.15H), 1.05 (s, 0.15H), 6H); ¹³C NMR (150 MHz, CDCl₃) δ 172.3, 147.9, 138.2, 136.8, 136.2, 134.8, 127.8, 127.5, 127.4, 126.0, 121.4, 121.2, 120.9, 119.8, 119.6, 118.4, 116.3, 108.8, 83.0, 37.2, 32.6, 31.1, 24.8, 24.5, 20.3; HRMS (ESI-TOF) Calcd for C₂₉H₃₅BN₃O₃ [M+H] 483.2808, found 483.2809; SFC (chiral column) The enantiomeric ratio was determined by chiral SFC on a Daicel IBN column (3 μ m, 4.6×250 mm), 25% MeOH/CO₂, 4.0 mL/min, λ = 241 nm, t (major) = 2.793 min, t (minor) = 3.783 min.

(3R,4R)-4-(1-methyl-1H-indol-3-yl)-N-(quinolin-8-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentanamide (4e): The title compound was prepared from 1c (22.6 mg, 0.1 4e mmol), *N*-methylindole (39.2 mg, 0.3 mmol), and bis(pinacolato)diboron (101.6 mg, 0.4 mmol) according to the general asymmetric carboboration procedure. Purification using silica gel column chromatography with 4:1 hexanes: EtOAc as the eluent gave the product as a yellow oil (37.1 mg, 77% yield, 91:9 er). SFC (chiral column) The enantiomeric ratio was determined by chiral SFC on a Daicel IBN column (3 μ m, 4.6×250 mm), 25% MeOH/CO₂, 4.0 mL/min, λ = 241 nm, t (major) = 2.911

min, t (minor) = 3.875 min.

(3R,4R)-4-(1-methyl-1H-indol-3-yl)-N-(quinolin-8-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexanamide (4f): The title compound was prepared from 1d (24.0 mg, 0.1 mmol). *N*-methylindole (39.2 mg, 0.3 mmol). and bis(pinacolato)diboron (101.6 mg, 0.4 mmol) according to the

general asymmetric carboboration procedure. Purification using silica gel column chromatography with 5:1 hexanes:EtOAc as the eluent gave the product as a yellow oil (37.7 mg, 76% yield, 94:6 *er*). $[\alpha]_D^{20} = +31.7$ (c = 0.5 Chloroform, 94:6 *er*). ¹H NMR (600 MHz, CDCl₃) δ 9.69 (s, 1H), 8.83–8.69 (m, 2H), 8.13 (dd, J = 8.2, 1.7 Hz, 1H), 7.66 (d, J = 7.9 Hz, 1H), 7.54–7.38 (m, 3H), 7.22 (d, J = 8.1 Hz, 1H), 7.15 (t, J = 7.6 Hz, 1H), 7.07–6.95 (m, 2H), 3.73 (s, 3H), 3.12 (ddd, J = 9.7, 7.7, 4.3 Hz, 1H), 2.81–2.66 (m, 2H), 2.15–2.03 (m, 1H), 1.92 (dqd, J = 14.6, 7.3, 4.4 Hz, 1H), 1.78 (dtd, J = 13.6, 7.1, 2.2 Hz, 1H), 1.03 (s, 6H), 0.97 (s, 6H 6H), 0.86 (t, J = 7.3 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.2, 147.9, 138.3, 136.6, 136.2, 134.8, 128.6, 127.9, 127.4, 126.6, 121.4, 121.1, 120.9, 119.6, 118.4, 117.6, 116.3, 108.7, 82.9, 38.7, 38.4, 32.6, 27.8, 24.8, 24.5, 12.1; HRMS (ESI-TOF) Calcd for C₃₀H₃₇BN₃O₃ [M+H] 497.2964, found 497.2970; SFC (chiral column) The enantiomeric ratio was determined by chiral SFC on a Daicel IBN column (3 µm, 4.6×250 mm, 25% MeOH/CO₂, 4.0 mL/min, $\lambda = 241$ nm, t (major) = 2.293 min, t (minor) = 3.275 min; X-ray (single-crystal) Colorless needle crystals of X-ray diffraction quality were obtained by vapor diffusion of hexanes into a saturated solution of 4f in EtOH (CCDC 1888952).²⁴

(3*R*,4*R*)-*N*-(5-methoxyquinolin-8-yl)-4-(1-methyl-1*H*indol-3-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)hexanamide (4g): The compound was prepared from 1e (27.0 mg, 0.1 mmol), *N*-methylindole (39.2 mg, 0.3 mmol), and bis(pinacolato)diboron (101.6 mg, 0.4 mmol) according

to the general asymmetric carboboration procedure. Purification using silica gel column chromatography with 5:1 hexanes:EtOAc as the eluent gave the product as a yellow solid (31.5 mg, 60% yield, 94:6 *er*). $[\alpha]_{D}^{20} = +26.4$ (c = 0.45 Chloroform, 94:6 *er*). ¹H NMR (600 MHz, CDCl₃) δ 9.46 (s, 1H), 8.76 (d, J = 4.1 Hz, 1H), 8.68 (d, J = 8.6 Hz, 1H), 8.54 (d, J = 8.3 Hz, 1H), 7.66 (d, J = 7.9 Hz, 1H), 7.40 (dd, J = 8.5, 4.2 Hz, 1H), 7.23 (d, J = 8.2 Hz, 1H), 7.15 (t, J = 7.6 Hz, 1H), 7.03 (t, J = 7.5 Hz, 1H), 6.98 (s, 1H), 6.81 (d, J = 8.6 Hz, 1H), 3.97 (s, 3H), 3.73 (s, 3H), 3.11 (td, J = 8.8, 4.2 Hz, 1H), 2.71 (dd, J = 8.0, 5.2 Hz, 2H), 2.08 (a, J =8.0 Hz, 1H), 1.99–1.88 (m, 1H), 1.77 (dt, J = 14.2, 7.5 Hz, 1H), 1.02 (s, 6H), 0.96 (s, 6H), 0.85 (t. J = 7.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.7, 149.8, 148.4, 139.0, 136.6, 131.0, 128.6, 128.3, 126.6, 121.0, 120.5, 120.3, 119.6, 118.4, 117.7, 116.4, 108.7, 104.4, 82.8, 55.7, 38.7, 38.4, 32.6, 27.8, 24.7, 24.5, 12.1; HRMS (ESI-TOF) Calcd for C₃₁H₃₉BN₃O₄ [M+H] 527.3070, found 527.3071; SFC (chiral column) The enantiomeric ratio was determined by chiral SFC on Daicel IBN column (3 µm, 4.6×250 mm), 25% MeOH/CO₂, 4.0 mL/min, $\lambda = 250$ nm, t (major) = 3.164 min, t (minor) = 4.576 min; X-ray (single-crystal) Colorless plank crystals of X-ray diffraction quality were obtained by vapor diffusion of hexanes into a saturated solution of 4g in EtOAc (CCDC 1888953).²⁴

(3*R*,4*R*)-4-(1-methyl-1*H*-indol-3-yl)-*N*-(quinolin-8-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octanamide (4h): The title compound was prepared from 1f (26.8 mg, 0.1 mmol), *N*-methylindole (39.2 mg, 0.3 mmol), and bis(pinacolato)diboron (101.6 mg, 0.4 mmol) according to the

general asymmetric carboboration procedure. Purification using silica gel column chromatography with 5:1 hexanes:EtOAc as the eluent gave the product as a light-yellow solid (29.9 mg, 57% yield, 94:6 *er*). $[\alpha]_{D}^{20} = +9.6$ (c = 0.25 Chloroform, 94:6 *er*). ¹H NMR (500 MHz, CDCl₃) δ 9.68 (s, 1H), 8.79–8.68 (m, 2H), 8.12 (dd, J = 8.3, 1.7 Hz, 1H), 7.66 (dt, J = 8.0, 1.0 Hz, 1H), 7.54–7.35 (m, 3H), 7.21 (dt, J = 8.2, 0.9 Hz, 1H), 7.14 (ddd, J = 8.1, 6.9, 1.1 Hz, 1H), 7.03 (ddd, J = 8.0, 6.9, 1.1 Hz, 1H), 6.97 (s, 1H), 3.72 (s, 3H), 3.19 (ddd, J = 9.9, 7.3, 4.3 Hz, 1H), 2.73 (d, J = 8.2 Hz, 2H), 2.07 (q, J = 7.7 Hz, 1H), 1.92–1.70 (m, 2H), 1.32–1.21 (m, 4H), 1.05 (s, 6H), 0.97 (s, 6H), 0.82 (t, J = 6.8 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.3, 147.9, 138.3, 136.7, 136.2, 134.8, 128.5, 127.9, 127.4, 126.5, 121.4, 121.1, 120.9, 119.6, 118.4, 118.0, 116.3, 108.8, 82.9, 38.3, 36.9, 34.8, 32.6, 29.9, 24.8, 24.5, 22.9, 14.1; HRMS (ESI-TOF) Calcd for C₃₂H₄₁BN₃O₃ [M+H] 525.3277, found 525.3281; SFC (chiral column) The enantiomeric ratio was determined by chiral SFC on a Daicel IB column (3 µm, 4.6×250 mm), 35% MeOH/CO₂, 4.0 mL/min, $\lambda = 241$ nm, t (major) = 1.578 min, t (minor) = 1.993 min.

(3R,4R)-4-(1-methyl-1*H*-indol-3-yl)-6-phenyl-*N*-(quinolin-8-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)hexanamide (4i): The title compound was prepared from **1g** (31.6 mg, 0.1 mmol), *N*-methylindole (39.2 mg, 0.3 mmol), and bis(pinacolato)diboron (101.6 mg, 0.4 mmol) according to the general asymmetric carboboration procedure. Purification using

silica gel column chromatography with 5:1 hexanes:EtOAc as the eluent gave the product as a yellow oil (29.2 mg, 51% yield, 94:6 *er*). ¹**H NMR** (400 MHz, CDCl₃) δ 9.69 (s, 1H), 8.79–8.71 (m, 2H), 8.13 (dd, J = 8.3, 1.7 Hz, 1H), 7.67 (dt, J = 8.0, 1.0 Hz, 1H), 7.54–7.39 (m, 3H), 7.26–7.10 (m, 7H), 7.09–7.02 (m, 2H), 3.76 (s, 3H), 3.25 (ddd, J = 9.9, 7.2, 4.3 Hz, 1H), 2.79–2.50 (m, 4H), 2.31–2.04 (m, 3H), 1.06 (s, 6H), 0.97 (s, 6H); ¹³**C NMR** (150 MHz, CDCl₃) δ 172.1, 147.9, 142.9, 138.2, 136.7, 136.2, 134.7, 128.5, 128.4, 128.1, 127.8, 127.4, 126.5, 125.4, 121.4, 121.2, 120.9, 119.6, 118.5, 117.5, 116.3, 108.8, 82.9, 38.3, 37.0, 36.6, 34.0, 32.7, 27.2, 24.8, 24.5; **HRMS** (ESI-TOF) Calcd for C₃₆H₄₁BN₃O₃ [M+H] 573.3277, found 573.3276; **SFC** (chiral column) The enantiomeric ratio was determined by chiral SFC on a Daicel IB column (3 µm, 4.6×250 mm), 35% MeOH/CO₂, 4.0 mL/min, $\lambda = 241$ nm, t (major) = 2.273 min, t (minor) = 2.699 min.

(4R,5R)-4-(1-methyl-1H-indol-3-yl)-7-oxo-7-(quinolin-8-ylamino)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)heptyl benzoate (4j): The title compound was prepared from 1h (37.5 mg, 0.1 mmol), N-methylindole (39.2 mg, 0.3 mmol), and bis(pinacolato)diboron (101.6 mg, 0.4 mmol) according to the general asymmetric carboboration procedure. Purification

using silica gel chromatography with 5:1 hexanes:EtOAc as the eluent gave the product as a white solid (26.4 mg, 42% yield, 94:6 *er*). ¹**H NMR** (600 MHz, CDCl₃) δ 9.68 (s, 1H), 8.81– 8.69 (m, 2H), 8.13 (dd, J = 8.2, 1.6 Hz, 1H), 8.03–7.96 (m, 2H), 7.67 (d, J = 7.9 Hz, 1H), 7.56–7.36 (m, 6H), 7.23 (d, J = 8.2 Hz, 1H), 7.16 (ddd, J = 8.1, 7.0, 1.0 Hz, 1H), 7.04–6.99 (m, 2H), 4.27 (t, J = 6.5 Hz, 2H), 3.72 (s, 3H), 3.26 (ddd, J = 11.0, 7.1, 4.4 Hz, 1H), 2.79– 2.69 (m, 2H), 2.17–2.03 (m, 2H), 1.95 (dtd, J = 13.3, 9.9, 9.5, 5.8 Hz, 1H), 1.75 (ddt, J = 13.2, 9.3, 4.5 Hz, 2H), 1.05 (s, 6H), 0.98 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 172.0, 166.6, 147.9, 138.3, 136.7, 136.2, 134.8, 132.7, 130.5, 129.5, 128.4, 128.2, 127.8, 127.4, 126.6, 121.4, 121.3, 121.0, 119.5, 118.6, 117.2, 116.3, 108.8, 83.0, 65.2, 38.2, 36.8, 32.7, 31.4, 27.1, 24.8, 24.5; **HRMS** (ESI-TOF) Calcd for C₃₈H₄₃BN₃O₅ [M+H] 631.3332, found 631.3332; **SFC** (chiral column) The enantiomeric ratio was determined by chiral SFC on a Daicel IBN column (3 µm, 4.6×250 mm), 35% MeOH/CO₂, 4.0 mL/min, $\lambda = 241$ nm, t (major) = 3.540 min, t (minor) = 4.849 min.

(3*R*,4*R*)-4-(1-isopropyl-1*H*-indol-3-yl)-*N*-(quinolin-8-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexanamide (4k): The title compound was prepared from 1d (24.0 mg, 0.1 mmol), *N*-isopropylindole (47.8 mg, 0.3 mmol), and bis(pinacolato)diboron (101.6 mg, 0.4 mmol) according to the

general asymmetric carboboration procedure. Purification using silica gel column chromatography with 5:1 hexanes:EtOAc as the eluent gave the product as a light-yellow solid (33.0 mg, 63% yield, 95:5 *er*). $[\alpha]_D^{20} = +12.6$ (c = 0.35 Chloroform, 95:5 *er*). ¹H NMR (600 MHz, CDCl₃) δ 9.73 (s, 1H), 8.82–8.72 (m, 2H), 8.12 (dd, J = 8.2, 1.6 Hz, 1H), 7.66 (d, J = 7.9 Hz, 1H), 7.50 (t, J = 7.9 Hz, 1H), 7.47–7.38 (m, 2H), 7.29 (d, J = 8.2 Hz, 1H), 7.19–7.10 (m, 2H), 7.02 (t, J = 7.4 Hz, 1H), 4.63 (p, J = 6.7 Hz, 1H), 3.12 (td, J = 8.8, 4.3 Hz, 1H),

2.76 (qd, J = 15.2, 8.1 Hz, 2H), 2.11 (ddd, J = 10.3, 8.3, 5.9 Hz, 1H), 1.92 (ddd, J = 13.6, 7.3, 4.4 Hz, 1H), 1.82–1.75 (m, 1H), 1.51 (dd, J = 8.5, 6.7 Hz, 6H), 0.99 (s, 6H), 0.95 (s, 6H), 0.83 (t, J = 7.3 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.2, 147.9, 138.3, 136.2, 135.5, 134.8, 128.7, 127.9, 127.5, 121.4, 121.4, 121.0, 120.8, 119.7, 118.3, 117.8, 116.4, 109.0, 82.8, 46.7, 38.8, 38.7, 27.8, 24.7, 24.6, 22.9, 22.8, 11.9; HRMS (ESI-TOF) Calcd for C₃₂H₄₁BN₃O₃ [M+H] 525.3277, found 525.3276; SFC (chiral column) The enantiomeric ratio was determined by chiral SFC on a Daicel IBN column (3 µm, 4.6×250 mm), 30% MeOH/CO₂, 4.0 mL/min, $\lambda = 298$ nm, t (major) = 1.754 min, t (minor) = 2.374 min.

(3*R*,4*R*)-4-(1-benzyl-1*H*-indol-3-yl)-*N*-(quinolin-8-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentanamide (4l): The title compound was prepared from 1c (22.6 mg, 0.1 mmol), *N*-benzylindole (62.2mg, 0.3 mmol), and bis(pinacolato)diboron (101.6 mg, 0.4 mmol) according to the

general asymmetric carboboration procedure. Purification using silica gel chromatography with 9:1 hexanes:acetone as the eluent gave the product as a light-green oil (33.5 mg, 60% yield, 92:8 er). ¹**H NMR** (600 MHz, CDCl₃) δ 9.69 (s, 1H), 8.78–8.68 (m, 2H), 8.12 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.71 (d, *J* = 7.9 Hz, 1H), 7.49 (t, *J* = 7.9 Hz, 1H), 7.44 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.41 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.28 (dd, *J* = 8.1, 6.6 Hz, 2H), 7.24–7.17 (m, 2H), 7.15– 7.09 (m, 3H), 7.08–7.03 (m, 2H), 5.25 (s, 2H), 3.45 (t, *J* = 6.9 Hz, 1H), 2.76 (dd, *J* = 15.2, 10.7 Hz, 1H), 2.67 (dd, *J* = 15.2, 5.4 Hz, 1H), 2.14–2.04 (m, 1H), 1.43 (d, *J* = 7.1 Hz, 3H), 1.09 (s, 6H), 1.02 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 172.2, 147.9, 138.3, 137.9, 136.5, 136.2, 134.8, 128.6, 127.8, 127.8, 127.4, 127.4, 126.8, 125.3, 121.5, 121.4, 120.9, 120.6, 119.7, 118.7, 116.3, 109.4, 83.0, 49.9, 37.3, 31.1, 24.8, 24.5, 20.3; **HRMS** (ESI-TOF) Calcd for C₃₅H₃₉BN₃O₃ [M+H] 559.3121, found 559.3123; **SFC** (chiral column) The enantiomeric ratio was determined by chiral SFC on a Daicel IBN column (3 µm, 4.6×250 mm), 30% MeOH/CO₂, 4.0 mL/min, λ = 295 nm, t (major) = 3.982 min, t (minor) = 5.630 min.

(3*R*,4*R*)-4-(5-methoxy-1-methyl-1*H*-indol-3-yl)-*N*-(quinolin-8-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexanamide (4m): The title compound was prepared from 1d (24.0 mg, 0.1 mmol), 5-methoxy-*N*-methylindole (48.4 mg, 0.3 mmol), and bis(pinacolato)diboron (101.6 mg,

0.4 mmol) according to the general asymmetric carboboration procedure. Purification using silica gel column chromatography with 5:1 hexanes:EtOAc as the eluent gave the product as a colorless oil (44.7 mg, 85% yield, 93:7 *er*). ¹**H NMR** (600 MHz, CDCl₃) δ 9.68 (s, 1H), 8.82–8.69 (m, 2H), 8.12 (dd, J = 8.2, 1.6 Hz, 1H), 7.53–7.38 (m, 3H), 7.13–7.03 (m, 2H), 6.97 (s, 1H), 6.79 (dd, J = 8.8, 2.4 Hz, 1H), 3.76 (s, 3H), 3.70 (s, 3H), 3.07 (td, J = 8.7, 4.3 Hz, 1H), 2.74 (dd, J = 8.1, 6.3 Hz, 2H), 2.08 (dt, J = 9.4, 7.2 Hz, 1H), 1.92 (ddd, J = 13.5, 7.2, 4.4 Hz, 1H), 1.75 (dtd, J = 13.6, 7.1, 2.1 Hz, 1H), 1.04 (s, 6H), 0.98 (s, 6H), 0.86 (t, J = 7.3 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.2, 153.4, 147.9, 138.2, 136.2, 134.8, 132.0, 128.9, 127.8, 127.4, 127.2, 121.4, 120.9, 117.1, 116.2, 111.3, 109.4, 101.3, 82.9, 55.9, 38.5, 38.4, 32.8, 27.9, 24.8, 24.5, 12.1; HRMS (ESI-TOF) Calcd for C₃₁H₃₉BN₃O₄ [M+H] 527.3070, found 527.3070; **SFC** (chiral column) The enantiomeric ratio was determined by chiral SFC on a Daicel IBN column (3 µm, 4.6×250 mm), 30% MeOH/CO₂, 4.0 mL/min, $\lambda = 305$ nm, t (major) = 2.022 min, t (minor) = 2.753 min.

(3*R*,4*R*)-4-(1,7-dimethyl-1*H*-indol-3-yl)-*N*-(quinolin-8-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)hexanamide (4n): The title compound was prepared from **1d** (24.0 mg, 0.1 mmol), 7-methyl-*N*-methylindole (43.6 mg, 0.3 mmol), and bis(pinacolato)diboron (101.6 mg, 0.4 mmol)

according to the general asymmetric carboboration procedure. Purification using silica gel column chromatography with 5:1 hexanes:EtOAc as the eluent gave the product as a light-yellow solid (43.3 mg, 85% yield, 93:7 *er*). ¹**H NMR** (600 MHz, CDCl₃) δ 9.69 (s, 1H), 8.82–8.73 (m, 2H), 8.15 (dd, J = 8.2, 1.6 Hz, 1H), 7.54–7.42 (m, 4H), 6.90 (d, J = 8.1 Hz, 2H), 6.84 (d, J = 7.0 Hz, 1H), 4.01 (s, 3H), 3.14 (ddd, J = 9.4, 7.2, 4.3 Hz, 1H), 2.79–2.67 (m, 5H), 2.13–2.08 (m, 1H), 1.92 (ddq, J = 14.8, 7.5, 3.1 Hz, 1H), 1.80 (ddd, J = 13.6, 9.4, 7.1 Hz, 1H), 1.11 (s, 6H), 1.05 (s, 6H), 0.89 (t, J = 7.3 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.3, 147.9, 138.3, 136.2, 135.4, 134.8, 129.7, 128.3, 127.9, 127.4, 123.8, 121.4, 120.9, 120.7, 118.7, 117.6, 117.2, 116.3, 83.0, 38.4, 38.2, 36.6, 27.6, 24.8, 24.5, 19.7, 12.2; HRMS (ESI-TOF) Calcd for C₃₁H₃₉BN₃O₃ [M+H] 511.3121, found 511.3127; **SFC** (chiral column) The enantiomeric ratio was determined by chiral SFC on a Daicel IBN column (3 µm, 4.6×250 mm), 30% MeOH/CO₂, 4.0 mL/min, $\lambda = 298$ nm, t (major) = 2.063 min, t (minor) = 2.883 min.

(3*R*,4*R*)-4-(5-(4-(*tert*-butyl)phenyl)-1-methyl-1*H*-indol-3yl)-*N*-(quinolin-8-yl)-3-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)hexanamide (40): The title compound was prepared from 1d (24.0 mg, 0.1 mmol), 5-(4-(*tert*butyl)phenyl)-*N*-methylindole (79.0 mg, 0.3 mmol), and bis(pinacolato)diboron (101.6 mg, 0.4 mmol) according to the general asymmetric carboboration procedure.

Purification using silica gel column chromatography with 5:1 hexanes:EtOAc as the eluent gave the product as a yellow oil (34.5 mg, 55% yield, 92:8 *er*). ¹**H NMR** (600 MHz, CDCl₃) δ 9.71 (s, 1H), 8.78 (d, J = 7.7 Hz, 1H), 8.71 (d, J = 4.1 Hz, 1H), 8.12 (d, J = 8.2 Hz, 1H), 7.81 (s, 1H), 7.51 (dd, J = 16.8, 8.0 Hz, 3H), 7.45 (d, J = 8.3 Hz, 1H), 7.42–7.37 (m, 2H), 7.33 (d, J = 7.9 Hz, 2H), 7.24 (s, 1H), 7.02 (s, 1H), 3.75 (s, 3H), 3.17 (td, J = 8.7, 4.3 Hz, 1H), 2.82–2.71 (m, 2H), 2.11 (q, J = 8.0 Hz, 1H), 1.94 (dq, J = 13.0, 6.5 Hz, 1H), 1.81 (dq, J = 14.3, 7.5 Hz, 1H), 1.34 (s, 9H), 1.04 (s, 6H), 0.98 (s, 6H), 0.87 (t, J = 7.3 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.2, 148.8, 147.9, 139.9, 138.3, 136.1, 136.0, 134.8, 131.8, 129.2, 127.8, 127.4, 127.2, 127.0, 125.4, 121.4, 120.9, 120.9, 118.2, 117.9, 116.3, 108.9, 82.9, 38.5, 38.5, 34.4, 32.8, 31.4, 28.1, 24.8, 24.5, 12.2; **HRMS** (ESI-TOF) Calcd for C₄₀H₄₉BN₃O₃ [M+H] 629.3903, found 629.3903; **SFC** (chiral column) The enantiomeric ratio was determined by chiral SFC on a Daicel IBN column (3 µm, 4.6×250 mm), 25% MeOH/CO₂, 4.0 mL/min, $\lambda = 300$ nm, t (major) = 4.003 min, t (minor) = 5.914 min.

(*R*)-5-(1-methyl-1*H*-indol-3-yl)-*N*-(quinolin-8-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentanamide (4p): The title compound was prepared from 1i (22.6 mg, 0.1 mmol), *N*-methylindole (39.2 mg, 0.3 mmol), and bis(pinacolato)diboron (101.6 mg, 0.4 mmol) according to the

general asymmetric carboboration procedure. Purification using silica gel column chromatography with 5:1 hexanes:EtOAc as the eluent gave the product as a yellow oil (36.7 mg, 76% yield, 76:24 *er*). **SFC** (chiral column) The enantiomeric ratio was determined by chiral SFC on a Daicel IBN column (3 μ m, 4.6×250 mm), 25% MeOH/CO₂, 4.0 mL/min, λ = 241 nm, t (minor) = 4.982 min, t (major) = 5.271 min.

Unsuccessful Non-Indole Carbon Nucleophiles

Scheme S12: Unsuccessful carbon nucleophiles for carboboration reaction.

b)

d)

Large-Scale Synthesis and Recrystallization

C)

Scheme S13: Large-Scale Synthesis of Chiral Boronate 4f.

Procedure for Large-Scale Synthesis and Recrystallization of 4f: Alkene substrate **1b** (600 mg, 2.5 mmol), *N*-methylindole (980 mg, 7.5 mmol), bis(pinacolato)diboron (2.54 g, 10 mmol), Pd(OAc)₂ (55 mg, 0.25 mmol), **L34** (214 g, 0.5 mmol), benzoquinone (55 mg, 0.5 mmol), and NaF (210 mg, 5 mmol) were added to a 500-mL Schlenk flask. The reaction flask was sealed with a rubber septum and was then evacuated and backfilled with O₂ (×3). Under positive O₂ pressure HFIP/THF/DMF (5 mL, 2:2:1, v/v/v) was added. The flask was submerged into a silicon oil bath that was pre-heated to 45 °C. After 5 days, the dark brown reaction mixture was cooled to room temperature, diluted with EtOAc (10 mL) and washed with brine (20 mL). The organic layer was dried over Na₂SO₄ and concentrated to afford a brown residue that upon purification by rapid silica gel column chromatography—with a residence time less than 20 min to prevent alkyl boronate decomposition—afforded **4f** (809 mg, 65%, 95:5 *er*) as a light-yellow solid. Analytical data was consistent with the information reported above.

Recrystallization: A sample of **4f** (100 mg) was dissolved in a minimum volume of Et_2O or EtOH to afford a saturated solution in a 4-dram vial. The organic solvent was slowly evaporated until small amount of crystals precipitated. The vial was placed in a 4 °C refrigerator for 2 days and the recrystallized product **4f** (63.7 mg, 98.7% *ee* from Et_2O ; 67.1 mg, >99% *ee* from EtOH) was collected by filtration.

Figure S1: Photographic depiction of the procedure for gram-scale synthesis of 4f.
a) Reagents. b) Adding reagents to Schlenk flask. c) Degassing and back-filling with O₂. d) Heating in oil bath.

Scheme S14: Synthesis of potassium trifluoroborate salt 5.

(3R,4R)-4-(1-methyl-1*H*-indol-3-yl)-*N*-(quinolin-8-yl)-3-(trifluoro- λ^4 -boraneyl)hexanamide, potassium salt (5): The title compound was prepared by adapting a literature procedure.²⁵ In a 15-mL reaction tube containing a Tefloncoated magnetic stir bar, the borylated compound 4f (49.8 mg,

0.1 mmol) was dissolved in MeCN (0.2 mL), and saturated aq. KHF₂ (4.5 M, 0.09 mL, 4 equiv) was added. The reaction mixture was stirred for 5 h, concentrated, and azeotroped with EtOH (×3). The resulting material was then placed on the high vacuum for 6 h. The crude product was extracted with hot acetone, filtered and then concentrated. Et₂O (3 mL) was added to the crude material, and the mixture was sonicated for 30 min. After removal of the solvent, the trifluoroborate salt was achieved as a pale-yellow solid (45.4 mg, 95% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.46 (s, 1H), 8.51 (d, *J* = 8.3 Hz, 2H), 7.92 (d, *J* = 8.3 Hz, 1H), 7.70–7.57 (m, 1H), 7.29 (d, *J* = 8.1 Hz, 1H), 7.23 (d, *J* = 11.1 Hz, 2H), 7.11 (d, *J* = 8.2 Hz, 1H), 7.05 (t, *J* = 7.5 Hz, 1H), 6.91 (t, *J* = 7.4 Hz, 1H), 6.77 (s, 1H), 3.52 (s, 3H), 3.04 (s, 1H), 2.34 (d, *J* = 11.7 Hz, 2H), 1.83 (s, 1H), 1.56 (s, 1H), 1.38 (s, 1H), 0.73 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 176.1, 147.8, 138.2, 136.9, 135.8, 134.6, 128.5, 127.7, 127.3, 126.4, 121.2, 120.7, 120.7, 119.9, 119.3, 118.0, 116.0, 108.8, 39.1, 37.5, 32.3, 24.8, 24.8, 13.1; ¹⁹F NMR (376 MHz, CDCl₃) δ –140.4 (s, 3F).

Scheme S15: Oxidation of chiral boronate 4f.

(3*R*,4*S*)-3-hydroxy-4-(1-methyl-1*H*-indol-3-yl)-*N*-(quinolin-8-yl)hexanamide (6): The title compound was prepared by adapting a literature procedure.²⁶ To a reaction tube containing 4f (49.8 mg, 0.1 mmol), were added NaBO₃•4H₂O (77 mg, 0.5 mmol), THF (0.5 mL) and H₂O (0.5 mL). The resulting mixture

was allowed to stir at room temperature for 3 h. The aqueous layer was then washed with Et₂O (5 mL, ×2). The combined organic extracts were dried over Na₂SO₄, filtered, and concentrated under vacuum. Purification by preparative TLC (1.5:1 hexanes:EtOAc) gave the product as a white solid (34.1 mg, 88%, 94:6 *er*). ¹H NMR (600 MHz, CDCl₃) δ 10.03 (s, 1H), 8.79–8.69 (m, 2H), 8.13 (dd, J = 8.2, 1.7 Hz, 1H), 7.67 (dt, J = 8.1, 0.9 Hz, 1H), 7.54–7.47 (m, 2H), 7.41 (dd, J = 8.2, 4.2 Hz, 1H), 7.31 (dt, J = 8.3, 0.9 Hz, 1H), 7.22 (ddd, J = 8.1, 6.9, 1.1 Hz, 1H), 7.10 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 7.05 (s, 1H), 4.54 (ddd, J = 9.5, 4.7, 2.8 Hz, 1H), 3.78 (s, 3H), 3.21 (s, 1H), 3.00 (dt, J = 9.9, 5.0 Hz, 1H), 2.74 (dd, J = 15.4, 2.8 Hz, 1H), 2.62 (dd, J = 15.4, 9.4 Hz, 1H), 1.99 (ddd, J = 13.0, 7.3, 5.3 Hz, 1H), 1.93–1.82 (m,

1H), 0.91 (t, J = 7.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.4, 148.3, 138.6, 137.1, 136.4, 134.6, 128.6, 128.1, 127.7, 127.4, 121.7, 121.7, 121.6, 119.5, 119.0, 116.9, 113.4, 109.4, 71.3, 44.6, 43.1, 32.9, 25.6, 12.8; **HRMS** (ESI-TOF) Calcd for C₂₄H₂₆N₃O₂ [M+H] 388.2025, found 388.2023; **SFC** (chiral column) The enantiomeric ratio was determined by chiral SFC on a Daicel IBN column (3 µm, 4.6×250 mm), 35% MeOH/CO₂, 4.0 mL/min, $\lambda = 241$ nm, t (major) = 3.573 min, t (minor) = 4.196 min.

Scheme S16: Methanolysis of the 8-amionquinoline (AQ) amide.

methyl (3R,4R)-4-(1-methyl-1*H*-indol-3-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexanoate (7): The title compound was prepared by adapting a literature procedure.²⁷ To a 15-mL reaction tube containing a Teflon-coated magnetic stir bar, were added compound 4f (99.6 mg, 0.2 mmol), and Ni(tmhd)₂ (128 mg, 0.3

mmol). The reaction vessel was evacuated and backfilled with N₂ (×3), followed by addition of anhydrous MeOH (2 mL). The reaction mixture was heated at 100 °C for 6 days. After cooling to room temperature, the reaction was diluted with EtOAc (5 mL) and filtered through a plug of celite with EtOAc as the eluent. The resulting solution was concentrated under vacuum and purified by preparative TLC (4:1 hexanes:EtOAc) to afford the product as a colorless oil (7.1 mg, 55% yield, 96:4 *er*). ¹**H NMR** (600 MHz, CDCl₃) δ 7.62 (dt, J = 7.9, 0.9 Hz, 1H), 7.24 (dt, J = 8.2, 0.9 Hz, 1H), 7.17 (ddd, J = 8.1, 6.9, 1.1 Hz, 1H), 7.06 (ddd, J =7.9, 6.9, 1.1 Hz, 1H), 6.89 (s, 1H), 3.73 (s, 3H), 3.59 (s, 3H), 3.02 (ddd, J = 9.6, 7.7, 4.1 Hz, 1H), 2.54–2.40 (m, 2H), 1.90–1.76 (m, 2H), 1.68 (ddd, J = 13.5, 9.7, 7.3 Hz, 1H), 1.04 (s, 6H), 0.97 (s, 6H), 0.82 (t, J = 7.3 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.6, 136.7, 128.3, 126.4, 121.2, 119.5, 118.4, 117.4, 108.8, 82.9, 51.3, 38.3, 34.0, 32.6, 27.0, 24.8, 24.4, 12.0; **HRMS** (ESI-TOF) Calcd for C₂₂H₃₃BNO₄ [M+H] 385.2539, found 385.2532; **SFC** (chiral column) The enantiomeric ratio was determined by chiral SFC on a Daicel IG column (3 µm, 4.6×250 mm), 3% *i*-PrOH / CO₂, 4.0 mL/min, $\lambda = 222$ nm, t (minor) = 3.987 min, t (major) = 4.442 min.

Scheme S17: Transamidation of the 8-amionquinoline (AQ) amide.

MeN

Bpin C

Ėt

7

(S)-4-(1-methyl-1*H*-indol-3-yl)-1-(pyrrolidin-1-yl)-3-(4,4,5,5tetramethyl-1,3,2-dioxaborolan-2-yl)butan-1-one (8): The title compound was prepared by adapting a literature procedure.²⁸ *Boc Protection:* To a 25-mL round-bottom flask containing a Teflon-coated magnetic stir bar, were added compound 4a (235 mg. 0.5 mmol), 4-(dimethylamino)pyridine (6.1 mg, 0.05 mmol) and Boc anhydride (218 mg, 1 mmol). The reaction flask was evacuated and backfilled with N_2 (×1), followed by addition of anhydrous MeCN (5 mL). The reaction mixture was heated at 60 °C for 2 hours. After cooling to room temperature, the reaction was concentrated under vacuum and purified by column chromatography (2:1 hexanes:EtOAc) to afford the Boc-protected amide as a light yellow solid.

Aminolysis: To a 4-dram vial equipped with a Teflon-coated magnetic stir bar, were added pyrrolidine (65 μ L, 0.75 mmol) and toluene (1 mL). The reaction mixture was heated under N₂ atmosphere at 60 °C overnight. After cooling to room temperature, the reaction was concentrated under vacuum and purified by column chromatography (1:2 hexanes:EtOAc) to afford amide **8** as a colorless oil (162 mg, 82% yield, 86:14 *er*). ¹**H NMR** (600 MHz, CDCl₃) δ 7.61 (d, J = 7.9 Hz, 1H), 7.25 (d, J = 8.6 Hz, 1H), 7.18 (t, J = 7.6 Hz, 1H), 7.05 (t, J = 7.4 Hz, 1H), 6.85 (s, 1H), 3.72 (s, 3H), 3.46 (t, J = 6.8 Hz, 2H), 3.18 (t, J = 6.6 Hz, 2H), 3.02 (dd, J = 15.0, 5.2 Hz, 1H), 2.71 (dd, J = 15.0, 10.7 Hz, 1H), 2.43 (dd, J = 16.9, 6.8 Hz, 1H), 2.30 (dd, J = 16.6, 8.0 Hz, 1H), 1.89–1.73 (m, 4H), 1.70–1.57 (m, 1H), 1.25 (d, J = 8.7 Hz, 12H); ¹³C NMR (150 MHz, CDCl₃) δ 173.6, 137.0, 128.4, 126.6, 121.2, 119.4, 118.3, 115.4, 108.9, 81.9, 46.6, 46.0, 36.4, 32.6, 25.8, 25.4, 25.0, 25.0, 24.4; SFC (chiral column) The enantiomeric ratio was determined by chiral SFC on a Daicel IG column (3 μ m, 4.6×250 mm), 30% MeOH/CO₂, 4.0 mL/min, $\lambda = 224$ nm, t (minor) = 1.722 min, t (major) = 2.073 min.

Scheme S18: Synthesis of Mosher ester S9.

(S)-3-hydroxy-4-(1-methyl-1*H*-indol-3-yl)-*N*-(quinolin-8-yl)butanamide (S8): The title compound was prepared from 4a (31.8 mg, 0.068 mmol), and NaBO₃•4H₂O (83.5 mg, 0.54 mmol) according to the previously described procedure.²⁶ Purification using silica gel column chromatography with 1:1

hexanes:EtOAc as the eluent gave the product as a white solid (23.1 mg, 95% yield). ¹H **NMR** (600 MHz, CDCl₃) δ 10.06 (s, 1H), 8.92–8.59 (m, 2H), 8.14 (dd, J = 8.2, 1.7 Hz, 1H), 7.66 (d, J = 7.9 Hz, 1H), 7.58–7.47 (m, 2H), 7.43 (dd, J = 8.2, 4.2 Hz, 1H), 7.31 (d, J = 8.2 Hz, 1H), 7.26–7.22 (m, 1H), 7.13 (t, J = 7.4 Hz, 1H), 7.00 (s, 1H), 4.53 (d, J = 7.6 Hz, 1H), 3.77 (s, 3H), 3.56 (s, 1H), 3.19–2.95 (m, 2H), 2.81 (dd, J = 15.4, 3.1 Hz, 1H), 2.74 (dd, J = 15.4, 8.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 171.0, 148.2, 138.4, 137.1, 136.3, 134.3, 128.1, 128.0, 127.8, 127.3, 121.8, 121.7, 121.6, 119.1, 119.0, 116.8, 110.1, 109.3, 77.3, 77.0, 76.8, 69.0, 43.6, 32.8, 32.7.

(S)-1-(1-methyl-1*H*-indol-3-yl)-4-oxo-4-(quinolin-8ylamino)butan-2-yl (*R*)-3,3,3-trifluoro-2-methoxy-2phenylpropanoate (S9): The title compound was prepared by adapting a literature procedure.²⁹ Under a N₂ atmosphere, (*R*)-(+)- α -methoxy- α -(trifluoromethyl)phenylacetic acid (Mosher's acid, 15 mg, 0.064 mmol) was dissolved in anhydrous DCM (0.62 mL), and the mixture was cooled to 0 °C. Subsequent addition of DCC

(15 mg, 0.073 mmol) was followed by stirring for 15 min, at which time a solution of alcohol S8 (20.8 mg, 0.058 mmol) in DCM (0.65 mL) and a catalytic amount of 4-(dimethylamino)pyridine were added. The reaction mixture was stirred at room temperature overnight. After the reaction had reacted completion, the resulting suspension was filtered through a plug of celite, and the filtrate was concentrated under vacuum. Purification by preparative TLC (3:1 hexanes:EtOAc) gave the product as a colorless oil (24.8 mg, 74%) yield, 85:15 dr). The reported dr was determined by ¹H NMR analysis of purified **S9** and is consistent with that of the crude reaction mixture. The following analytical data correspond to the mixture. ¹H NMR (400 MHz, CDCl₃) δ 9.70 (s, 0.15H), 9.62 (s, 0.85H), 8.70 (dtd, J = 9.1, 6.5, 6.1, 3.5 Hz, 2H), 8.15 (dd, J = 8.3, 1.6 Hz, 1H), 7.73 (d, J = 7.9 Hz, 0.85H), 7.69 (d, J = 7.9 Hz, 0.15H), 7.57–7.33 (m, 5H), 7.29 (d, J = 8.1 Hz, 1H), 7.25–6.99 (m, 5H), 6.96 (s, 0.85H, 6.68 (s, 0.15H), 6.02 (tt, J = 7.3, 5.7 Hz, 1H), 3.72 (s, 2.55H), 3.68 (s, 0.45H), 3.45 (s, 3H), 3.43-3.31 (m, 1H), 3.22 (dd, J = 14.4, 7.6 Hz, 0.85H), 3.05 (dd, J = 14.4, 8.0 Hz, 0.15H), 2.96–2.78 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ –71.4 (s, 0.45 F), –72.0 (s, 2.55 F). The absolute configurations of compound 4a and alcohol S8 were assigned as (S) by 1 H NMR analysis according to the literature.³⁰

Mechanistic Studies of Alkene E/Z Isomerization

Et O AQ	or Et	$AQ = \frac{1}{s}$	equiv Pd(OAc) ₂	Et w OAc
1d (0.05 mmol)	1I (0	.05 mmol)		Pd-I
Entry	Substrate	Solvent	L34	Pd complex Z/E
1	1d	MeCN	w/o	>20:1
2	1d	MeCN	w	>20:1
3	11	MeCN	w/o	1.6:1
4	11	MeCN	w	>20:1
5	1d	MeOH	w/o	>20:1
6	1d	MeOH	w	>20:1
7	11	MeOH	w/o	7.4:1 (1:3) ^a
8	11	MeOH	W	>20:1
9	1d	HFIP/THF/DMF	w/o	17:1
10	1d	HFIP/THF/DMF	b W	>20:1
11	11	HFIP/THF/DMF	w/o	1.2:1
12	11	HFIP/THF/DMF	w w	10:1

Table S5. Investigation of Alkene Substrate *E/Z* Isomerization.

^aThe ratio in parentheses is the product ratio of a trial that was stopped after 3 h. ^bHFIP/THF/DMF = 2:2:1

General Procedure for Palladium Complex formation: Alkene substrate (12 mg, 0.05 mmol), $Pd(OAc)_2$ (11 mg, 0.05 mmol), and solvent (0.2 mL) were added to a 1-dram vial. The reaction mixture was stirred at room temperature for 12 hours under air. The *Z/E* ratio of palladium(II) complex was determined by ¹H NMR analysis of the crude reaction mixture.

Pd Complex I (Pd-I): The title compound was isolated as a yellow solid (16 mg, 80% yield). ¹H NMR (500 MHz, CD₃CN) δ 8.77 (dd, J = 5.7, 3.2 Hz, 1H), 8.56 (dd, J = 8.4, 1.5 Hz, 1H), 8.49 (dd, J = 5.0, 1.5 Hz, 1H), 7.65 (dd, J = 8.3, 5.1 Hz, 1H), 7.55–7.52 (m, 2H), 6.40–6.32 (m, 1H), 5.95 (q, J = 7.6 Hz, 1H), 3.47 (dd, J = 17.5, 7.6 Hz, 1H), 3.16 (ddd, J = 17.4, 5.2, 1.3 Hz, 1H), 2.47 (dtd, J = 14.9, 7.5, 0.9 Hz, 1H), 1.98 (s, 3H), 1.30 (t,

J = 7.5 Hz, 3H); ¹³C NMR (150 MHz, CD₃CN) δ 181.3, 177.4, 147.6, 147.3, 141.6, 131.2, 130.3, 122.6, 122.3, 121.3, 120.1, 92.2, 37.4, 25.5, 23.6, 13.2; HRMS (ESI-TOF) Calcd for C₁₅H₁₅N₂OPd [M–OAc] 343.0225, found 343.0225. **X-ray** (single-crystal) Yellow block crystals of X-ray diffraction quality were obtained by vapor diffusion of hexanes into a saturated solution of **Pd-I** in benzene (CCDC 1888954).²⁴

E-Alkene Pd Complex: ¹H NMR (600 MHz, CD₃OD) δ 8.66 (ddd, J = 8.1, 5.2, 1.4 Hz, 2H), 8.41 (dd, J = 5.1, 1.5 Hz, 1H), 7.74–7.66 (m, 1H), 7.64–7.57 (m, 2H), 6.58 (dt, J = 14.1, 6.8 Hz, 1H), 5.93 (ddd, J = 14.8, 6.7, 2.5 Hz, 1H), 3.66 (dd, J = 17.9, 6.7 Hz, 1H), 2.26–2.17 (m, 1H), 2.08 (s, 3H), 1.97–1.89 (m, 1H), 1.26 (t, J = 7.4 Hz, 3H). One of the aliphatic protons could not

be confidently assigned due to overlap with methanol peaks.

Representative ¹H NMR spectra for determination of E/Z ratios

X-RAY CRYSTALLOGRAPHY

Table S6.	Crystal data and structure refinement for 4f.

Identification code	LZ-Et-S		
Empirical formula	C30 H36 B N3 O3		
Formula weight	497.43		
Temperature	100.0 K		
Wavelength	1.54178 Å		
Crystal system	Monoclinic		
Space group	P 21		
Unit cell dimensions	a = 6.37430(10) Å	$\alpha = 90^{\circ}$.	
	b = 236017(6)Å	$\beta = 101.680(2)^{\circ}$	
	c = 9.0486(2) Å	$\gamma = 90^{\circ}$	
Volume	$1333 12(5) Å^3$	1 90.	
7	2		
Density (calculated)	$\frac{2}{1.239}$ Mg/m ³		
Absorption coefficient	0.629 mm^{-1}		
F(000)	532		
(000)	$0.27 \times 0.13 \times 0.08 \text{ mm}^3$		
Theta range for data collection	2.746 to 68.277°		
Index ranges	$3./40 \ 10 \ 08.2//^{2}$.		
Beflections collected	-/<=n<=/, -28<=K<=28, -10<=I<=10		
Reflections conected	18599		
Independent reflections	4851 [R(int) = 0.0255]		
Completeness to theta = $6/.6/9^{\circ}$	99.7%		
Absorption correction	Semi-empirical from equivalen	its	
Max. and min. transmission	0.7531 and 0.6828		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4851 / 1 / 340		
Goodness-of-fit on F ²	1.035		
Final R indices [I>2sigma(I)]	R1 = 0.0248, WR2 = 0.0607		
R indices (all data)	R1 = 0.0255, WR2 = 0.0611		
Absolute structure parameter	0.01(5) [stereochem. confirmed]		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.163 and -0.154 e.Å ⁻³		

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Х	У	Z	U(eq)
$\begin{array}{c cccc} 0(1) & 4310(2) & 5266(1) & 4336(1) & 18(1) \\ 0(3) & 8649(2) & 4865(1) & 7238(1) & 21(1) \\ N(3) & 8293(2) & 3384(1) & 10978(2) & 20(1) \\ N(1) & -868(2) & 6354(1) & 4161(2) & 20(1) \\ C(22) & 826(3) & 6716(1) & 4199(2) & 19(1) \\ C(5) & 13068(3) & 3051(1) & 9363(2) & 22(1) \\ C(8) & 9791(3) & 3868(1) & 9103(2) & 17(1) \\ C(9) & 9849(3) & 3406(1) & 10144(2) & 17(1) \\ C(9) & 9849(3) & 3406(1) & 10144(2) & 17(1) \\ C(1) & 1050(3) & 7171(1) & 3256(2) & 25(1) \\ C(7) & 11324(3) & 3905(1) & 8239(2) & 19(1) \\ C(2) & 9937(3) & 2531(1) & 12134(2) & 24(1) \\ C(1) & 8354(3) & 2957(1) & 11929(2) & 22(1) \\ C(4) & 11507(3) & 2997(1) & 10261(2) & 19(1) \\ C(16) & 1668(3) & 6087(1) & 6167(2) & 17(1) \\ C(30) & -338(3) & 5979(1) & 5346(2) & 18(1) \\ C(16) & 1668(3) & 6087(1) & 8382(2) & 21(1) \\ C(10) & 7679(3) & 4733(1) & 8218(2) & 16(1) \\ C(25) & 3819(3) & 4281(1) & 4411(2) & 18(1) \\ C(14) & 3142(3) & 6138(1) & 8958(2) & 24(1) \\ C(11) & 5884(3) & 5093(1) & 8579(2) & 18(1) \\ C(14) & 3142(3) & 6138(1) & 8958(2) & 24(1) \\ C(13) & 2793(3) & 5761(1) & 7249(2) & 16(1) \\ C(29) & 946(3) & 4935(1) & 2308(2) & 26(1) \\ C(20) & 2399(4) & 7474(1) & 3568(2) & 30(1) \\ C(24) & 6046(3) & 4036(1) & 4463(2) & 24(1) \\ C(25) & 1096(4) & 6189(1) & 9584(2) & 22(1) \\ C(20) & 2939(4) & 7474(1) & 3568(2) & 30(1) \\ C(23) & -2763(3) & 6322(1) & 2962(2) & 27(1) \\ C(3) & 11487(3) & 2552(1) & 11303(2) & 23(1) \\ B(1) & 4348(3) & 5095(1) & 5785(2) & 15(1) \\ C(27) & 4327(3) & 4787(1) & 1972(2) & 27(1) \\ C(3) & 11487(3) & 2552(1) & 11303(2) & 23(1) \\ B(1) & 4348(3) & 5095(1) & 5785(2) & 15(1) \\ C(27) & 4327(3) & 4787(1) & 1972(2) & 27(1) \\ C(15) & 1096(4) & 6189(1) & 9584(2) & 32(1) \\ C(15) & 1096(4) & 6189(1) & 9785(2) & 25(1) \\ C(15) & 1096(4) & 6189(1) & 9785(2) & 25(1) \\ C(15) & 1096(4) & 6189(1) & 9785(2) & 25(1) \\ C(15) & 1096(4) & 6189(1) & 9785(2) & 25(1) \\ C(23) & -2763(3) & 6322(1) & 2962(2) & 27(1) \\ C(3) & 11487(3) & 2552(1) & 11303(2) & 23(1) \\ \end{array} \right)$	O(2)	3837(2)	4534(1)	5889(1)	16(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(1)	4310(2)	5266(1)	4336(1)	18(1)
N(3) $8293(2)$ $3384(1)$ $10978(2)$ $20(1)$ $N(2)$ $8134(2)$ $4259(1)$ $9092(2)$ $18(1)$ $N(1)$ $-868(2)$ $6354(1)$ $4161(2)$ $20(1)$ $C(22)$ $826(3)$ $6716(1)$ $4199(2)$ $19(1)$ $C(5)$ $13068(3)$ $3051(1)$ $9363(2)$ $22(1)$ $C(8)$ $9791(3)$ $3868(1)$ $9103(2)$ $17(1)$ $C(9)$ $9849(3)$ $3406(1)$ $10144(2)$ $17(1)$ $C(21)$ $1050(3)$ $7171(1)$ $3256(2)$ $25(1)$ $C(7)$ $11324(3)$ $3905(1)$ $8239(2)$ $19(1)$ $C(2)$ $9937(3)$ $2531(1)$ $12134(2)$ $24(1)$ $C(1)$ $8354(3)$ $2957(1)$ $11929(2)$ $22(1)$ $C(4)$ $11507(3)$ $2997(1)$ $10261(2)$ $19(1)$ $C(17)$ $2461(3)$ $652(1)$ $5447(2)$ $18(1)$ $C(16)$ $1668(3)$ $6087(1)$ $6167(2)$ $17(1)$ $C(30)$ $-338(3)$ $5979(1)$ $5346(2)$ $18(1)$ $C(16)$ $12965(3)$ $3495(1)$ $8382(2)$ $21(1)$ $C(10)$ $7679(3)$ $4733(1)$ $8218(2)$ $24(1)$ $C(14)$ $3142(3)$ $6138(1)$ $8958(2)$ $24(1)$ $C(14)$ $3142(3)$ $6138(1)$ $8958(2)$ $24(1)$ $C(14)$ $3142(3)$ $6138(1)$ $8958(2)$ $24(1)$ $C(14)$ $3326(3)$ $4803(1)$ $3356(2)$ $19(1)$ $C(14)$ $3332(3)$ 48	O(3)	8649(2)	4865(1)	7238(1)	21(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(3)	8293(2)	3384(1)	10978(2)	20(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(2)	8134(2)	4259(1)	9092(2)	18(1)
$\begin{array}{ccccc} C(22) & 826(3) & 6716(1) & 4199(2) & 19(1) \\ C(5) & 13068(3) & 3051(1) & 9363(2) & 22(1) \\ C(8) & 9791(3) & 3868(1) & 9103(2) & 17(1) \\ C(9) & 9849(3) & 3406(1) & 10144(2) & 17(1) \\ C(21) & 1050(3) & 7171(1) & 3256(2) & 25(1) \\ C(7) & 11324(3) & 3905(1) & 8239(2) & 19(1) \\ C(2) & 9937(3) & 2531(1) & 12134(2) & 24(1) \\ C(1) & 8354(3) & 2957(1) & 11929(2) & 22(1) \\ C(4) & 11507(3) & 2997(1) & 10261(2) & 19(1) \\ C(17) & 2461(3) & 6562(1) & 5447(2) & 18(1) \\ C(16) & 1668(3) & 6087(1) & 6167(2) & 17(1) \\ C(30) & -338(3) & 5979(1) & 5346(2) & 18(1) \\ C(6) & 12965(3) & 3495(1) & 83282(2) & 21(1) \\ C(10) & 7679(3) & 4733(1) & 8218(2) & 16(1) \\ C(25) & 3819(3) & 4281(1) & 4411(2) & 18(1) \\ C(14) & 3142(3) & 6138(1) & 8958(2) & 24(1) \\ C(14) & 3142(3) & 6138(1) & 8958(2) & 24(1) \\ C(14) & 3142(3) & 6138(1) & 8958(2) & 24(1) \\ C(14) & 3142(3) & 6138(1) & 8958(2) & 24(1) \\ C(12) & 4877(3) & 5476(1) & 7249(2) & 16(1) \\ C(28) & 3332(3) & 4803(1) & 3356(2) & 19(1) \\ C(13) & 2793(3) & 5761(1) & 7534(2) & 17(1) \\ C(29) & 946(3) & 4935(1) & 2908(2) & 26(1) \\ C(24) & 6046(3) & 4036(1) & 4463(2) & 24(1) \\ C(25) & 1096(4) & 6189(1) & 9584(2) & 32(1) \\ C(24) & 6046(3) & 4036(1) & 4463(2) & 24(1) \\ C(25) & 2138(3) & 5152(1) & 11303(2) & 23(1) \\ C(23) & -2763(3) & 6322(1) & 2962(2) & 27(1) \\ C(3) & 11487(3) & 2552(1) & 11303(2) & 23(1) \\ B(1) & 4348(3) & 5095(1) & 5785(2) & 15(1) \\ C(27) & 4327(3) & 4787(1) & 1972(2) & 27(1) \\ C(19) & 4580(4) & 7328(1) & 4778(2) & 31(1) \\ \end{array}$	N(1)	-868(2)	6354(1)	4161(2)	20(1)
$\begin{array}{ccccc} C(5) & 13068(3) & 3051(1) & 9363(2) & 22(1) \\ C(8) & 9791(3) & 3868(1) & 9103(2) & 17(1) \\ C(9) & 9849(3) & 3406(1) & 10144(2) & 17(1) \\ C(21) & 1050(3) & 7171(1) & 3256(2) & 25(1) \\ C(7) & 11324(3) & 3905(1) & 8239(2) & 19(1) \\ C(2) & 9937(3) & 2531(1) & 12134(2) & 24(1) \\ C(1) & 8354(3) & 2957(1) & 11929(2) & 22(1) \\ C(4) & 11507(3) & 2997(1) & 10261(2) & 19(1) \\ C(17) & 2461(3) & 6562(1) & 5447(2) & 18(1) \\ C(16) & 1668(3) & 6087(1) & 6167(2) & 17(1) \\ C(30) & -338(3) & 5979(1) & 5346(2) & 18(1) \\ C(6) & 12965(3) & 3495(1) & 8382(2) & 21(1) \\ C(10) & 7679(3) & 4731(1) & 8218(2) & 16(1) \\ C(25) & 3819(3) & 4281(1) & 4411(2) & 18(1) \\ C(14) & 3142(3) & 6138(1) & 8958(2) & 24(1) \\ C(14) & 5884(3) & 5093(1) & 8579(2) & 18(1) \\ C(12) & 4877(3) & 5476(1) & 7249(2) & 16(1) \\ C(28) & 3332(3) & 4803(1) & 3356(2) & 19(1) \\ C(13) & 2793(3) & 5761(1) & 7534(2) & 17(1) \\ C(29) & 946(3) & 4935(1) & 2908(2) & 26(1) \\ C(24) & 6046(3) & 4036(1) & 4463(2) & 24(1) \\ C(25) & 1096(4) & 6189(1) & 9584(2) & 30(1) \\ C(24) & 6046(3) & 4935(1) & 2908(2) & 26(1) \\ C(25) & 1096(4) & 6189(1) & 9584(2) & 32(1) \\ C(24) & 6046(3) & 4935(1) & 2908(2) & 26(1) \\ C(25) & 1096(4) & 6189(1) & 9584(2) & 32(1) \\ C(26) & 2148(3) & 3816(1) & 4130(2) & 24(1) \\ C(25) & 1096(4) & 6189(1) & 9584(2) & 32(1) \\ C(23) & -2763(3) & 6322(1) & 2962(2) & 27(1) \\ C(3) & 11487(3) & 2552(1) & 11303(2) & 23(1) \\ B(1) & 4348(3) & 5095(1) & 5785(2) & 15(1) \\ C(27) & 4327(3) & 4787(1) & 1972(2) & 27(1) \\ C(19) & 4580(4) & 7328(1) & 4778(2) & 31(1) \\ \end{array}$	C(22)	826(3)	6716(1)	4199(2)	19(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(5)	13068(3)	3051(1)	9363(2)	22(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(8)	9791(3)	3868(1)	9103(2)	17(1)
$\begin{array}{ccccc} C(21) & 1050(3) & 7171(1) & 3256(2) & 25(1) \\ C(7) & 11324(3) & 3905(1) & 8239(2) & 19(1) \\ C(2) & 9937(3) & 2531(1) & 12134(2) & 24(1) \\ C(1) & 8354(3) & 2957(1) & 11929(2) & 22(1) \\ C(4) & 11507(3) & 2997(1) & 10261(2) & 19(1) \\ C(17) & 2461(3) & 6562(1) & 5447(2) & 18(1) \\ C(16) & 1668(3) & 6087(1) & 6167(2) & 17(1) \\ C(30) & -338(3) & 5979(1) & 5346(2) & 18(1) \\ C(6) & 12965(3) & 3495(1) & 8382(2) & 21(1) \\ C(10) & 7679(3) & 4733(1) & 8218(2) & 16(1) \\ C(25) & 3819(3) & 4281(1) & 4411(2) & 18(1) \\ C(14) & 3142(3) & 6138(1) & 8958(2) & 24(1) \\ C(11) & 5884(3) & 5093(1) & 8579(2) & 18(1) \\ C(12) & 4877(3) & 5476(1) & 7249(2) & 16(1) \\ C(18) & 4364(3) & 6876(1) & 5708(2) & 24(1) \\ C(28) & 3332(3) & 4803(1) & 3356(2) & 19(1) \\ C(29) & 946(3) & 4935(1) & 2908(2) & 26(1) \\ C(20) & 2939(4) & 7474(1) & 3568(2) & 30(1) \\ C(24) & 6046(3) & 4036(1) & 4463(2) & 24(1) \\ C(25) & 1096(4) & 6189(1) & 9584(2) & 32(1) \\ C(26) & 2148(3) & 3816(1) & 4130(2) & 24(1) \\ C(26) & 2148(3) & 3816(1) & 4130(2) & 24(1) \\ C(23) & -2763(3) & 6322(1) & 2962(2) & 27(1) \\ C(3) & 11487(3) & 2552(1) & 11303(2) & 23(1) \\ B(1) & 4348(3) & 5095(1) & 5785(2) & 15(1) \\ C(27) & 4327(3) & 4787(1) & 1972(2) & 27(1) \\ C(19) & 4580(4) & 7328(1) & 4778(2) & 31(1) \\ \end{array}$	C(9)	9849(3)	3406(1)	10144(2)	17(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)	1050(3)	7171(1)	3256(2)	25(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7)	11324(3)	3905(1)	8239(2)	19(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)	9937(3)	2531(1)	12134(2)	24(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)	8354(3)	2957(1)	11929(2)	22(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)	11507(3)	2997(1)	10261(2)	19(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(17)	2461(3)	6562(1)	5447(2)	18(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)	1668(3)	6087(1)	6167(2)	17(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(30)	-338(3)	5979(1)	5346(2)	18(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6)	12965(3)	3495(1)	8382(2)	21(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)	7679(3)	4733(1)	8218(2)	16(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(25)	3819(3)	4281(1)	4411(2)	18(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)	3142(3)	6138(1)	8958(2)	24(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11)	5884(3)	5093(1)	8579(2)	18(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)	4877(3)	5476(1)	7249(2)	16(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(18)	4364(3)	6876(1)	5708(2)	24(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(28)	3332(3)	4803(1)	3356(2)	19(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)	2793(3)	5761(1)	7534(2)	17(1)
$\begin{array}{ccccccc} C(20) & 2939(4) & 7474(1) & 3568(2) & 30(1) \\ C(24) & 6046(3) & 4036(1) & 4463(2) & 24(1) \\ C(26) & 2148(3) & 3816(1) & 4130(2) & 24(1) \\ C(15) & 1096(4) & 6189(1) & 9584(2) & 32(1) \\ C(23) & -2763(3) & 6322(1) & 2962(2) & 27(1) \\ C(3) & 11487(3) & 2552(1) & 11303(2) & 23(1) \\ B(1) & 4348(3) & 5095(1) & 5785(2) & 15(1) \\ C(27) & 4327(3) & 4787(1) & 1972(2) & 27(1) \\ C(19) & 4580(4) & 7328(1) & 4778(2) & 31(1) \\ \end{array}$	C(29)	946(3)	4935(1)	2908(2)	26(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(20)	2939(4)	7474(1)	3568(2)	30(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(24)	6046(3)	4036(1)	4463(2)	24(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(26)	2148(3)	3816(1)	4130(2)	24(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15)	1096(4)	6189(1)	9584(2)	32(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(23)	-2763(3)	6322(1)	2962(2)	27(1)
B(1) $4348(3)$ $5095(1)$ $5785(2)$ $15(1)$ $C(27)$ $4327(3)$ $4787(1)$ $1972(2)$ $27(1)$ $C(19)$ $4580(4)$ $7328(1)$ $4778(2)$ $31(1)$	C(3)	11487(3)	2552(1)	11303(2)	23(1)
C(27)4327(3)4787(1)1972(2)27(1)C(19)4580(4)7328(1)4778(2)31(1)	$\dot{B(1)}$	4348(3)	5095(1)	5785(2)	15(1)
C(19) 4580(4) 7328(1) 4778(2) 31(1)	C(27)	4327(3)	4787(1)	1972(2)	27(1)
	C(19)	4580(4)	7328(1)	4778(2)	31(1)

Table S7. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for **4f**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S8	. Bond	lengths	[Å]	and	angles	[°]	for 4	f.
----------	--------	---------	-----	-----	--------	-----	--------------	----

O(2)-C(25)	1.462(2)
O(2)-B(1)	1.373(2)
O(1)-C(28)	1.464(2)
O(1)-B(1)	1.367(2)
O(3)-C(10)	1.219(2)
N(3)-C(9)	1.363(2)
N(3)-C(1)	1.321(2)
N(2)-H(2)	0.8800
N(2)-C(8)	1.401(2)
N(2)-C(10)	1.366(2)
N(1)-C(22)	1.371(2)
N(1)-C(30)	1.379(2)
N(1)-C(23)	1.453(2)

C(22)-C(21)	1.397(3)
C(22)-C(17)	1.420(3)
C(5)-H(5)	0.9500
C(5)-C(4)	1.412(3)
C(5)-C(6)	1.366(3)
C(8)-C(9)	1.436(2)
C(8)-C(7)	1.373(3)
C(9)-C(4)	1.418(3)
С(21)-Н(21)	0.9500
C(21)-C(20)	1.381(3)
C(7)-H(7)	0.9500
C(7)-C(6)	1.411(3)
C(2)-H(2A)	0.9500
C(2)-C(1)	1.410(3)
C(2)-C(3)	1.359(3)
C(1)-H(1)	0.9500
C(4)-C(3)	1.413(3)
C(17)-C(16)	1.440(3)
C(17)-C(18)	1.399(3)
C(16)-C(30)	1.366(3)
C(16)-C(13)	1.508(2)
C(30)-H(30)	0.9500
C(6)-H(6)	0.9500
C(10)-C(11)	1.513(2)
C(25)-C(28)	1.552(2)
C(25)-C(24)	1.525(2)
C(25)-C(26)	1.514(2)
C(14)-H(14A)	0.9900
C(14) - H(14B)	0.9900
C(14) - C(15)	1.344(2) 1.528(2)
C(14)- $C(15)$	1.528(3)
$C(11) - \Pi(11A)$ $C(11) - \Pi(11B)$	0.9900
$C(11) - \Pi(11D)$ C(11) - C(12)	0.9900 1.538(2)
C(12) H(12)	1.0000
$C(12) - \Pi(12)$ $C(12) - \Omega(13)$	1.0000 1.557(2)
C(12)-C(13)	1.557(2) 1.579(3)
C(12) - B(1)	0.9500
C(18)- $C(19)$	1.383(3)
C(28)-C(29)	1.505(3) 1.524(3)
C(28)-C(27)	1.524(3) 1 514(3)
C(13)-H(13)	1 0000
C(29)-H(29A)	0.9800
C(29)-H(29B)	0.9800
С(29)-Н(29С)	0.9800
С(20)-Н(20)	0.9500
C(20)-C(19)	1.396(3)
C(24)-H(24A)	0.9800
C(24)-H(24B)	0.9800
C(24)-H(24C)	0.9800
C(26)-H(26A)	0.9800
C(26)-H(26B)	0.9800
C(26)-H(26C)	0.9800
C(15)-H(15A)	0.9800
C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800
C(23)-H(23A)	0.9800
C(23)-H(23B)	0.9800
C(23)-H(23C)	0.9800
C(3)-H(3)	0.9500

C(27)-H(27A)	0.9800
С(27)-Н(27В)	0.9800
C(27)-H(27C)	0.9800
C(19)-H(19)	0.9500
	10(04(12)
B(1) - O(2) - C(25)	106.84(13) 106.54(12)
$B(1)-O(1)-C(2\delta)$	100.34(13) 117.44(16)
C(1) - N(3) - C(9)	11/.44(10)
$C(8) - N(2) - \Pi(2)$ C(10) N(2) H(2)	116.0
C(10) - N(2) - H(2) C(10) N(2) - C(8)	110.0 127.02(15)
C(10) - N(2) - C(8) C(22) N(1) C(30)	127.92(13) 108 17(14)
C(22)-N(1)-C(30)	108.17(14) 125.62(15)
C(22) = N(1) = C(23)	125.02(15) 125.70(16)
N(1)-C(22)-C(21)	129.70(10) 129.79(17)
N(1)-C(22)-C(17)	129.79(17) 108.03(15)
C(21)-C(22)-C(17)	122.17(17)
C(4)-C(5)-H(5)	120.1
C(6)-C(5)-H(5)	120.1
C(6)-C(5)-C(4)	119.71(17)
N(2)-C(8)-C(9)	115.11(15)
C(7)-C(8)-N(2)	125.21(16)
C(7)-C(8)-C(9)	119.66(16)
N(3)-C(9)-C(8)	117.78(15)
N(3)-C(9)-C(4)	123.17(16)
C(4)-C(9)-C(8)	119.04(15)
С(22)-С(21)-Н(21)	121.1
C(20)-C(21)-C(22)	117.83(18)
C(20)-C(21)-H(21)	121.1
C(8)-C(7)-H(7)	119.9
C(8)-C(7)-C(6)	120.23(16)
C(6)-C(7)-H(7)	119.9
C(1)-C(2)-H(2A)	120.6
$C(3) - C(2) - \Pi(2A)$	120.0
N(3) C(1) C(2)	110.01(17) 122.78(18)
N(3)-C(1)-H(1)	123.76(18)
C(2)-C(1)-H(1)	118.1
C(5)-C(4)-C(9)	119 79(16)
C(5)-C(4)-C(3)	12357(17)
C(3)-C(4)-C(9)	116.64(17)
C(22)-C(17)-C(16)	106.84(16)
C(18)-C(17)-C(22)	118.13(17)
C(18)-C(17)-C(16)	135.02(18)
C(17)-C(16)-C(13)	127.98(16)
C(30)-C(16)-C(17)	105.96(16)
C(30)-C(16)-C(13)	126.05(16)
N(1)-C(30)-H(30)	124.5
C(16)-C(30)-N(1)	110.99(15)
C(16)-C(30)-H(30)	124.5
C(5)-C(6)-C(7)	121.56(17)
C(5)-C(6)-H(6)	119.2
C(7)- $C(6)$ - $H(6)$	119.2
O(3)-C(10)-N(2) O(3)-C(10)-C(11)	123.36(16) 122.06(15)
V(3) - C(10) - C(11)	122.00(15) 114.57(15)
1N(2) - C(10) - C(11) O(2) - C(25) - C(28)	114.3/(13) 101.65(13)
O(2) = O(23) = O(26)	101.03(13) 106.03(14)
O(2)-O(25)-O(24)	100.93(14) 108.93(14)
C(2) - C(23) - C(20)	112 88(15)
$(27)^{-0}(20)^{-0}(20)$	112.00(13)

C(26)-C(25)-C(28)	115.20(15)
C(26)-C(25)-C(24)	110.50(15)
H(14A)-C(14)-H(14B)	108.0
C(13)-C(14)-H(14A)	109.3
C(13)-C(14)-H(14B)	109.3
C(15)-C(14)-H(14A)	109.3
C(15)-C(14)-H(14B)	109.3
C(15)-C(14)-C(13)	111.45(17)
C(10)-C(11)-H(11A)	109.2
C(10)-C(11)-H(11B)	109.2
C(10)-C(11)-C(12)	112.05(14)
H(11A)-C(11)-H(11B)	107.9
С(12)-С(11)-Н(11А)	109.2
C(12)-C(11)-H(11B)	109.2
С(11)-С(12)-Н(12)	109.3
C(11)-C(12)-C(13)	111.11(14)
C(11)-C(12)-B(1)	107.86(14)
C(13)-C(12)-H(12)	109.3
C(13)-C(12)-B(1)	109.91(14)
B(1)-C(12)-H(12)	109.3
C(17)-C(18)-H(18)	120.2
C(19)-C(18)-C(17)	119.65(18)
C(19)-C(18)-H(18)	120.2
O(1)-C(28)-C(25)	102.23(13)
O(1) - C(28) - C(29)	106.83(14)
O(1)-C(28)-C(27)	108.78(15)
C(29)- $C(28)$ - $C(25)$	112.93(15)
C(27) - C(28) - C(25)	115.02(15)
C(27)- $C(28)$ - $C(29)$	110.36(15)
C(16) - C(13) - C(14)	110.83(14)
C(16) - C(13) - C(12)	111.41(14)
$C(10)-C(13)-\Pi(13)$ C(14)-C(13)-C(12)	100.8 112 $20(14)$
C(14) - C(13) - C(12) C(14) - C(13) + U(13)	115.80(14)
C(12) C(12) H(12)	106.8
C(12)-C(13)-H(13) C(28) C(29) H(29A)	100.8
C(28) - C(29) - H(29R) C(28) - C(29) + H(29R)	109.5
C(28)-C(29)-H(29C)	109.5
H(29A) - C(29) - H(29B)	109.5
H(29A)-C(29)-H(29C)	109.5
H(29R)-C(29)-H(29C)	109.5
C(21)-C(20)-H(20)	119.5
C(21)- $C(20)$ - $C(19)$	121.05(18)
C(19)-C(20)-H(20)	119.5
C(25)-C(24)-H(24A)	109.5
C(25)-C(24)-H(24B)	109.5
C(25)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24C)	109.5
H(24B)-C(24)-H(24C)	109.5
C(25)-C(26)-H(26A)	109.5
C(25)-C(26)-H(26B)	109.5
C(25)-C(26)-H(26C)	109.5
H(26A)-C(26)-H(26B)	109.5
H(26A)-C(26)-H(26C)	109.5
H(26B)-C(26)-H(26C)	109.5
C(14)-C(15)-H(15A)	109.5
С(14)-С(15)-Н(15В)	109.5
С(14)-С(15)-Н(15С)	109.5
H(15A)-C(15)-H(15B)	109.5

H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
N(1)-C(23)-H(23A)	109.5
N(1)-C(23)-H(23B)	109.5
N(1)-C(23)-H(23C)	109.5
H(23A)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5
C(2)-C(3)-C(4)	120.15(18)
C(2)-C(3)-H(3)	119.9
C(4)-C(3)-H(3)	119.9
O(2)-B(1)-C(12)	120.33(16)
O(1)-B(1)-O(2)	113.03(16)
O(1)-B(1)-C(12)	126.64(16)
C(28)-C(27)-H(27A)	109.5
C(28)-C(27)-H(27B)	109.5
C(28)-C(27)-H(27C)	109.5
H(27A)-C(27)-H(27B)	109.5
H(27A)-C(27)-H(27C)	109.5
H(27B)-C(27)-H(27C)	109.5
C(18)-C(19)-C(20)	121.15(19)
C(18)-C(19)-H(19)	119.4
C(20)-C(19)-H(19)	119.4

Symmetry transformations used to generate equivalent atoms:

Table S9. Anisotropic displacement parameters (Å²x 10³) for **4f**. The anisotropic displacement factor exponent takes the form: $-2^{2}[h^{2} a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$.

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(2)	20(1)	15(1)	14(1)	-1(1)	5(1)	-2(1)
O(1)	24(1)	16(1)	15(1)	0(1)	5(1)	-1(1)
O(3)	19(1)	22(1)	22(1)	7(1)	6(1)	1(1)
N(3)	21(1)	20(1)	18(1)	1(1)	3(1)	-3(1)
N(2)	19(1)	21(1)	17(1)	3(1)	6(1)	1(1)
N(1)	20(1)	21(1)	20(1)	4(1)	2(1)	2(1)
C(22)	23(1)	16(1)	18(1)	-1(1)	6(1)	4(1)
C(5)	18(1)	21(1)	24(1)	-1(1)	-1(1)	2(1)
C(8)	18(1)	16(1)	15(1)	1(1)	-1(1)	-1(1)
C(9)	17(1)	17(1)	16(1)	-1(1)	0(1)	-5(1)
C(21)	35(1)	19(1)	21(1)	4(1)	5(1)	5(1)
C(7)	21(1)	20(1)	17(1)	3(1)	3(1)	-1(1)
C(2)	34(1)	17(1)	21(1)	4(1)	1(1)	-5(1)
C(1)	26(1)	21(1)	19(1)	1(1)	5(1)	-7(1)
C(4)	20(1)	16(1)	18(1)	-1(1)	-2(1)	-3(1)
C(17)	25(1)	13(1)	17(1)	-3(1)	6(1)	2(1)
C(16)	22(1)	14(1)	16(1)	-1(1)	7(1)	3(1)
C(30)	19(1)	15(1)	21(1)	2(1)	7(1)	2(1)
C(6)	17(1)	25(1)	22(1)	0(1)	4(1)	-1(1)
C(10)	16(1)	17(1)	14(1)	1(1)	-1(1)	-3(1)
C(25)	22(1)	18(1)	14(1)	-4(1)	4(1)	-1(1)
C(14)	33(1)	21(1)	19(1)	-2(1)	5(1)	6(1)
C(11)	21(1)	19(1)	14(1)	0(1)	2(1)	-2(1)
C(12)	17(1)	15(1)	16(1)	1(1)	3(1)	0(1)
C(18)	29(1)	18(1)	22(1)	-2(1)	2(1)	-2(1)
C(28)	24(1)	19(1)	14(1)	-2(1)	4(1)	0(1)
C(13)	21(1)	15(1)	16(1)	0(1)	4(1)	1(1)
C(29)	28(1)	28(1)	19(1)	-2(1)	-1(1)	4(1)

C(20)	46(1)	17(1)	29(1)	6(1)	12(1)	-2(1)
C(24)	24(1)	23(1)	26(1)	-3(1)	5(1)	6(1)
C(26)	27(1)	21(1)	24(1)	-5(1)	4(1)	-6(1)
C(15)	50(1)	26(1)	24(1)	2(1)	18(1)	12(1)
C(23)	24(1)	30(1)	25(1)	5(1)	0(1)	3(1)
C(3)	27(1)	16(1)	23(1)	2(1)	-1(1)	1(1)
B(1)	13(1)	16(1)	17(1)	1(1)	4(1)	1(1)
C(27)	36(1)	30(1)	18(1)	-1(1)	10(1)	0(1)
C(19)	36(1)	19(1)	36(1)	-1(1)	7(1)	-10(1)

Table S10. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for **4f**.

H(2) 7281 4191 9724 22 $H(5)$ 14185 2779 9440 26 $H(21)$ -62 7268 2427 30 $H(7)$ 11281 4208 7541 23 $H(2A)$ 9920 2234 12841 29 $H(1)$ 7269 2936 12508 26 $H(30)$ -1246 5684 5563 22 $H(6)$ 14022 3529 7783 25 $H(14A)$ 4293 5973 9740 29 $H(14B)$ 3609 6520 8707 29 $H(11A)$ 6449 5331 9471 22 $H(11B)$ 4765 4842 8837 22 $H(12)$ 5929 5775 7109 19 $H(18)$ 5502 6778 6520 28 $H(13)$ 1806 5449 7698 21 $H(29A)$ 312 4929 3808 39 $H(29C)$ 747 5310 2439 39 $H(20)$ 3125 7788 2950 36 $H(24A)$ 7114 4339 4600 37 $H(24B)$ 6107 3867 3484 37 $H(24A)$ 714 35250 37 $H(24A)$ 714 4339 4600 37 $H(24B)$ 6107 3867 3484 37 $H(24B)$ 6107 3867 3484 37 $H(24B)$ 6107 3867	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
H(2) -62 2779 2470 20 $H(2)$ -62 7268 2427 30 $H(7)$ 11281 4208 7541 23 $H(2A)$ 9920 2234 12841 29 $H(1)$ 7269 2936 12508 26 $H(30)$ -1246 5684 5563 22 $H(6)$ 14022 3529 7783 25 $H(14A)$ 4293 5973 9740 29 $H(14B)$ 3609 6520 8707 29 $H(14B)$ 4765 4842 8837 22 $H(12)$ 5929 5775 7109 19 $H(18)$ 5502 6778 6520 28 $H(13)$ 1806 5449 7698 21 $H(29A)$ 312 4929 3808 39 $H(29B)$ 244 4649 2188 39 $H(20)$ 3125 7788 2950 36 $H(24A)$ 7114 4339 4690 37 $H(24A)$ 2074 3657 3121 36 $H(24B)$ 6107 3867 3484 37 $H(26B)$ 2074 3657 3121 36 $H(26C)$ 749 3974 4201 36 $H(25A)$ -755 6324 8787 48 $H(15A)$ -75 6324 8787 48 $H(15C)$ 723 5818 9941 48 $H(23B)$ -3805 <t< td=""><td></td></t<>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
H(18) 5502 6778 6520 28 $H(13)$ 1806 5449 7698 21 $H(29A)$ 312 4929 3808 39 $H(29B)$ 244 4649 2188 39 $H(29C)$ 747 5310 2439 39 $H(20)$ 3125 7788 2950 36 $H(24A)$ 7114 4339 4690 37 $H(24B)$ 6107 3867 3484 37 $H(24C)$ 6349 3745 5250 37 $H(24C)$ 6349 3745 5250 37 $H(26A)$ 2539 3517 4888 36 $H(26B)$ 2074 3657 3121 36 $H(26C)$ 749 3974 4201 36 $H(15A)$ -75 6324 8787 48 $H(15B)$ 1329 6459 10425 48 $H(15C)$ 723 5818 9941 48 $H(23A)$ -3400 6700 2777 40 $H(23B)$ -3805 6064 3261 40 $H(23C)$ -2362 6182 2038 40	
H(13) 1806 5449 7698 21 $H(29A)$ 312 4929 3808 39 $H(29B)$ 244 4649 2188 39 $H(29C)$ 747 5310 2439 39 $H(20)$ 3125 7788 2950 36 $H(24A)$ 7114 4339 4690 37 $H(24B)$ 6107 3867 3484 37 $H(24C)$ 6349 3745 5250 37 $H(26A)$ 2539 3517 4888 36 $H(26B)$ 2074 3657 3121 36 $H(26B)$ 2074 3657 3121 36 $H(26C)$ 749 3974 4201 36 $H(15A)$ -75 6324 8787 48 $H(15B)$ 1329 6459 10425 48 $H(15C)$ 723 5818 9941 48 $H(23A)$ -3400 6700 2777 40 $H(23B)$ -3805 6064 3261 40 $H(2)$ 12561 2267 11423 28	
H(29A) 312 4929 3808 39 $H(29B)$ 244 4649 2188 39 $H(29C)$ 747 5310 2439 39 $H(20)$ 3125 7788 2950 36 $H(24A)$ 7114 4339 4690 37 $H(24B)$ 6107 3867 3484 37 $H(24C)$ 6349 3745 5250 37 $H(26A)$ 2539 3517 4888 36 $H(26B)$ 2074 3657 3121 36 $H(26C)$ 749 3974 4201 36 $H(15A)$ -75 6324 8787 48 $H(15B)$ 1329 6459 10425 48 $H(15C)$ 723 5818 9941 48 $H(23A)$ -3400 6700 2777 40 $H(23B)$ -3805 6064 3261 40 $H(23C)$ -2362 6182 2038 40	
H(29B) 244 4649 2188 39 $H(29C)$ 747 5310 2439 39 $H(20)$ 3125 7788 2950 36 $H(24A)$ 7114 4339 4690 37 $H(24B)$ 6107 3867 3484 37 $H(24C)$ 6349 3745 5250 37 $H(26A)$ 2539 3517 4888 36 $H(26B)$ 2074 3657 3121 36 $H(26C)$ 749 3974 4201 36 $H(15A)$ -75 6324 8787 48 $H(15B)$ 1329 6459 10425 48 $H(15C)$ 723 5818 9941 48 $H(23A)$ -3400 6700 2777 40 $H(23B)$ -3805 6064 3261 40 $H(23C)$ -2362 6182 2038 40 $H(3)$ 12561 2267 11423 28	
H(29C) 747 5310 2439 39 $H(20)$ 3125 7788 2950 36 $H(24A)$ 7114 4339 4690 37 $H(24B)$ 6107 3867 3484 37 $H(24C)$ 6349 3745 5250 37 $H(26A)$ 2539 3517 4888 36 $H(26B)$ 2074 3657 3121 36 $H(26C)$ 749 3974 4201 36 $H(15A)$ -75 6324 8787 48 $H(15B)$ 1329 6459 10425 48 $H(15C)$ 723 5818 9941 48 $H(23A)$ -3400 6700 2777 40 $H(23B)$ -3805 6064 3261 40 $H(23C)$ -2362 6182 2038 40 $H(3)$ 12561 2267 11423 28	
H(20) 3125 $7/88$ 2950 36 $H(24A)$ 7114 4339 4690 37 $H(24B)$ 6107 3867 3484 37 $H(24C)$ 6349 3745 5250 37 $H(24C)$ 6349 3745 5250 37 $H(26A)$ 2539 3517 4888 36 $H(26B)$ 2074 3657 3121 36 $H(26C)$ 749 3974 4201 36 $H(15A)$ -75 6324 8787 48 $H(15B)$ 1329 6459 10425 48 $H(15C)$ 723 5818 9941 48 $H(23A)$ -3400 6700 2777 40 $H(23B)$ -3805 6064 3261 40 $H(23C)$ -2362 6182 2038 40 $H(3)$ 12561 2267 11423 28	
H(24A) 7114 4339 4690 37 $H(24B)$ 6107 3867 3484 37 $H(24C)$ 6349 3745 5250 37 $H(26A)$ 2539 3517 4888 36 $H(26B)$ 2074 3657 3121 36 $H(26C)$ 749 3974 4201 36 $H(15A)$ -75 6324 8787 48 $H(15B)$ 1329 6459 10425 48 $H(15C)$ 723 5818 9941 48 $H(23A)$ -3400 6700 2777 40 $H(23B)$ -3805 6064 3261 40 $H(2)$ 12561 2267 11423 28	
H(24B) 6107 3867 3484 37 $H(24C)$ 6349 3745 5250 37 $H(26A)$ 2539 3517 4888 36 $H(26B)$ 2074 3657 3121 36 $H(26C)$ 749 3974 4201 36 $H(15A)$ -75 6324 8787 48 $H(15B)$ 1329 6459 10425 48 $H(15C)$ 723 5818 9941 48 $H(23A)$ -3400 6700 2777 40 $H(23B)$ -3805 6064 3261 40 $H(2)$ 12561 2267 11423 28	
H(24C)63493745525037 $H(26A)$ 25393517488836 $H(26B)$ 20743657312136 $H(26C)$ 7493974420136 $H(15A)$ -756324878748 $H(15B)$ 132964591042548 $H(15C)$ 7235818994148 $H(23A)$ -34006700277740 $H(23B)$ -38056064326140 $H(23C)$ -23626182203840 $H(3)$ 1256122671142328	
H(26A)25393517488836 $H(26B)$ 20743657312136 $H(26C)$ 7493974420136 $H(15A)$ -756324878748 $H(15B)$ 132964591042548 $H(15C)$ 7235818994148 $H(23A)$ -34006700277740 $H(23B)$ -38056064326140 $H(23C)$ -23626182203840 $H(3)$ 1256122671142328	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
H(15B) 1329 6459 10425 48 $H(15C)$ 723 5818 9941 48 $H(23A)$ -3400 6700 2777 40 $H(23B)$ -3805 6064 3261 40 $H(23C)$ -2362 6182 2038 40 $H(3)$ 12561 2267 11423 28	
H(15C)7235818994148 $H(23A)$ -34006700277740 $H(23B)$ -38056064326140 $H(23C)$ -23626182203840 $H(3)$ 1256122671142328	
$\begin{array}{ccccccc} H(23A) & -3400 & 6700 & 2777 & 40 \\ H(23B) & -3805 & 6064 & 3261 & 40 \\ H(23C) & -2362 & 6182 & 2038 & 40 \\ H(3) & 12561 & 2267 & 11423 & 28 \\ \end{array}$	
H(23B)-38056064326140H(23C)-23626182203840H(3)1256122671142328	
H(23C) -2362 6182 2038 40 H(3) 12561 2267 11423 28	
H(3) 12561 2267 11423 28	
12501 2207 11125 20	
H(27A) 3906 5126 1360 41	
H(27B) 3828 4448 1375 41	
H(27C) 5891 4774 2286 41	
H(19) 5868 7542 4966 37	

Table S11. Crystal data and structure refinement for 4g. 2018-09-19 Report date Identification code engle140 Empirical formula C31 H38 B N3 O4 Molecular formula C31 H38 B N3 O4 Formula weight 527.45 Temperature 100.0 K 1.54178 Å Wavelength Crystal system Monoclinic Space group P 1 21 1 *α*= 90°. Unit cell dimensions a = 6.5323(2) Å $\beta = 104.3870(10)^{\circ}$. b = 24.4180(6) Åc = 9.1910(2) Å $\gamma = 90^{\circ}$. 1420.04(6) Å³ Volume Ζ 2 1.234 Mg/m³ Density (calculated) Absorption coefficient 0.646 mm⁻¹ F(000) 564 Crystal size 0.125 x 0.08 x 0.04 mm³ Crystal color, habit colorless plank Theta range for data collection 3.620 to 70.172°. Index ranges -7<=h<=7, -25<=k<=28, -11<=l<=11 Reflections collected 22034 Independent reflections 5204 [R(int) = 0.0494]Completeness to theta = 67.500° 99.5 % Semi-empirical from equivalents Absorption correction Max. and min. transmission 0.5856 and 0.5041 Full-matrix least-squares on F² Refinement method Data / restraints / parameters 5204 / 2 / 363 Goodness-of-fit on F² 1.045 Final R indices [I>2sigma(I)] R1 = 0.0398, wR2 = 0.0878 R indices (all data) R1 = 0.0483, wR2 = 0.0923 Absolute structure parameter 0.02(13)

Largest diff. peak and hole

0.270 and -0.188 e.Å-3
	х	У	Z	U(eq)
O(1)	1506(4)	4894(1)	2317(2)	30(1)
O(2)	-3862(3)	2622(1)	222(2)	30(1)
O(3)	6345(3)	4538(1)	3714(2)	26(1)
O(4)	5641(4)	5207(1)	5252(2)	31(1)
N(1)	1840(4)	3472(1)	-1340(3)	25(1)
N(2)	1934(4)	4321(1)	469(3)	24(1)
N(3)	11175(4)	6241(1)	5625(3)	25(1)
C(1)	1851(5)	3050(1)	-2243(3)	28(1)
C(2)	435(5)	2612(1)	-2402(3)	31(1)
C(3)	-1041(5)	2605(1)	-1576(3)	28(1)
C(4)	-1100(5)	3044(1)	-584(3)	23(1)
C(5)	-2554(5)	3067(1)	341(3)	24(1)
C(6)	-2540(5)	3508(1)	1259(3)	26(1)
C(7)	-1062(5)	3937(1)	1331(3)	26(1)
C(8)	377(5)	3924(1)	478(3)	22(1)
C(9)	367(5)	3472(1)	-515(3)	22(1)
C(10)	2424(5)	4773(1)	1348(3)	23(1)
C(11)	4169(5)	5122(1)	1038(3)	24(1)
C(12)	5277(5)	5463(1)	2419(3)	22(1)
C(13)	7348(5)	5717(1)	2212(3)	22(1)
C(14)	8549(5)	6012(1)	3608(3)	22(1)
C(15)	7889(5)	6481(1)	4324(3)	23(1)
C(16)	6093(5)	6816(1)	4030(4)	27(1)
C(17)	6061(6)	7273(1)	4924(4)	32(1)
C(18)	7778(6)	7400(1)	6118(4)	32(1)
C(19)	9550(5)	7070(1)	6478(4)	29(1)
C(20)	9585(5)	6614(1)	5568(3)	24(1)
C(21)	10523(5)	5882(1)	4435(3)	24(1)
C(22)	13172(5)	6219(2)	6748(3)	33(1)
C(23)	-5194(5)	2596(1)	1233(4)	32(1)
C(24)	7041(5)	6094(1)	821(3)	29(1)
C(25)	9100(6)	6212(2)	400(4)	36(1)
C(26)	6574(6)	4749(1)	6235(3)	34(1)
C(27)	6290(6)	4266(1)	5110(3)	32(1)
C(28)	5472(9)	4694(2)	7472(4)	64(1)
C(29)	8897(7)	4897(2)	6861(5)	59(1)
C(30)	4109(7)	4000(2)	4845(5)	58(1)
C(31)	7961(8)	3833(2)	5461(4)	53(1)
B(1)	5738(6)	5072(1)	3835(4)	24(1)

Table S12. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for **4g**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Table S13. Bond I	lengths [/	Å] and	angles	[°] for	4g .
-------------------	------------	--------	--------	---------	-------------

O(1)-C(10)	1.226(4)	
O(2)-C(5)	1.370(4)	
O(2)-C(23)	1.423(4)	
O(3)-C(27)	1.453(3)	
O(3)-B(1)	1.376(4)	
O(4)-C(26)	1.470(4)	
O(4)-B(1)	1.360(4)	
N(1)-C(1)	1.324(4)	
N(1)-C(9)	1.365(4)	
N(2)-H(2)	0.87(2)	
N(2)-C(8)	1.406(4)	

N(2)-C(10)	1.359(4)
N(3)-C(20)	1.373(4)
N(3)-C(21)	1.383(4)
N(3)-C(22)	1.449(4)
C(1)-H(1)	0.9500
C(1)-C(2)	1.399(5)
C(2)-H(2A)	0.9500
C(2)-C(3)	1.36/(4)
C(3) - H(3)	0.9500
C(3)-C(4)	1.415(4)
C(4) - C(5)	1.425(4)
C(4) - C(9)	1.407(4)
C(5)-C(0)	1.300(4)
$C(6) - \Pi(0)$	0.9300
C(0)-C(7)	1.417(4)
C(7) C(8)	1.366(4)
C(8) C(9)	1.300(4) 1.433(4)
C(10)- $C(11)$	1.435(4) 1.506(4)
C(11)-H(11A)	0.9900
C(11)-H(11B)	0.9900
C(11)-C(12)	1 540(4)
C(12)-H(12)	1.0000
C(12)-C(13)	1.543(4)
C(12)-B(1)	1.581(4)
С(13)-Н(13)	1.0000
C(13)-C(14)	1.510(4)
C(13)-C(24)	1.548(4)
C(14)-C(15)	1.440(4)
C(14)-C(21)	1.361(4)
C(15)-C(16)	1.400(4)
C(15)-C(20)	1.418(4)
C(16)-H(16)	0.9500
C(16)-C(17)	1.389(4)
C(17)-H(17)	0.9500
C(17)-C(18)	1.395(5)
C(18)-H(18)	0.9500
C(18)-C(19)	1.381(5)
С(19)-Н(19)	0.9500
C(19)-C(20)	1.397(4)
C(21)-H(21)	0.9500
$C(22) - \Pi(22R)$	0.9800
C(22)-H(22C)	0.9800
C(22)-H(22C) C(23)-H(23A)	0.9800
C(23)-H(23B)	0.9800
C(23) - H(23C)	0.9800
C(24)-H(24A)	0 9900
C(24)-H(24B)	0.9900
C(24)-C(25)	1.516(5)
C(25)-H(25A)	0.9800
C(25)-H(25B)	0.9800
C(25)-H(25C)	0.9800
C(26)-C(27)	1.550(5)
C(26)-C(28)	1.495(5)
C(26)-C(29)	1.526(6)
C(27)-C(30)	1.529(5)
C(27)-C(31)	1.496(5)
C(28)-H(28A)	0.9800
C(28)-H(28B)	0.9800

C(28)-H(28C)	0.9800
C(29)-H(29A)	0.9800
C(29)-H(29B)	0.9800
C(29)-H(29C)	0.9800
C(30)-H(30A)	0.9800
C(30)-H(30B)	0.9800
C(30)-H(30C)	0.9800
C(31)-H(31A)	0.9800
C(31)-H(31B)	0.9800
C(31)-H(31C)	0.9800
e(51)-11(51e)	0.9000
C(5) O(2) C(23)	116.9(2)
P(1) O(2) C(27)	110.9(2)
B(1) - O(3) - C(27)	100.9(2)
B(1)-O(4)-C(26)	107.1(2)
C(1)-N(1)-C(9)	11/.0(3)
C(8)-N(2)-H(2)	116(2)
C(10)-N(2)-H(2)	115(2)
C(10)-N(2)-C(8)	128.3(3)
C(20)-N(3)-C(21)	108.0(2)
C(20)-N(3)-C(22)	126.1(3)
C(21)-N(3)-C(22)	125.9(3)
N(1)-C(1)-H(1)	118.2
N(1)-C(1)-C(2)	123.6(3)
C(2)-C(1)-H(1)	118.2
C(1)-C(2)-H(2A)	120.3
C(3)-C(2)-C(1)	119.4(3)
C(3)-C(2)-H(2A)	120.3
C(2)-C(3)-H(3)	120.5
C(2)-C(3)-C(4)	118.9(3)
C(4)-C(3)-H(3)	120.5
C(3)-C(4)-C(5)	122 9(3)
C(9)-C(4)-C(3)	1177(3)
C(9)-C(4)-C(5)	1194(3)
O(2)-C(5)-C(4)	114.6(3)
C(6) C(5) O(2)	125.6(3)
C(6) C(5) C(4)	123.0(3) 110.8(3)
C(5) C(6) H(6)	119.6(3)
C(5) - C(6) - C(7)	119.0
C(3)-C(6)-C(7)	120.8(3)
C(7) - C(6) - H(6)	119.0
C(6)-C(7)-H(7)	119.5
C(8) - C(7) - C(6)	121.0(3)
C(8)-C(7)-H(7)	119.5
N(2)-C(8)-C(9)	114.6(2)
C(7)-C(8)-N(2)	126.1(3)
C(7)-C(8)-C(9)	119.3(3)
N(1)-C(9)-C(4)	122.8(3)
N(1)-C(9)-C(8)	117.5(3)
C(4)-C(9)-C(8)	119.8(3)
O(1)-C(10)-N(2)	122.9(3)
O(1)-C(10)-C(11)	122.1(3)
N(2)-C(10)-C(11)	115.1(3)
C(10)-C(11)-H(11A)	109.2
C(10)-C(11)-H(11B)	109.2
C(10)-C(11)-C(12)	111.9(2)
H(11A)-C(11)-H(11B)	107.9
C(12)-C(11)-H(11A)	109.2
C(12)-C(11)-H(11B)	109.2
C(11)-C(12)-H(12)	109.0
C(11)-C(12)-C(13)	111 3(2)
C(11)-C(12)-B(1)	107.9(2)
	107.7(2)

C(13)-C(12)-H(12)	109.0
C(13)-C(12)-B(1)	110.5(2)
B(1)-C(12)-H(12)	109.0
C(12)-C(13)-H(13)	106.7
C(12)-C(13)-C(24)	113.8(2)
C(14)-C(13)-C(12)	111.9(2)
C(14)-C(13)-H(13)	106.7
C(14)-C(13)-C(24)	110.6(2)
C(24)-C(13)-H(13)	106.7
C(15)-C(14)-C(13)	128.1(3)
C(21)-C(14)-C(13)	125.7(3)
C(21)-C(14)-C(15)	106.2(3)
C(16)-C(15)-C(14)	135.1(3)
C(16)-C(15)-C(20)	118.1(3)
C(20)-C(15)-C(14)	106.8(3)
C(15)-C(16)-H(16)	120.3
C(17)-C(16)-C(15)	119.3(3)
C(17)-C(16)-H(16)	120.3
C(16)-C(17)-H(17)	119.4
C(16)-C(17)-C(18)	121.1(3)
C(18)-C(17)-H(17)	119.4
C(17)-C(18)-H(18)	119.3
C(19)-C(18)-C(17)	121.3(3)
C(19)-C(18)-H(18)	119.3
C(18)-C(19)-H(19)	121.3
C(18)-C(19)-C(20)	117.3(3)
С(20)-С(19)-Н(19)	121.3
N(3)-C(20)-C(15)	108.1(2)
N(3)-C(20)-C(19)	129.2(3)
C(19)-C(20)-C(15)	122.7(3)
N(3)-C(21)-H(21)	124.5
C(14)-C(21)-N(3)	110.9(3)
С(14)-С(21)-Н(21)	124.5
N(3)-C(22)-H(22A)	109.5
N(3)-C(22)-H(22B)	109.5
N(3)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
O(2) - C(23) - H(23A) O(2) - C(22) - H(23B)	109.5
$O(2) - C(23) - \Pi(23B)$ $O(2) - C(23) - \Pi(23C)$	109.5
U(22A) C(23) H(23C)	109.5
H(23A) C(23) H(23C)	109.5
H(23R) - C(23) - H(23C) H(23R) - C(23) - H(23C)	109.5
C(13)-C(24)-H(24A)	109.5
C(13)-C(24)-H(24R)	109.1
H(24A)-C(24)-H(24B)	107.8
C(25)-C(24)-C(13)	112.5(3)
C(25)-C(24)-H(24A)	109.1
C(25)-C(24)-H(24B)	109.1
C(24)-C(25)-H(25A)	109.5
C(24)-C(25)-H(25B)	109.5
C(24)-C(25)-H(25C)	109.5
H(25A)-C(25)-H(25B)	109.5
H(25A)-C(25)-H(25C)	109.5
H(25B)-C(25)-H(25C)	109.5
O(4)-C(26)-C(27)	101.9(2)
O(4)-C(26)-C(28)	109.3(3)
O(4)-C(26)-C(29)	105.9(3)

C(28)-C(26)-C(27)	116.0(3)
C(28)-C(26)-C(29)	110.9(3)
C(29)-C(26)-C(27)	112.0(3)
O(3)-C(27)-C(26)	102.5(2)
O(3)-C(27)-C(30)	106.3(3)
O(3)-C(27)-C(31)	109.7(3)
C(30)-C(27)-C(26)	112.5(3)
C(31)-C(27)-C(26)	115.8(3)
C(31)-C(27)-C(30)	109.6(3)
C(26)-C(28)-H(28A)	109.5
C(26)-C(28)-H(28B)	109.5
C(26)-C(28)-H(28C)	109.5
H(28A)-C(28)-H(28B)	109.5
H(28A)-C(28)-H(28C)	109.5
H(28B)-C(28)-H(28C)	109.5
C(26)-C(29)-H(29A)	109.5
C(26)-C(29)-H(29B)	109.5
C(26)-C(29)-H(29C)	109.5
H(29A)-C(29)-H(29B)	109.5
H(29A)-C(29)-H(29C)	109.5
H(29B)-C(29)-H(29C)	109.5
C(27)-C(30)-H(30A)	109.5
C(27)-C(30)-H(30B)	109.5
C(27)-C(30)-H(30C)	109.5
H(30A)-C(30)-H(30B)	109.5
H(30A)-C(30)-H(30C)	109.5
H(30B)-C(30)-H(30C)	109.5
C(27)-C(31)-H(31A)	109.5
C(27)-C(31)-H(31B)	109.5
C(27)-C(31)-H(31C)	109.5
H(31A)-C(31)-H(31B)	109.5
H(31A)-C(31)-H(31C)	109.5
H(31B)-C(31)-H(31C)	109.5
O(3)-B(1)-C(12)	120.3(3)
O(4)-B(1)-O(3)	112.9(3)
O(4)-B(1)-C(12)	126.7(3)

Table S14. Anisotropic displacement parameters (Å²x 10³) for **4g**. The anisotropic displacement factor exponent takes the form: -2^{2} [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²].

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	32(1)	29(1)	30(1)	-10(1)	12(1)	-3(1)
O(2)	30(1)	28(1)	35(1)	-1(1)	13(1)	-6(1)
O(3)	37(1)	23(1)	20(1)	3(1)	8(1)	6(1)
O(4)	47(2)	26(1)	21(1)	2(1)	10(1)	8(1)
N(1)	31(2)	23(1)	22(1)	0(1)	9(1)	3(1)
N(2)	28(2)	24(1)	22(1)	-6(1)	9(1)	-3(1)
N(3)	26(2)	22(1)	24(1)	-2(1)	2(1)	-1(1)
C(1)	36(2)	28(2)	24(2)	-1(1)	12(1)	3(1)
C(2)	41(2)	25(2)	27(2)	-4(1)	10(1)	4(1)
C(3)	32(2)	20(2)	28(2)	-2(1)	5(1)	-1(1)
C(4)	25(2)	20(2)	22(2)	2(1)	4(1)	3(1)
C(5)	25(2)	24(2)	23(2)	2(1)	3(1)	-2(1)
C(6)	25(2)	30(2)	23(2)	0(1)	7(1)	1(1)
C(7)	29(2)	26(2)	22(2)	-4(1)	6(1)	2(1)
C(8)	27(2)	19(2)	19(1)	0(1)	3(1)	0(1)
C(9)	28(2)	20(2)	17(1)	2(1)	3(1)	3(1)

C(10)	26(2)	20(2)	21(1)	0(1)	2(1)	1(1)
C(11)	29(2)	24(2)	19(1)	-1(1)	3(1)	-2(1)
C(12)	26(2)	19(2)	21(2)	-1(1)	4(1)	1(1)
C(13)	28(2)	19(2)	19(1)	-1(1)	5(1)	-1(1)
C(14)	28(2)	18(2)	20(1)	1(1)	7(1)	-2(1)
C(15)	28(2)	19(2)	23(2)	3(1)	10(1)	0(1)
C(16)	28(2)	23(2)	29(2)	3(1)	8(1)	2(1)
C(17)	36(2)	26(2)	38(2)	2(1)	16(2)	5(1)
C(18)	45(2)	22(2)	33(2)	-5(1)	17(2)	-2(1)
C(19)	36(2)	25(2)	28(2)	-5(1)	11(1)	-4(1)
C(20)	30(2)	21(2)	22(2)	0(1)	8(1)	-2(1)
C(21)	33(2)	18(2)	20(1)	0(1)	7(1)	2(1)
C(22)	33(2)	36(2)	26(2)	-4(1)	-2(1)	2(1)
C(23)	31(2)	32(2)	34(2)	5(1)	11(1)	0(1)
C(24)	37(2)	28(2)	21(2)	3(1)	6(1)	-1(1)
C(25)	46(2)	33(2)	33(2)	6(2)	17(2)	-1(2)
C(26)	54(2)	27(2)	20(2)	4(1)	8(2)	2(2)
C(27)	44(2)	29(2)	24(2)	9(1)	11(2)	7(1)
C(28)	105(4)	59(3)	38(2)	16(2)	39(2)	29(3)
C(29)	66(3)	55(3)	41(2)	13(2)	-17(2)	-13(2)
C(30)	60(3)	52(3)	53(2)	20(2)	1(2)	-22(2)
C(31)	80(3)	43(2)	34(2)	11(2)	13(2)	27(2)
B(1)	24(2)	24(2)	22(2)	0(1)	4(1)	-2(1)

Table S15.	Hydrogen coordinates (x	10 ⁴) and isotropic displacement pa	arameters ($Å^2x \ 10^3$) for 4g .

	Х	У	Z	U(eq)
H(2)	2740(50)	4264(15)	-140(40)	35(10)
H(1)	2878	3045	-2816	34
H(2A)	498	2321	-3077	37
H(3)	-2012	2309	-1667	33
H(6)	-3534	3526	1857	31
H(7)	-1071	4239	1983	31
H(11A)	3575	5371	189	29
H(11B)	5222	4883	741	29
H(12)	4309	5763	2569	27
H(13)	8261	5406	2047	27
H(16)	4909	6731	3226	32
H(17)	4848	7502	4720	38
H(18)	7727	7721	6694	38
H(19)	10698	7150	7312	35
H(21)	11343	5585	4223	29
H(22A)	13895	6572	6783	50
H(22B)	14057	5930	6486	50
H(22C)	12913	6140	7732	50
H(23A)	-6018	2257	1063	48
H(23B)	-6155	2911	1063	48
H(23C)	-4326	2604	2269	48
H(24A)	6043	5919	-41	35
H(24B)	6407	6445	1032	35
H(25A)	9681	5869	116	54
H(25B)	10110	6375	1260	54
H(25C)	8838	6467	-449	54
H(28A)	5714	5025	8097	96
H(28B)	6026	4375	8089	96
H(28C)	3952	4648	7039	96

H(29A)	9601	4915	6037	89
H(29B)	9580	4616	7583	89
H(29C)	9001	5253	7365	89
H(30A)	3015	4283	4579	86
H(30B)	3987	3812	5762	86
H(30C)	3928	3734	4023	86
H(31A)	7693	3560	4653	79
H(31B)	7933	3654	6410	79
H(31C)	9350	4000	5550	79

AQ-Et-Pd

Table S16. Crystal data and structure refinement for Pd-I.Report date2016-05-26

Volume Z Density (calculated) Absorption coefficient F(000)Crystal size Crystal color, habit Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.000° Absorption correction Max. and min. transmission C17 H18 N2 O3 Pd C17 H18 N2 O3 Pd 404.73 100 K 0.71073 Å Monoclinic P 1 21/n 1 α= 90°. a = 8.6104(4) Åb = 10.5955(5) Åc = 17.7100(9) Å $\gamma = 90^{\circ}$. 1595.59(13) Å³ 4 1.685 Mg/m³ 1.179 mm⁻¹ 816 0.347 x 0.295 x 0.261 mm³ Yellow Block 2.493 to 25.347°. -8<=h<=10, -12<=k<=12, -21<=l<=21 16069 2929 [R(int) = 0.0238] 99.9 % Semi-empirical from equivalents 0.2590 and 0.2292

 $\alpha = 90^{\circ}$. $\beta = 99.0510 (10)^{\circ}$. $\gamma = 90^{\circ}$.

S-43

Full-matrix least-squares on F ²
2929 / 0 / 210
1.141
R1 = 0.0214, $wR2 = 0.0516$
R1 = 0.0240, wR2 = 0.0529
n/a
0.338 and -0.367 e.Å ⁻³

	Х	у	Z	U(eq)
Pd(1)	6604(1)	7152(1)	4372(1)	25(1)
O(1)	8343(2)	7913(2)	5139(1)	35(1)
O(2)	2747(2)	6109(2)	2825(1)	49(1)
O(3)	7307(2)	9803(2)	5286(1)	43(1)
N(1)	7225(2)	5422(2)	4823(1)	25(1)
N(2)	5021(2)	6147(2)	3703(1)	29(1)
C(1)	8350(3)	5151(2)	5398(1)	29(1)
C(2)	8767(3)	3899(2)	5595(1)	34(1)
C(3)	7983(3)	2937(2)	5193(2)	36(1)
C(4)	6753(3)	3191(2)	4593(1)	32(1)
C(5)	6398(3)	4472(2)	4414(1)	25(1)
C(6)	5207(3)	4826(2)	3804(1)	29(1)
C(7)	4387(3)	3876(3)	3382(2)	41(1)
C(8)	4713(4)	2597(3)	3565(2)	48(1)
C(9)	5852(4)	2252(2)	4150(2)	43(1)
C(10)	3787(3)	6679(3)	3239(1)	35(1)
C(11)	3775(3)	8115(3)	3290(2)	40(1)
C(12)	5140(3)	8685(2)	3818(1)	33(1)
C(13)	6605(3)	8808(2)	3609(1)	32(1)
C(14)	6979(3)	8477(3)	2834(2)	41(1)
C(15)	6670(4)	9626(3)	2305(2)	60(1)
C(16)	8298(3)	8989(2)	5468(1)	31(1)
C(17)	9603(3)	9183(3)	6134(2)	51(1)

Table S17. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for **Pd-I**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S18. Bond lengths [Å] and angles [°] for Pd-I.

Pd(1)-O(1)	2.0243(17)
Pd(1)-N(1)	2.0382(18)
Pd(1)-N(2)	1.9712(19)
Pd(1)-C(12)	2.191(2)
Pd(1)-C(13)	2.214(2)
O(1)-C(16)	1.283(3)
O(2)-C(10)	1.224(3)
O(3)-C(16)	1.220(3)
N(1)-C(1)	1.321(3)
N(1)-C(5)	1.372(3)
N(2)-C(6)	1.417(3)
N(2)-C(10)	1.359(3)
C(1)-H(1)	0.9500
C(1)-C(2)	1.404(3)
C(2)-H(2)	0.9500
C(2)-C(3)	1.360(4)
C(3)-H(3)	0.9500
C(3)-C(4)	1.403(4)

C(4)-C(5)	1.416(3)
C(4)-C(9)	1.420(4)
C(5)-C(6)	1.417(3)
C(6)-C(7)	1.380(3)
C(7)-H(7)	0.9500
C(7)-C(8)	1.411(4)
C(8)-H(8)	0.9500
C(8)-C(9)	1.359(4)
C(9)-H(9)	0.9500
C(10)-C(11)	1.524(4)
C(11)-H(11A)	0.9900
C(11) - H(11B)	0.9900
C(11)-C(12) C(12) $U(12)$	1.507(4)
$C(12) - \Pi(12)$ $C(12) - \Pi(12)$	1.0000 1.275(2)
C(12)-C(13) $C(13) \cup U(13)$	1.373(3)
$C(13)$ - $\Pi(13)$ C(13) $C(14)$	1.0000
C(13)-C(14)	0.9900
C(14)-H(14R)	0.9900
C(14)-C(15)	1.534(4)
C(15)-H(15A)	0.9800
C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800
C(16)-C(17)	1.510(4)
C(17)-H(17A)	0.9800
C(17)-H(17B)	0.9800
C(17)-H(17C)	0.9800
O(1)-Pd(1)-N(1)	88.51(7)
O(1)-Pd(1)-C(12)	108.56(8)
O(1)-Pd(1)-C(13)	91.29(8)
N(1)-Pd(1)-C(12)	160.00(9)
N(1)-Pd(1)-C(13)	157.97(8)
N(2)-Pd(1)-O(1)	170.66(7)
N(2)-Pd(1)-N(1)	82.14(8)
N(2)-Pd(1)-C(12)	80.62(9)
N(2)-Pa(1)-C(13) C(12) Pd(1) C(12)	97.40(9)
C(12)-Pa(1)-C(13) C(16) O(1) Pd(1)	30.39(9) 125.97(16)
C(10)-O(1)-Fu(1) C(1) N(1) Pd(1)	123.07(10) 127.79(16)
C(1) - N(1) - Fu(1) C(1) N(1) C(5)	127.70(10) 120.3(2)
C(1)-N(1)-C(3) C(5)-N(1)-Pd(1)	120.3(2) 111 73(15)
C(6)-N(2)-Pd(1)	113.84(15)
C(10)-N(2)-Pd(1)	122.68(17)
C(10)-N(2)-C(6)	123.2(2)
N(1)-C(1)-H(1)	119.2
N(1)-C(1)-C(2)	121.7(2)
C(2)-C(1)-H(1)	119.2
C(1)-C(2)-H(2)	120.3
C(3)-C(2)-C(1)	119.4(2)
C(3)-C(2)-H(2)	120.3
C(2)-C(3)-H(3)	119.8
C(2)-C(3)-C(4)	120.4(2)
C(4)-C(3)-H(3)	119.8
C(3)-C(4)-C(5)	117.6(2)
C(3)-C(4)-C(9)	124.5(2)
C(5)-C(4)-C(9)	117.9(2)
N(1)-C(5)-C(4)	120.6(2)
N(1)-C(5)-C(6)	117.5(2)
C(4)-C(5)-C(6)	121.9(2)

C(5)-C(6)-N(2)	114.29(19)
C(7)-C(6)-N(2)	127.9(2)
C(7)-C(6)-C(5)	117.8(2)
C(6)-C(7)-H(7)	119.7
C(6)-C(7)-C(8)	120 6(3)
C(8)-C(7)-H(7)	1197
C(7)-C(8)-H(8)	119.7
C(9)-C(8)-C(7)	121 8(2)
C(9)-C(8)-H(8)	119.1
C(4)-C(9)-H(9)	120.0
C(8)-C(9)-C(4)	119 9(3)
C(8)-C(9)-U(4)	120.0
O(2) C(10) N(2)	125.0(3)
O(2) - O(10) - O(2)	123.9(3) 121.1(2)
N(2) C(10) C(11)	121.1(2) 112.0(2)
N(2)-C(10)-C(11)	112.9(2)
C(10) - C(11) - H(11A)	108.5
C(10)-C(11)-H(11B)	108.5
H(11A)-C(11)-H(11B)	107.5
C(12)-C(11)-C(10)	115.2(2)
C(12)-C(11)-H(11A)	108.5
C(12)-C(11)-H(11B)	108.5
Pd(1)-C(12)-H(12)	115.2
C(11)-C(12)-Pd(1)	108.51(16)
C(11)-C(12)-H(12)	115.2
C(13)-C(12)-Pd(1)	72.71(14)
C(13)-C(12)-C(11)	122.0(2)
C(13)-C(12)-H(12)	115.2
Pd(1)-C(13)-H(13)	113.8
C(12)-C(13)-Pd(1)	70.90(14)
C(12)-C(13)-H(13)	113.8
C(12)-C(13)-C(14)	124.2(2)
C(14)-C(13)-Pd(1)	113.20(17)
C(14)-C(13)-H(13)	113.8
C(13)-C(14)-H(14A)	109.8
C(13)-C(14)-H(14B)	109.8
C(13)-C(14)-C(15)	109.4(2)
H(14A)-C(14)-H(14B)	108.2
C(15)-C(14)-H(14A)	109.8
C(15)-C(14)-H(14B)	109.8
C(14)-C(15)-H(15A)	109.5
C(14)-C(15)-H(15B)	109.5
C(14)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15R) - C(15) - H(15C)	109.5
O(1)-C(16)-C(17)	113.8(2)
O(3) C(16) O(1)	115.0(2) 125.3(2)
O(3) - O(10) - O(17)	123.3(2) 120.0(2)
C(16) C(17) H(17A)	120.9(2)
C(16) - C(17) - H(17R)	109.5
$C(10)-C(17)-\Pi(17D)$ $C(16)-C(17)-\Pi(17C)$	109.5
U(10)-U(17)-H(17U)	109.5
H(1/A)-C(1/)-H(1/B)	109.5
H(1/A)-U(1/)-H(1/U)	109.5
H(1/B)-C(1/)-H(1/C)	109.5

Table S19. Anisotropic displacement parameters (Å²x 10³) for **Pd-I**. The anisotropic displacement factor exponent takes the form: $-2p^{2}[h^{2} a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$.

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U^{12}
$\overline{\mathbf{D} 1(1)}$	2((1)	20(1)	20(1)	2(1)	4(1)	1(1)
Pd(1)	26(1)	20(1)	29(1)	-2(1)	4(1)	I(1)
O(1)	34(1)	22(1)	47(1)	-7(1)	-2(1)	0(1)
O(2)	40(1)	63(1)	41(1)	-2(1)	-8(1)	-4(1)
O(3)	55(1)	29(1)	45(1)	-6(1)	4(1)	10(1)
N(1)	27(1)	20(1)	28(1)	-4(1)	9(1)	-2(1)
N(2)	26(1)	31(1)	28(1)	-2(1)	3(1)	-3(1)
C(1)	32(1)	26(1)	30(1)	-1(1)	5(1)	1(1)
C(2)	37(1)	30(1)	35(1)	4(1)	7(1)	6(1)
C(3)	48(2)	22(1)	40(1)	4(1)	16(1)	4(1)
C(4)	43(1)	22(1)	35(1)	-4(1)	19(1)	-5(1)
C(5)	30(1)	23(1)	26(1)	-6(1)	12(1)	-3(1)
C(6)	30(1)	30(1)	28(1)	-5(1)	10(1)	-7(1)
C(7)	40(2)	44(2)	38(1)	-10(1)	4(1)	-12(1)
C(8)	58(2)	35(2)	52(2)	-18(1)	12(2)	-21(1)
C(9)	58(2)	23(1)	50(2)	-7(1)	15(1)	-10(1)
C(10)	29(1)	48(2)	28(1)	2(1)	6(1)	1(1)
C(11)	32(1)	49(2)	39(1)	12(1)	7(1)	10(1)
C(12)	40(1)	24(1)	36(1)	6(1)	9(1)	10(1)
C(13)	41(1)	21(1)	37(1)	3(1)	9(1)	0(1)
C(14)	40(2)	47(2)	38(1)	1(1)	13(1)	-1(1)
C(15)	65(2)	72(2)	46(2)	18(2)	21(2)	1(2)
C(16)	35(1)	26(1)	34(1)	-2(1)	11(1)	-5(1)
C(17)	48(2)	47(2)	55(2)	-15(1)	-1(1)	-3(1)
		~ /				

Table S20. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for **Pd-I**.

	Х	У	Z	U(eq)
	8901	5820	5691	25
$\Pi(1)$ $\Pi(2)$	0091	3820	5084	33
H(2)	9309	2080	5310	41
$\Pi(3)$ $\Pi(7)$	82/1	2089	2064	43
$\Pi(I)$	5590 4121	4063	2904	47 50
$\Pi(0)$	4121	1900	5272 4261	50 52
H(9)	0045	1384	4201	52
H(11A)	<i>3</i> /00	8404	2771	48
H(11B)	2788	8380	3465	48
H(12)	4854	9354	4170	40
H(13)	7220	9542	3854	39
H(14A)	6316	7761	2619	49
H(14B)	8095	8220	2878	49
H(15A)	7376	10315	2504	90
H(15B)	5576	9899	2281	90
H(15C)	6860	9397	1791	90
H(17A)	10535	8708	6046	76
H(17B)	9260	8885	6604	76
H(17C)	9863	10083	6183	76

REFERENCES

- Wu, Q.-F.; Shen, P.-X.; He, J.; Wang, X.-B.; Zhang, F.; Shao, Q.; Zhu, R.-Y.; Mapelli, C.; Qiao, J. X.; Poss, M. A.; Yu, J.-Q. Formation of α-chiral centers by asymmetric β-C(sp³)–H arylation, alkenylation, and alkynylation. *Science* 2017, *355*, 499–503.
- (2) Shen, P.-X.; Hu, L.; Shao, Q.; Hong, K.; Yu, J.-Q. Enantioselective C(sp³)–H Arylation of Free Carboxylic Acids. *J. Am. Chem. Soc.* **2018**, *140*, 6545–6549.
- (3) Martinelli, M. J. Asymmetric Diels-Alder reactions with γ -functionalized α , β -unsaturated chiral N-acyloxazolidinones: synthesis of (+)-S-145. *J. Org. Chem.* **1990**, *55*, 5065–5073.
- (4) Mitchell, J. M.; Finney, N. S. An efficient method for the preparation of *N*,*N*-disubstituted 1,2-diamines. *Tetrahedron Lett.* **2000**, *41*, 8431–8434.
- (5) Jung, M. E.; Huang, Use of Optically Active Cyclic N,N-Dialkyl Aminals in Asymmetric Induction. A. Org. Lett. 2000, 2, 2659–2661.
- (6) Clemens, N.; Sereda, O.; Wilhelm, R. Unexpected behaviour of tosylated and acetylated imidazolinium salts. *Org. Biomol. Chem.* **2006**, *4*, 2285–2290.
- (7) Wang, H.; Bai, Z.; Jiao, T.; Deng, Z.; Tong, H.; He, G.; Peng, Q.; Chen, G. Palladium-Catalyzed Amide-Directed Enantioselective Hydrocarbofunctionalization of Unactivated Alkenes Using a Chiral Monodentate Oxazoline Ligand. J. Am. Chem. Soc. 2018, 140, 3542–3546.
- (8) Williams, C. W.; Shenje, R.; France, S. Catalytic, Interrupted Formal Homo-Nazarov Cyclization with (Hetero)arenes: Access to α-(Hetero)aryl Cyclohexanones. J. Org. Chem. 2016, 81, 8253– 8267.
- (9) Jacquemard, U.; Bénéteau, V.; Lefoix, M.; Routier, S.; Mérour, J.-Y.; Coudert, G. Mild and selective deprotection of carbamates with Bu₄NF. *Tetrahedron* **2004**, *60*, 10039–10047.
- (10) Choy, P. Y.; Lau, C. P.; Kwong, F. Y. Palladium-Catalyzed Direct and Regioselective C-H Bond Functionalization/Oxidative Acetoxylation of Indoles. J. Org. Chem. 2011, 76, 80-84.
- (11) Stavber, S.; Kralj, P.; Zupan, M. Progressive Direct Iodination of Sterically Hindered Alkyl Substituted Benzenes. *Synthesis* **2002**, *11*, 1513–1518.
- (12) Liu, C.; Wang, H.; Xing, X.; Xu, Y.; Ma, J.-A.; Zhang, B. Selective C4–F bond cleavage of pentafluorobenzene: synthesis of N-tetrafluoroarylated heterocyclic compounds. *Tetrahedron Lett.* 2013, 54, 4649–4652.
- (13) Sun, X.; Chen, Y.; Wu, N.; Kang, C. S.; Song, H. A.; Jin, S.; Fu, Y.; Bryant, H., Jr.; Frank, J. A.; Chong, H.-S. Application of aziridinium ring opening for preparation of optically active diamine and triamine analogues: Highly efficient synthesis and evaluation of DTPA-based MRI contrast enhancement agents. *RSC Adv.* **2015**, *5*, 94571–94581.
- (14) Richmond, E.; Ling, K. B.; Duguet, N.; Manton, L. B.; Çelebi-Ölçüm, N.; Lam, Y.-H.; Alsancak, S.; Slawin, A. M. Z.; Houk, K. N.; Smith, A. D. An asymmetric pericyclic cascade approach to 3-alkyl-3-aryloxindoles: generality, applications and mechanistic investigations. *Org. Biomol. Chem.* 2015, *13*, 1807–1817.
- (15) Chen, C.-A.; Wu, K.-H.; Gau, H.-M. Synthesis and application of polymer-supported *N*-sulfonylated aminoalcohols as enantioselective catalysts. *Polymer* **2008**, *49*, 1512–1519.
- (16) Srivastava, V.; Tandon, A.; Ray, S. Convenient and Selective Acetylations of Phenols, Amines and Alcohols. *Synth. Commun.* **1992**, *22*, 2703–2710.
- (17) White, D. E.; Stewart, I. C.; Grubbs, R. H.; Stoltz, B. M. The Catalytic Asymmetric Total Synthesis of Elatol. J. Am. Chem. Soc. 2008, 130, 810–811.
- (18) Yang, K. S.; Gurak, J. A., Jr.; Liu, Z.; Engle, K. M. Catalytic, Regioselective Hydrocarbofunctionalization of Unactivated Alkenes with Diverse C-H Nucleophiles. J. Am. Chem. Soc. 2016, 138, 14705–14712.
- (19) Liu, M.; Yang, P.; Karunananda, M. K.; Wang, Y.; Liu, P.; Engle, K. M. C(alkenyl)-H Activation via Six-Membered Palladacycles: Catalytic 1,3-Diene Synthesis. J. Am. Chem. Soc. 2018, 140, 5805-5813.
- (20) Kim, I. S.; Dong, G. R.; Jung, Y. H. Palladium(II)-Catalyzed Isomerization of Olefins with Tributyltin Hydride. J. Org. Chem. 2007, 72, 5424–5426.
- (21) Yadagiri, P.; Yadav, J. S. A Convenient Synthesis of (Z)-7-Nonadecen-Ll-One and (Z)-7-Eicosen-Ll-Cne-The Pheromones of Peach Fruit Moth. Synth. Commun. 1983, 13, 1067–1074.

- (22) Shao, C.; Shi, G.; Zhang, Y.; Pan, S.; Guan, X. Palladium-Catalyzed C-H Ethoxycarbonyldifluoromethylation of Electron-Rich Heteroarenes. *Org. Lett.* **2015**, *17*, 2652–2655.
- (23) Fawcett, A.; Pradeilles, J.; Wang, Y.; Mutsuga, T.; Myers, E. L.; Aggarwal, V. K. Photoinduced decarboxylative borylation of carboxylic acids. *Science* **2017**, *357*, 283–286.
- (24) CCDC 1888952 (4f), CCDC 1888953 (4g) and CCDC 1888954 (Pd-I) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- (25) He, J.; Shao, Q.; Wu, Q.; Yu, J.-Q. Pd(II)-Catalyzed Enantioselective C(sp³)–H Borylation. J. Am. Chem. Soc. 2017, 139, 3344–3347.
- (26)Bonet, A.; Gulyás, H.; Fernández, E. Metal-Free Catalytic Boration at the β-Position of α,β-Unsaturated Compounds: A Challenging Asymmetric Induction. *Angew. Chem. Int. Ed.* 2010, 49, 5130–5134.
- (27) Deguchi, T.; Xin, H.-L.; Morimoto, H.; Ohshima, T. Direct Catalytic Alcoholysis of Unactivated 8-Aminoquinoline Amides. *ACS. Catal.* **2017**, *7*, 3157–3161.
- (28) Verho, O.; Lati, M. P.; Oschmann, M. J. A Two-Step Procedure for the Overall Transamidation of 8-Aminoquinoline Amides Proceeding via the Intermediate *N*-Acyl-Boc-Carbamates. *J. Org. Chem.* **2018**, *83*, 4464–4476.
- (29) Dietz, C.; Hart, T. K.; Nemati, R.; Yao, X.; Nichols, F. C.; Smith, M. B. Structural verification via convergent total synthesis of dipeptide–lipids isolated from *Porphyromonas gingivalis*. *Tetrahedron* **2016**, *72*, 7557–7569.
- (30) Hoye, T. R.; Jeffrey, C. S.; Shao F. Mosher ester analysis for the determination of absolute configuration of stereogenic (chiral) carbinol carbons. *Nat. Protoc.* **2007**, *2*, 2451–2458.

NMR Spectra and SFC Chromatograms

S-55

S-56

S-62

S-68

	SampleName	ent1	ent2	ee	Ent1	Ent2
1	ZL-5-member	49.83	50.17	-0.35	277875	279800
2	LZ-57-1	85.58	14.42	71.16	2173472	366285

	SampleName	ent1	ent2	ee	Ent1	Ent2
1	Rac-B	50.38	49.62	0.75	663517	653579
2	LZ-57-2	83.40	16.60	66.81	1276993	254111

SFC Chromatograms of 4c

	SampleName	ent1	ent2	ee	Ent1	Ent2
1	LZ-70-3-rac	49.81	50.19	-0.38	1250546	1260159
2	2LZ-42-2	74.97	25.03	49.94	13664993	4562767

S-75

Area Summariz	ed by Name
---------------	------------

	SampleName	ent1	ent2	ee	Ent1	Ent2
1	ENG0177A_SFC	50.35	49.65	0.70	49043	49731
2	LZ-22-4	91.05	8.95	82.10	338533	33271

SampleName	ent1	ent2	ee	Ent1	Ent2
LZ-60-1	91.49	8.51	82.98	2163391	201223

	SampleName	ent1	ent2	ee	A_Ent1	A_Ent2
1	rac	50.06	49.94	0.11	1331485	1328491
2	LZ-39-1	94.43	5.57	88.86	1475223	86989

Auto-Scaled Chromatogram 2.00 Ent1 - 3.164 1.50 ₽ 1.00 Ent2 - 4.576 0.50 4.390 2.124 2.922 3.768 2.300 2.469 2.932 3.386 3.464 3.584 0.00 1.00 1.50 0.50 2.00 4.00 5.00 0.00 2.50 3.00 3.50 4.50 Minutes

Area Summarized by	Name
--------------------	------

	SampleName	ent1	ent2	ee	Ent1	Ent2
1	LZ-43-2-rac	49.93	50.07	-0.14	927764	930336
2	LZ-43-2	93.56	6.44	87.13	9289195	639042

S-82

Auto-Scaled Chromatogram

Area	Summarized	by	Name
------	------------	----	------

	SampleName	ent1	ent2	ee	Ent1	Ent2
1	Bu-rac	50.48	49.52	0.96	1491500	1463005
1	57-3	93.62	6.38	87.25	1230857	83823

SFC Chromatograms of 4i

	SampleName	ent1	ent2	ee	Ent1	Ent2
1	LZ-67-3-rac	50.69	49.31	1.38	2643173	2571036
2	LZ-67-2	94.34	5.66	88.69	3113494	186680

-40

-30

-20

-10

	SampleName	ent1	ent2	ee	Ent1	Ent2
1	LZ-78-1-rac	49.54	50.46	-0.92	2612581	2661317
2	LZ-78-2	93.73	6.27	87.47	2196930	146845

	SampleName	ent1	ent2	ee	Ent1	Ent2
1	LZ-IPR-Rac	50.77	49.23	1.54	466922	452776
2	LZ-IPR-1	95.28	4.72	90.56	1117490	55368

SFC Chromatograms of 41

	SampleName	ent1	ent2	ee	Ent1	Ent2
1	LZ-NBu-Rac	51.79	48.21	3.59	131292	122203
2	LZ-NBu-1	92.27	7.73	84.53	799931	67043

Auto-Scaled Chromatogram

	SampleName	ent1	ent2	ee	Ent1	Ent2
1	LZ-50Me-Rac	50.23	49.77	0.46	530628	525733
2	LZ-37-1	92.81	7.19	85.62	3959224	306764

	SampleName	ent1	ent2	ee	Ent1	Ent2
1	LZ-7Me-Rac	50.18	49.82	0.36	313197	310925
2	LZ-7Me-1	93.46	6.54	86.92	1537208	107576

Auto-Scaled Chromatogram

	SampleName	ent1	ent2	ee	Ent1	Ent2
1	LZ-42-1	51.11	48.89	2.22	1162181	1111601
2	LZ-43-1	91.67	8.33	83.34	3462388	314726

	SampleName	ent1	ent2	ee	Ent1	Ent2
1	LZ-rac	50.10	49.90	0.20	6410665	6384853
2	LZ-143-2	24.06	75.94	-51.87	4157236	13119578

	SampleName	ent1	ent2	ee	Ent1	Ent2
1	LZ-Et-O-R	50.10	49.90	0.20	2624365	2613891
2	LZ-ET-O-C	93.89	6.11	87.77	5016360	326701

Area Summarized by Name

	SampleName	ent1	ent2	ee	Ent1	Ent2
1	LXH-60(r)	50.09	49.91	0.17	2739668	2730184
2	LXH-60(c)	4.45	95.55	-91.10	21151	454211

S-105

Auto-Scaled Chromatogram

Are	a sun	IIIIdiiz	ed by	Name	
-					_

NIG

	SampleName	ent1	ent2	ee	Ent1	Ent2
1	ZL-AR	49.87	50.13	-0.25	1159648	1165488
2	ZL-AC	14.29	85.71	-71.41	864400	5182664

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 f1 (ppm)

30

S-109

S-110