
S1 Text. Mathematical

supplements

Organisation of this document

This document consists of six sections.

• 1. “The proportion of co-infected hosts is larger than the product of the preva-
lences”.

– A demonstration that J1,2 from Eq. (3) in the Main Text is larger than P = 12
as can be derived from Eq. (1) in the Main Text for all parameters (for
sufficiently large t), as well as numerical work to investigate how quickly
this is likely to occur.

• 2. “Covariance matrix at the endemic equilibrium”.

– A derivation of the covariance matrix for stochastic fluctuations around the
endemic equilibrium in the two-pathogen model (leads to Eq. (27) in the
main text).

• 3. “Comments on the model of May and Nowak (1995)”.

– Details how the oft-cited co-infection model of May and Nowak (1995) is
not correct.

• 4. “Extending the models to accommodate specific clearance”.

– Shows how the methods developed in the main text can be extended to
accommodate an additional epidemiological parameter: specific clearance
(i.e. each pathogen being cleared independently of any other, possibly at
a pathogen-specific rate).

• 5. “The prevalence of co-infections can be equal to the product of the preva-
lences of interacting pathogens”.

– Shows how, in the model described in S1 Text Section 4, if there is no
host natural death but only specific clearance, then the prevalence of co-
infections can be equal to the product of the prevalences even when pathogens
interact. This complements our main point (non-interaction does not imply
independence) by showing that it holds the other way around as well (in-
dependence does not imply non-interaction).

• 6. “Impact of environmental noise and transient behaviour”.

– Shows how, in the two-pathogen model considered in the main text, the
difference between J1,2 and P is robust to the form of the noise that is
assumed, as well as that it is likely to become detectable relatively quickly
and so that transient behaviour is not likely to critically affect our results.
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1 The proportion of co-infected hosts is larger than the
product of the prevalences

1.1 Mathematical proof of long-term behaviour

Let P = 12 and introduce the new variable Z, the extent to which the product of
prevalences over-estimates the proportion of co-infected hosts,

Z = P − J1,2 = 12 − J1,2. (S1)

Differentiating Z and simplifying using Eqs. (2) and (3) in the main text leads to

Ż = 1 ̇2 + 2 ̇1 − J̇1,2,
Ż = −(β11 + β22 + μ)Z − μP. (S2)

Of interest is the sign of Z(t) as a function of its initial conditions. We assume
R0, > 1 and 0 < (0) ≤ ̄ for  = 1, 2. The differential equation for  is logistic and
therefore, (t) converges monotonically to ̄,  = 1, 2. There exists ε > 0 such that
P(t) > P̃ = ̄1 ̄2 − ε > 0 for t ≥ 0. Suppose Z(0) > 0. The term −μP(t) < −μP̃ < 0
ensures that Z(t) decreases to zero in finite time. Let ts be the first time that Z(ts) =
0. Then Ż(ts) < 0, so Z(t) eventually becomes negative. To show that Z(t) remains
negative, let Z(t) < 0 for ts < t < t2 and let t2 be the first time that Z(t2) = 0, then
Ż(t2) ≥ 0, a contradiction to the fact that Ż(t2) ≤ −μP̃. Hence Z(t) remains negative
for t > ts. In a similar manner it can be shown that if Z(0) = 0 or Z(0) < 0, then
Z(t) < 0 for t > 0. In particular, due to the convergence of (t) to ̄ for  = 1, 2, Z(t)
converges to the negative limit: −μ̄1 ̄2/(β1 ̄1 + β2 ̄2 + μ).

1.2 Numerical investigation of the switching time, ts

That Z(t) remains negative after any change of sign is proved above. The “switching
time” at which this occurs, ts, then becomes of potential interest. It seems rather
difficult to come to any strong conclusions analytically. We therefore performed a
numerical investigation of the switching time, summarising the behaviour of the two-
pathogen model for different sets of initial conditions and parameters to understand
the timing of this event.

In particular, we simulated our deterministic, two-pathogen model a very large
number of times (100, 000 for each initial condition scenario; see below) with randomly-
chosen values of the epidemiological parameters. In each run of the model, the in-
fection rates β1 and β2 were sampled uniformly at random between 1 and 5, keeping
the removal rate, μ, fixed at 1 (i.e. scaling all simulations relative to the same host
lifetime). This allows us to characterise behaviour for 1 ≤ R0,1,R0,2 ≤ 5.

We identified two sets of initial conditions that might be of interest.

1. Random initial conditions. The initial condition for all four host densities
in our model were chosen uniformly at random, subject to the constraint that
J∅(0) + J1(0) + J2(0) + J1,2(0) = 1 (this was done by sampling from a suitable
Dirichlet distribution). This corresponds to the case in which nothing is known
about the initial state of the system.

2. One pathogen is invading. The initial condition for the density of hosts singly
infected by pathogen one, J1(0), was fixed at its equilibrium value in the ab-
sence of the other pathogen (i.e. J1(0) = 1 − 1/R0,1) and the initial density of
co-infected hosts, J1,2(0) was fixed at 0. The density of hosts singly infected
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by pathogen two, J2(0), was then sampled uniformly at random within a range
of “small” values (the maximum permissible value of J2(0) was chosen to be
0.01). The density of susceptible hosts was then set to be J∅(0) = 1/R0,1− J2(0),
again to ensure the total density of hosts was fixed at 1. This scenario corre-
sponds to pathogen two invading pathogen one when it is initially present at its
equilibrium.

Under both initial condition scenarios, the switching time was relatively small. Typ-
ical examples showing how the switching time was calculated are shown in S1 Fig
(panels A and C). For the random initial condition scenario, in approximately 50% of
cases the initial conditions were such that Z < 0 already at t = 0 (in which case the
switch does not occur, with Z remaining negative forever). In the remaining 50% of
cases, the switching time almost always satisfied ts < 0.5 (host lifetimes), and was
very often far shorter (S1B Fig). In the scenario corresponding to one pathogen in-
vading the other, the initial value of Z was always positive, and very short switching
times were not possible. Nevertheless, in all cases we tested, the switch occurred
within the average lifetime of a single host.

1.3 Summary

In summary, the fate of Z is to become negative in finite time and to remain nega-
tive thereafter. This is due to μ > 0. Otherwise for μ = 0, Z would not change sign
and would asymptotically converge to zero. The timing of the switch from positive
to negative values of Z – if it is even applicable, which depends on the initial con-
ditions – depends on parameters and initial conditions, but is always relatively fast
compared to the average lifetime of an individual host.

2 Covariance matrix at the endemic equilibrium

In the stochastic version of the model, the fluctuations (Δ1, Δ2) = (1 − ̄1, 2 − ̄2)
about the endemic equilibrium (̄1, ̄2) = N(1−1/R0,1, 1−1/R0,2) can be approximated
by the solution of the linear multivariate Fokker-Planck equation,

∂p(, t)

∂t
= −

2
∑

,j=1

Aj
∂(jp)

∂
+
1

2

2
∑

,j=1

Bj
∂2p

∂∂j
, (S3)

where the vector  = (1,2) corresponds to (Δ1,Δ2). The steady-state solution of
this equation is a Gaussian distribution with mean zero and covariance matrix C̄.
We will use this multivariate normal distribution to approximate the joint probability
density function of the random variables (1, 2) near the endemic equilibrium. Matrix
A = [Aj] is the rate of change toward zero and matrix B = [Bj] is the covariance
of this process (O’Dea et al., 2018; Van Kampen, 1992). In particular, matrix A is
the linearization of the differential equations for (1, 2) (total population size, not
proportions) about the endemic equilibrium,

A =







β1 − 2
β1

N
̄1 − μ 0

0 β2 − 2
β2

N
̄1 − μ






=
�

−β1 + μ 0
0 −β2 + μ

�

. (S4)

We use the fact that 1 = J1 + J1,2 and 2 = J2 + J1,2 and sum the appropriate elements
in the covariance matrix  (Eq. (24) in the main text) to compute the covariance
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matrix B,

B=
�

F̄1(J̄∅ + J̄2) + μ̄1 μJ̄12
μJ̄12 F̄2(J̄∅ + J̄1) + μ̄2

�

=









2Nμ
�

1 −
1

R0,1

�

μJ̄12

μJ̄12 2Nμ
�

1 −
1

R0,2

�









. (S5)

The expressions in matrices A and B are evaluated at the endemic equilibrium. In
particular, F̄ = β ̄/N = β(1 − 1/R0,),  = 1, 2, and the equilibrium J̄12 is found by
multiplying Eq. (4) in the main text by N and substituting for the equilibria of the
single pathogen models ̄1 and ̄2:

J̄12 =
�

N(β1 + β2)

β1 + β2 − μ

��

1 −
1

R0,1

��

1 −
1

R0,2

�

. (S6)

Van Kampen (1992) showed that the covariance matrix C of the Fokker-Planck
equation is the solution of the differential equation: Ċ = AC + CAT + B. The steady-
state covariance matrix is the solution of

AC + CAT = −B . (S7)

To compute the steady-state covariance matrix for the proportion of the population
that is infected, divide the solution of Eq. (S7) by N2. That is, C̄ equals

C̄ =
1

N2













Nμ
�

1 − 1
R0,1

�

β1 − μ

μJ̄1,2

(β1 − μ) + (β2 − μ)
μJ̄1,2

(β1 − μ) + (β2 − μ)

Nμ
�

1 − 1
R0,2

�

β2 − μ













=











1

NR0,1

μJ̄1,2

N2[(β1 − μ) + (β2 − μ)]
μJ̄1,2

N2[(β1 − μ) + (β2 − μ)]

1

NR0,2











,

(S8)
where J̄12 is defined in Eq. (S6). The steady-state covariance matrix in Eq. (S8) is
used to construct confidence ellipses about the endemic equilibrium (̄1/N, ̄2/N) =
(1 − 1/R0,1, 1 − 1/R0,2) (as shown in Fig. 2C in the main text).

Note that the covariance between the prevalences of pathogen 1 and pathogen 2
(the off-diagonal elements in Eq. (S8)) is

C̄j = cov
�

1

N
,
2

N

�

=
μJ̄1,2

N2[(β1 − μ) + (β2 − μ)]
=

(β1 + β2)(β1 − μ)(β2 − μ)μ

Nβ1β2(β1 + β2 − μ)(β1 − μ + β2 − μ)
≥ 0 ,

(S9)
(for  6= j) with equality if and only if μ = 0 (assuming β > μ,  = 1, 2).

3 Comments on the model of May and Nowak (1995)

May and Nowak (1995) introduced a co-infection model very similar to that pre-
sented in the main text, taking

̇ = [β(1 − ) − μ − ᾱ] , with  = 1, . . . ,n , (S10)

for n pathogens. The natural mortality rate of the host is μ. The only difference from
our model is pathogen-specific mortality. In a single infection, pathogen  induces an
additional death rate to the host α: this is the virulence of pathogen . The induced
death rate of co-infected hosts is assumed to be equal to the maximum virulence of
the co-infecting pathogens. The pathogens are ranked such that for all , α < α+1.
Pathogen 1 is the least virulent pathogen and n is the most virulent pathogen. The
term ᾱ denotes the average induced death rate of hosts infected by pathogen .
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The authors state that the probability that a host is not infected with a pathogen
more virulent than  is defined as:

p =
n
∏

j=+1

(1 − j) . (S11)

It is important to notice that an underlying assumption of this definition is that the dy-
namics of the pathogens are independent. But, as we show below, they are not, since
the most virulent pathogens influence the dynamics of least virulent pathogens. The
coupling term ᾱ is defined as:

ᾱ = αp +
n
∑

j=+1

αjjpj . (S12)

The term jpj represents the probability to be infected by j and uninfected by more
virulent pathogens than j. Again, this definition implicitly assumes that the dynam-
ics of the pathogens are independent. This seems to contradict the fact that the
dynamics are coupled through virulence.

In this section, we check the model given in Eq. (S10) for n = 2 pathogens
and show that the above definitions do not hold up to mathematical analysis. We
consider the same 2-pathogen model as Eq. (3) of the main text, except that we
include additional virulence parameters α2 > α1. Model (S10) is to be compared
with:

J̇1 = F1J∅ − (F2 + μ + α1)J1 ,
J̇2 = F2J∅ − (F1 + μ + α2)J2 , (S13)

J̇1,2 = F2J1 + F1J2 − (μ +mx(α1,α2))J1,2 ,
= F2J1 + F1J2 − (μ + α2)J1,2 ,

where J∅ = 1 − J1 − J2 − J1,2.
Since model (S10) and model (S13) share the same biological assumptions and

the same mathematical formalism, they should be equivalent (for n = 2 pathogens).
Let 1 = J1 + J1,2 and 2 = J2 + J1,2. Model (S13) is equivalent to

̇1 = β11(1 − 1) − (μ + α?1)1 ,

̇2 = β22(1 − 2) − (μ + α2)2 , (S14)
J̇1,2 = β11(2 − J1,2) + β22(1 − J1,2) − (μ + α2)J1,2 ,

where

α?1 = α1

�

1 −
J1,2

1

�

+ α2
J1,2

1
. (S15)

Eq. (S11) yields p1 = 1 − 2 and p2 = 1. Eq. (S12) yields

ᾱ1 = α1(1 − 2) + α22 . (S16)

For model (S10) and model (S13) to coincide, one must have α?1 = ᾱ1, i.e. J1,2 = 12.
Proceeding as in S1 Text Section 1.1, let P = 12 and Z = P − J1,2. We have

Ż = −(β11 + β22 + μ + α2)Z − (μ + α?1)P . (S17)

Assuming P(t) > P̃ > 0 for t > 0, it can be shown that Z(t) becomes negative and
stays negative, implying for some time t0 and t > t0, J1,2(t) > P(t) = 1(t)2(t).
Therefore, α?1 6= ᾱ1. Hence, model (S10) and model (S13) are not equivalent, as they
should be, if model (S10) is correct.
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4 Extending the models to accommodate specific clear-
ance

4.1 Two-pathogen model

Introducing a pathogen-specific clearance rate γ, Eq. (1) of the main text is replaced
by

̇ = β(1 − ) − (γ + μ) (S18)

and Eq. (3) of the main text by

J̇1 = F1J∅ − (F2 + γ1 + μ)J1 + γ2J1,2 ,
J̇2 = F2J∅ − (F1 + γ2 + μ)J2 + γ1J1,2 , (S19)

J̇1,2 = F2J1 + F1J2 − (γ1 + γ2 + μ)J1,2 ,

where the definition of F is the same as in Eq. (2). The parameter μ is unchanged:
this is the natural death rate of the host.

After inclusion of pathogen-specific clearance rates, Eq. (8) of the main text is
replaced by

J̇∅ = μ(J1+J2+J1,2)−(F1 + F2) J∅+γ1J1+γ2J2 = μ(1−J∅)−(F1 + F2) J∅+γ1J1+γ2J2 . (S20)

and the basic reproduction number is

R0, =
β

γ + μ
. (S21)

Also, Eq. (9) of the main text is replaced by

J̇1,2 = β22(1 − J1,2) + β11(2 − J1,2) − (γ1 + γ2 + μ)J1,2 . (S22)

Eqs. (4) and (5) are unchanged as the relative deviation from statistical indepen-
dence is unaffected by the specific clearance rates γ.

Finally, Eq. (S2) is replaced by

Ż = −(β11 + β22 + γ1 + γ2 + μ)Z − μP. (S23)

where Z(t) converges to the negative limit: −μ̄1 ̄2/(β1 ̄1 + β2 ̄2 + γ1 + γ2 + μ). Again,
the fate of Z is to become negative and to remain negative provided μ > 0.

4.2 Analysis of the n-pathogen model

Introducing the notation for the set of hosts infected by one additional pathogen
Λ =  ∪ {} (for  /∈ ), Eq. (6) in the main text becomes

J̇ =
∑

∈
FJΩ −

�

∑

 /∈
F +

∑

∈
γ + μ

�

J +
∑

 /∈
γJΛ . (S24)

with F the same as in Eq. (7). The final term in Eq. (S24) tracks the inflow due
to hosts with one additional infection that clear a single infection. This final term is
omitted in the single case in which  corresponds to infection by all pathogens. Also,
the updated version of Eq. (10) for J̇∅ with pathogen-specific clearance rates is

J̇∅ = μ(1 − J∅) −
� n
∑

=1

F

�

J∅ +
n
∑

=1

γJ . (S25)
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Equilibrium analysis. The equilibrium equations with pathogen-specific clearance
rates are

0 =
∑

∈
F̄ J̄Ω −

�

∑

 /∈
F̄ +

∑

∈
γ + μ

�

J̄ +
∑

 /∈
γ J̄Λ , (S26)

and

0 =
∑

∈
(β − (γ + μ)) J̄Ω −

�

∑

 /∈
(β − (γ + μ)) +

∑

∈
γ + μ

�

J̄ +
∑

 /∈
γ J̄Λ . (S27)

with

F̄ = β ̄ = β

�

1 −
γ + μ

β

�

= β − (γ + μ). (S28)

(replacing Eqs. (11-12-13) of the main text).
To fit the models to data, it would be necessary to scale by the rate of host natural

death μ in Eq. (S27), leading to

0 =
∑

∈

�

β̂ − (γ̂ + 1)
�

J̄Ω −
�

∑

 /∈

�

β̂ − (γ̂ + 1)
�

+
∑

∈
γ̂ + 1

�

J̄ +
∑

 /∈
γ̂ J̄Λ , (S29)

and so consider infection (β̂ = β/μ) and specific clearance (γ̂ = γ/μ) rates mea-
sured relative to the rate of host natural death. With the scaled force of infection at
equilibrium

F̂ = β̂ − (γ̂ + 1), (S30)

then Eq. (S29) can be written as

0 =
∑

∈
F̂ J̄Ω −

�

∑

 /∈
F̂ +

∑

∈
γ̂ + 1

�

J̄ +
∑

 /∈
γ̂ J̄Λ . (S31)

Given the values of β̂ and γ̂, the 2n−1 linear equations corresponding to Eq. (S31)
can be solved simultaneously with the corresponding equation for the equilibrium
density of uninfected hosts (i.e. the scaled version of Eq. (S25)):

−1 = −
� n
∑

=1

F̂ + 1

�

J̄∅ +
n
∑

=1

γ̂ J̄ . (S32)

to find all 2n equilibrium prevalences predicted by the n-pathogen model. How-
ever, since the recursive solution presented in the main text (Eq. (16)) is no longer
available, the system must be solved using (standard) numerical methods for linear
systems of equations.

Worked example. When n = 3 there is a total of 23 = 8 classes of hosts, un-
infected (J∅), singly-infected (J1, J2 and J3), doubly-infected (J1,2, J1,3 and J2,3) and
triply-infected (J1,2,3). The equilibrium prevalences can be concatenated into a sin-
gle vector, given here in lexicographical order

v =
�

J̄∅, J̄1, J̄2, J̄3, J̄1,2, J̄1,3, J̄2,3, J̄1,2,3
�T
. (S33)

If we define b as
b = [−1, 0, 0, 0, 0, 0, 0, 0]T , (S34)

then Eq. (S31) and (S32) are equivalent to the system of 8 linear equations

Hv = b, (S35)
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in which matrix H equals


























−(F̂1 + F̂2 + F̂3 + 1) γ̂1 γ̂2 γ̂3 0 0 0 0
F̂1 −(F̂2 + F̂3 + γ̂1 + 1) 0 0 γ̂2 γ̂3 0 0
F̂2 0 −(F̂1 + F̂3 + γ̂2 + 1) 0 γ̂1 0 γ̂3 0
F̂3 0 0 −(F̂1 + F̂2 + γ̂3 + 1) 0 γ̂1 γ̂2 0
0 F̂2 F̂1 0 −(F̂3 + γ̂1 + γ̂2 + 1) 0 0 γ̂3
0 F̂3 0 F̂1 0 −(F̂2 + γ̂1 + γ̂3 + 1) 0 γ̂2
0 0 F̂3 F̂2 0 0 −(F̂1 + γ̂2 + γ̂3 + 1) γ̂1
0 0 0 0 F̂3 F̂2 F̂1 −(γ̂1 + γ̂2 + γ̂3 + 1)



























.

The equilibrium prevalence of hosts infected by any combination of pathogens can
then be obtained by solving Eq. (S35) for v.

Proof that there is always a unique equilibrium. For the case n = 3 pathogens,
the matrix −H has off-diagonal entries that are non-positive and diagonal entries that
are strictly positive. In addition, the absolute value of each diagonal entry is strictly
greater than the absolute value of the sum of all of the other entries in that column.
These properties of −H make it a non-singular M-matrix. (Properties of an M-matrix
are given in (Plemmons, 1977)). As a consequence of these properties, −H−1 exists
and is a non-negative matrix from which it follows that the solution v in Eq. (S35) is
non-negative and can be expressed as

v = H−1b. (S36)

Generalizing to the case of n pathogens, it can be verified that matrix −H in Eq. (S35)
will still have the same properties, making it a non-singular M-matrix and therefore,
the equilibrium v is the unique non-negative solution given by Eq. (S36).

4.3 Relationship between the NiDP and multinomial models

In this subsection, we show that the equilibrium prevalences in the NiDP model with
μ = 0 are equal to the expectations under statistical independence, i.e.,

J̄ =
∏

∈
̄
∏

j /∈
(1 − ̄j) , (S37)

where ̄ = 1 − γ/β for all  ∈ {1, 2, . . . ,n}. In other words, when there is no host
natural death (at the timescale of an infection), the probability to be infected by a
set of pathogens  follows a multinomial distribution with parameters n (the number
of distinct pathogens) and p = ̄ for all  ∈ {1, 2, . . . ,n}.

In the specific case μ = 0, Eq. (S26) becomes

0 =
∑

∈
F̄ J̄Ω −

�

∑

 /∈
F̄ +

∑

∈
γ

�

J̄ +
∑

 /∈
γ J̄Λ , (S38)

with F̄ = β − γ. Eq. (S37) implies

J̄Ω = J̄
1 − ̄
̄

, and J̄Λ = J̄
̄

1 − ̄
. (S39)

Substituting the values in Eq. (S39) into the right side of Eq. (S38),

∑

∈

�

F̄
1 − ̄
̄

�

−
�

∑

 /∈
F̄ +

∑

∈
γ

�

+
∑

 /∈
γ

̄

1 − ̄
(S40)
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and simplifying leads to

∑

∈

�

(β − γ)
γ

β − γ

�

−
∑

 /∈
(β − γ) +

∑

∈
γ +

∑

 /∈
γ
β − γ
γ

= 0.

Therefore, the values in Eq. (S37) are equilibrium values.
Similarly, in the specific case μ = 0, the equilibrium value for J∅ > 0 in Eq. (S25)

satisfies

0 = −
� n
∑

=1

F̄

�

J̄∅ +
n
∑

=1

γ J̄ . (S41)

Applying Eq. (S39) and dividing by J̄∅ in the right side of the preceding equation
yields

−
� n
∑

=1

F̄

�

+
n
∑

=1

γ
̄

1 − ̄
= −

� n
∑

=1

(β − γ)
�

+
n
∑

=1

γ
β − γ
γ

}, (S42)

= 0 . (S43)

Hence, Eq. (S37) is the equilibrium solution of the NiDP model in the specific case
μ = 0.

4.4 Relationship between the NiDP and NiSP models

Returning to the case in which mortality is non-negligible and assuming all pathogens
are interchangeable, Eq. (17) of the main text can be replaced by

0 = ||F̂J̄Ω −
�

(n − ||)F̂ + ||γ̂ + 1
�

J̄ + (n − ||)γ̂J̄Λ , (S44)

in which
F̂ = β̂ − (γ̂ + 1) , (S45)

(recall the definition of the scaled variables with β̂ = β/μ and γ̂ = γ/μ).
For 1 ≤ k < n, substituting Eq. (19) into Eq. (S44) leads to

0 = kF̂
M̄k−1

Cnk−1
−
�

(n − k)F̂ + kγ̂ + 1
� M̄k

Cnk
+ (n − k)γ̂

M̄k+1

Cnk+1
. (S46)

Noting that
Cnk+1
Cnk−1

=
(n − k + 1)(n − k)

(k + 1)k
and

Cnk+1
Cnk

=
n − k

k + 1
,

it follows that

0 = (n − k + 1)F̂M̄k−1 −
�

(n − k)F̂ + kγ̂ + 1
�

M̄k + (k + 1)γ̂M̄k+1, (S47)

which holds for 1 ≤ k < n (i.e. there is a total of n − 1 such equations).
When k = n the analogue of Eq. (S46) is

0 = nF̂
M̄n−1

Cnn−1
− (nγ̂ + 1)

M̄n

Cnn
,

and so, since Cnn−1 = n and Cnn = 1, it follows that

0 = F̂M̄n−1 − (nγ̂ + 1) M̄n. (S48)
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When k = 0 the analogue of Eqn. (S46) obtained by substituting Eq. (20) into
Eq. (S32), is

−
�

nF̂ + 1
� M̄0

Cn0
+ nγ̂

M̄1

Cn1
= −1, (S49)

and so, since Cn1 = n and Cn0 = 1, it follows that

−
�

nF̂ + 1
�

M̄0 + γ̂M̄1 = −1 . (S50)

Taken together, Eqs. (S47-S48-S50) constitute a system of n + 1 linear equa-
tions that fix the equilibrium prevalences of hosts infected by any number of distinct
pathogens in the NiSP model.

Worked example. When n = 3 there is a total of n + 1 = 4 classes of host: unin-
fected (M0), singly-infected (M1), doubly-infected (M2) and triply-infected (M3). The
equilibrium prevalences can be concatenated into a single vector

v =
�

M̄0, M̄1, M̄2, M̄3
�T
. (S51)

If we define b as
b = [−1, 0, 0, 0]T , (S52)

then Eq. (S47-S48-S50) are equivalent to the system of 4 linear equations

Hv = b, (S53)

in which matrix H equals








−(3F + 1) γ̂ 0 0
3F̂ −(2F̂ + γ̂ + 1) 2γ̂ 0
0 2F̂ −(F̂ + 2γ̂ + 1) 3γ̂
0 0 F̂ −(3γ̂ + 1)









. (S54)

The equilibrium prevalences of hosts infected by any number of distinct pathogens
can then be obtained by solving Eq. (S53).

4.5 Relationship between the NiSP and binomial models

In this subsection, we show that the equilibrium prevalences in the NiSP model with
μ = 0 are equal to the expectations under statistical independence, i.e.,

M̄k = Cnk ̄
k(1 − ̄)n−k , (S55)

in which ̄ = 1−γ/β. In other words, the probability to be infected by k epidemiologically-
interchangeable pathogens follows a binomial distribution with parameters n (the
number of pathogens considered) and p = ̄.

In the specific case μ = 0, Eq. (S44) becomes

0 = ||F̄J̄Ω −
�

(n − ||)F̄ + ||γ
�

J̄ + (n − ||)γJ̄Λ , (S56)

in which F̄ = β − γ. Eq. (S47) becomes

0 = (n − k + 1)F̄M̄k−1 −
�

(n − k)F̄ + kγ
�

M̄k + (k + 1)γM̄k+1. (S57)
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Eq. (S55) implies

M̄k−1 =
Cnk−1
Cnk

1 − ̄

̄
M̄k =

k

n − k + 1

1 − ̄

̄
, and M̄k+1 =

Cnk+1
Cnk

̄

1 − ̄
M̄k =

n − k

k + 1

̄

1 − ̄
M̄k .

(S58)
Substituting the values in Eq. (S58) into the right side of Eq. (S57)

(n − k + 1)F̄
k

n − k + 1

1 − ̄

̄
−
�

(n − k)F̄ + kγ
�

+ (k + 1)γ
n − k

k + 1

̄

1 − ̄
(S59)

and simplifying leads to:

F̄k
1 − ̄

̄
− (n − k)F̄ − kγ + γ(n − k)

̄

1 − ̄
= kγ − (n − k)F̄ − kγ + (n − k)F̄ = 0 . (S60)

Therefore, the values in Eq. (S55) are equilibrium values.
Similarly, in the specific case μ = 0, Eq. (S48) becomes

0 = F̄M̄n−1 − (nγ) M̄n , (S61)

and substituting the values in Eq. (S58) leads to

F̄n
1 − ̄

̄
− nγ = nγ − nγ = 0 . (S62)

Lastly, in the specific case μ = 0, Eq. (S50) becomes

0 = −
�

nF̄
�

M̄0 + γM̄1 , (S63)

and substituting the values in Eq. (S58) leads to

−nF̄ + γn
̄

1 − ̄
= −n(β − γ) + n(β − γ) = 0 . (S64)

Hence, Eq. (S55) is the equilibrium solution of the NiSP model in the specific case
μ = 0.

4.6 Stochastic models

Continuous-time Markov chain. The continuous-time Markov chain model with
pathogen-specific clearance rates has four additional events (Table 1).

Event Event Rate Change(s) to state
number variable(s) (ΔX)

8 Specific clearance of pathogen 1 from host singly-infected by pathogen 2 γ1J1Δt + o(Δt) J1 → J1 − 1
J∅→ J∅ + 1

9 Specific clearance of pathogen 2 from host singly-infected by pathogen 1 γ2J2Δt + o(Δt) J2 → J2 − 1
J∅→ J∅ + 1

10 Specific clearance of pathogen 1 from co-infected host γ1J1,2Δt + o(Δt) J1,2 → J1,2 − 1
J2 → J2 + 1

11 Specific clearance of pathogen 2 from co-infected host γ2J1,2Δt + o(Δt) J1,2 → J1,2 − 1
J1 → J1 + 1

Table 1: Additional transitions in the two-pathogen stochastic models.

11



Stochastic differential equations. Let dJ = ƒ̃dt be the unscaled version of the
deterministic model as specified in Eq. (S19-S20). The extension of matrix  in
Eq. (24) of the main text, to include pathogen specific clearance is






μ(N − J∅) + (F1 + F2)J∅ + γ1J1 + γ2J2 −F1J∅ − (μ + γ1)J1 −F2J∅ − (μ + γ2)J2 −μJ1,2
−F1J∅ − (μ + γ1)J1 F1J∅ + (F2 + γ1 + μ)J1 + γ2J1,2 0 −F2J1 − γ2J1,2
−F2J∅ − (μ + γ2)J2 0 F2J∅ + (F1 + γ2 + μ)J2 + γ1J1,2 −F1J2 − γ1J1,2

−μJ1,2 −F2J1 − γ2J1,2 −F1J2 − γ1J1,2 F2J1 + F1J2 + (μ + γ1 + γ2)J1,2






,

(S65)
where N − J∅ = J1 + J2 + J1,2 and N is constant.

The new matrix G has dimension 4×11 due to the four additional events in Table 1
above, (see also Eq. (26) of the main text),

dJ∅ = ƒ̃0dt −
Æ

F1J∅ dW1 −
Æ

F2J∅ dW2 +
Æ

μJ1 dW5 +
Æ

μJ2 dW6 +
Æ

μJ1,2 dW7

+
Æ

γ1J1 dW8 +
Æ

γ2J2 dW9 ,

dJ1 = ƒ̃1dt +
Æ

F1J∅ dW1 −
Æ

F2J1 dW4 −
Æ

μJ1 dW5 −
Æ

γ1J1 dW8 +
Æ

γ2J1,2 dW11 ,(S66)

dJ2 = ƒ̃2dt +
Æ

F2J∅ dW2 −
Æ

F1J2 dW3 −
Æ

μJ2 dW6 −
Æ

γ2J2 dW9 +
Æ

γ1J1,2 dW10 ,

dJ1,2 = ƒ̃1,2dt +
Æ

F1J2 dW3 +
Æ

F2J1 dW4 −
Æ

μJ1,2 dW7 −
Æ

γ1J1,2 dW10 −
Æ

γ2J1,2 dW11 .

Covariance matrix at the endemic equilibrium. The new matrices A and B
(Eq. (S4)) are

A =
�

−β1 + γ1 + μ 0
0 −β2 + γ2 + μ

�

(S67)

and

B =









2N(γ1 + μ)
�

1 −
1

R0,1

�

μJ̄12

μJ̄12 2N(γ2 + μ)
�

1 −
1

R0,2

�









. (S68)

The new steady-state covariance matrix C̄ (Eq. (S8)) is

C̄ =











1

NR0,1

μJ̄1,2

N2[β1 − (γ1 + μ) + β2 − (γ2 + μ)]
μJ̄1,2

N2[β1 − (γ1 + μ) + β2 − (γ2 + μ)]

1

NR0,2











(S69)

where J̄12 is defined in Eq. (9) of the main text.
The covariance between pathogen 1 and pathogen 2 prevalences (the off-diagonal

elements in Eq. (S69)) is

C̄j = cov
�

1

N
,
2

N

�

=
μJ̄1,2

N2[β1 − (γ1 + μ) + β2 − (γ2 + μ)]
(S70)

=
(β1 + β2)(β1 − γ1 − μ)(β2 − γ2 − μ)μ

Nβ1β2(β1 + β2 − μ)(β1 − γ1 − μ + β2 − γ2 − μ)
≥ 0 , (S71)

(for  6= j) with equality if and only if μ = 0 again (assuming β > γ + μ,  = 1, 2); in
the latter case, the deviation from statistical independence is zero (Eqs. (4) and 5).

In the special case that β1 = β2 = β and γ1 = γ2 = γ,

∂C̄

∂γ
= −

μ

βN(2β − μ)
≤ 0 , (S72)

meaning that the positive covariance decreases as γ increases (unless μ = 0), as
expected.
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5 The prevalence of co-infections can be equal to the
product of the prevalences of interacting pathogens

We consider the same two-pathogen model as Eq. (S19), except we let μ = 0. How-
ever, we include two interaction parameters σ1,σ2 > −1, such that the forces of
infection of both pathogens are

F1 = β1(J1 + (1 + σ1)J1,2) , F2 = β2(J2 + (1 + σ2)J1,2) . (S73)

If σ < 0 (resp. > 0), then transmission of pathogen  from a co-infected host is lower
(resp. greater) than from singly infected hosts ( = 1, 2). With these assumptions,
the model is

J̇1 = F1J∅ − (F2 + γ1)J1 + γ2J1,2 ,
J̇2 = F2J∅ − (F1 + γ2)J2 + γ1J1,2 , (S74)

J̇1,2 = F2J1 + F1J2 − (γ1 + γ2)J1,2 ,

where J∅ = 1 − J1 − J2 − J1,2. If we let 1 = J1 + J1,2 and 2 = J2 + J1,2, then model (S74)
is equivalent to

̇1 = β1(1 + σ1J1,2)(1 − 1) − γ11 ,
̇2 = β2(2 + σ2J1,2)(1 − 2) − γ22 , (S75)

J̇1,2 = β1(1 + σ1J1,2)(2 − J1,2) + β2(2 + σ2J1,2)(1 − J1,2) − (γ1 + γ2)J1,2 .

Proceeding as in Section 1.1, let P = 12 and Z = P − J1,2. Thus,

Ż = −[β1(1 + σ1J1,2) + β2(2 + σ2J1,2) + γ1 + γ2]Z . (S76)

Since the expression inside the brackets is positive, Z(t) → 0 as t → ∞. The preva-
lence of co-infection by interacting pathogens is asymptotically equal to the product
of their prevalences. Therefore, Z = 0 does not imply pathogens do not interact.

6 Impact of environmental noise and transient behaviour

6.1 Environmental stochasticity

The stochastic model as presented in the main text allows only for demographic
stochasticity, i.e. randomness caused by probabilistic effects in events such as in-
fection or mortality. Temporal fluctuation in parameters controlling the events at
which rates occur – i.e. environmental stochasticity – was therefore not included.
It is natural to wonder whether our results hold when such an additional source of
noise is included as a potentially confounding factor.

To understand whether and how environmental noise affects our conclusions, we
considered an approach often used in biological models to assess the effect of en-
vironmental variability. In particular, we assumed each epidemiological parameter
varies continuously over time and is temporally correlated with its past values, in-
dependently from other random variables. Each parameter (i.e. β1, β2 and μ) is
modelled by a Stochastic Differential Equation (SDE) of the form

d(t) = r(̄ − (t))dt + σ
Æ

(t)dW(t) . (S77)

This SDE is known as a Cox-Ingersoll-Ross (CIR) mean-reverting process (Allen, 2016;
Iacus, 2008). This process has an asymptotic gamma distribution with mean and
variance equal to ̄ and σ2̄/(2r) (Allen, 2016; Iacus, 2008).
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Mean-reverting processes more realistically model environmental variation in birth
and death processes – such as our stochastic epidemic model – than linear white
noise (Allen, 2016). Other mean-reverting processes have also been used to model
environmental variability in biological populations (Marion et al., 2000; Varughese
and Fatti, 2008), such as the Ornstein-Uhlenbeck (OU) mean-reverting process,

d(t) = r(̄ − (t))dt + σ dW(t) . (S78)

However, the OU process has an asymptotic normal distribution with mean and vari-
ance equal to ̄ and σ2/(2r) (Allen, 2016; Iacus, 2008). The advantage of the CIR
process over the OU process – and the reason we use the CIR process here – is that
sample paths are guaranteed to remain non-negative. The gamma distribution of
epidemiological parameters is also more flexible than the normal distribution.

To check the effect of environmental noise on covariance, we modelled the three
parameters (β1,β2,μ) using the SDE (S77), coupled with the SDE for the demo-
graphic variability presented in the main text (i.e. Eq. (26)). The mean value ̄ for
each parameter was set to the default (constant) value used in creating Fig. 2 in the
main text. We used values of r = 2 and σ = 0, 0.25, 0.5 (σ = 0 has no environmental
variability).

For all three levels of noise we considered, the relative deviation of the density of
co-infected hosts from the density that would be expected if pathogen prevalences
were independent (i.e. Λ) was reliably greater than zero (S2 Fig). Although the range
of values that might be obtained as a point estimate of Λ from a single simulation
was larger when there was more environmental noise, there was still a clear signal of
a systematic deviation from statistical independence under all conditions we tested.

6.2 Transient behaviour

In applying our NiSP and NiDP models to data, we assume the host-pathogen interac-
tion has equilibrated, and therefore use equilibrium values from the models to drive
our statistical tests. This makes how quickly transient behaviour “washes out” of the
system of potential interest. As indicated in the Discussion section of the main text,
a full investigation is beyond our scope here. However, we repeated the randomisa-
tion analysis introduced in S1 Text Section 1.2 in a stochastic version of our model,
to allow us to test how rapidly the difference between P and J1,2 becomes apparent.

In particular, we fixed the pathogen parameters at the default values of β1 =
5,β2 = 2.5 and μ = 1, and simulated the stochastic differential equation (with demo-
graphic noise) in a population of size N = 1, 000. Choosing random initial conditions
in the same manner as in S1 Text Section 1.2 (i.e. from a suitable Dirichlet distri-
bution) and plotting out 95% intervals on the values of Λ(t) = J1,2(t)−P(t)

P(t) , the relative
deviation of the prevalence of co-infection from the product of the prevalences, as
extracted at different times (S3 Fig) reveals that the initial conditions “wash out” of
the system relatively rapidly. This remains the case both in the scenario in which all
densities are chosen randomly and the scenario in which one pathogen is invading
the other at equilibrium, although the difference takes longer to become apparent
in the case in which one pathogen is invading. However, these results suggest it
is reasonable to assume that transient behaviour is not overly influential in driving
our results irrespective of the particular initial conditions that might be relevant in
practice.
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