
S2 Text. Sources of data and side
results of model fitting

Organisation of this document

This document consists of three sections.

• 1. “Additional fitting of the NiSP model”.

– Results of fitting the NiSP model to three additional data sets not consid-
ered in the main text. These studies do not concern a single pathogen
species, and so the pragmatic assumption of epidemiological interchange-
ability between pathogens is less justifiable.

• 2. “Fitting the NiDP model”.

– Re-tabulates the data sets on interactions between multiple Plasmodium
spp. causing malaria reported by Howard et al. (2001), and describes how
our criteria to allow a study to be considered led to us fixing on 41 particular
studies – of the 73 reported – to analyse using our NiDP model.

• 3. “Fitting the models with specific clearance”.

– Shows that fitting the NiSP model with specific clearance confirms qualita-
tive results found from a model that does not include specific clearance as
an additional parameter.

1 Additional fitting of the NiSP model

Results of fitting the NiSP model to data from four publications for strains of a sin-
gle pathogen, that may plausibly be assumed epidemiologically-interchangeable
(López-Villavicencio et al., 2007; Seabloom et al., 2009b; Chaturvedi et al., 2011;
Koepfli et al., 2011), are presented in Fig. 3 of the main text. Results for three
further data sets concerning different pathogens of a single host (Andersson et al.,
2013; Moutailler et al., 2016; Nickbakhsh et al., 2016) are in S4 Fig.

For convenience the raw data as used in model fitting for these additional data-
sets are re-tabulated in S1 Table. Results of model fitting are summarized in S2 Table.
Ambiguities needed to be resolved in collating these data from what is reported in
the original publications. The data presented in Moutailler et al. (2016) are inconsis-
tent, in as much as it is reported that a total of 267 ticks were tested, but the per-
centage data in the section “Co-infections and associations between pathogens” of
the paper instead indicate 262 is the correct total. We have used the value 262 here.
Misreporting of the number of uninfected hosts in reference Seabloom et al. (2009b)
has been corrected by reference to the original data (Seabloom et al., 2009a) after
personal communication with the authors.
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2 Fitting the NiDP model

2.1 Sources of data

Howard et al. (2001) report results of analyzing 73 data sets concerning multiple
Plasmodium spp. causing malaria (rows 68–140 of Table 1 in that paper). We re-
analyzed the subset of these studies satisfying the additional constraints that they
considered:

• interactions between three Plasmodium species (omits 16 rows corresponding
to only two pathogens, viz. 73, 81, 86, 89-92, 104, 105, 107, 110, 120, 126,
134 and 139-140, as well as 2 rows corresponding to four pathogens, viz. 125
and 128);

• disease status of at least 100 individuals (omits 8 rows, viz. 72, 85, 87, 115,
129, 135, 136 and 138).

These constraints were imposed simply to reduce the number of studies, rather than
because our methodology could not handle such data. We also omitted six of the
remaining data sets – rows 83, 93, 94, 121, 122 and 131 – since we found it impos-
sible to unambiguously reconcile the data as reported in the publication to counts
of different types of infection. Most often this was because the data were reported
as percentages rounded to a small number of significant figures, which did not un-
ambiguously specify the raw number of individuals infected by each combination of
pathogens. This left a final total of 41 data sets taken from 35 distinct papers: 24
data sets considering the three-way interaction between P. falciparum, P. malariae
and P. vivax (denoted FMV in Howard et al. (2001)) and 17 data sets considering the
three-way interaction between P. falciparum, P. malariae and P. ovale (denoted FMO
in Howard et al. (2001)). The data sets are re-tabulated for convenience in S3 Table.

2.2 Recreating the analyses of Howard et al. (2001)

We did not explicitly recreate the analysis based on log-linear models as presented
by Howard et al. (2001), since no information was given in the paper on how to
handle sampling zeros (i.e. cases in which within an individual data set the count
of individual infected by a particular combinations of pathogens is zero). Given the
small size of many of the studies, this was quite common, affecting 34 of these 41
data sets.

The statistical difficulty is that at least one of the models involved in the model
selection procedure cannot then reliably be estimated, since an estimated coeffi-
cient in a Poisson regression model tends to negative infinity. In turn this means
that model selection based on log-likelihood ratio tests breaks down (Fienberg and
Rinaldo, 2012). How such sampling zeros affect log-linear models with sparse data
sets is an active area of current research in the methodological statistical literature,
e.g. (Fienberg and Rinaldo, 2012).

It is unclear from what is presented in Howard et al. (2001) precisely how such
cases were handled. Correspondence with the author of that paper that we were
able to contact also did not reveal what precisely had been done in the original
analysis. We note that, since our methods are based on multinomial sampling rather
than Poisson counts, statistical difficulties surrounding sampling zeros simply do not
affect our analyses.
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3 Fitting the models with specific clearance

3.1 Fitting the models

All models were fitted after transformation to allow only biologically-meaningful val-
ues of parameters, by estimating log (γ̂) to ensure only positive values of γ̂ are
permissible, and using these to estimate the infection rates after transformation,
with log
�

β̂/(γ̂ + 1) − 1
�

(which ensures R0, > 1).
However, we noticed that this estimation method may return extremely high val-

ues of γ̂ and β̂ in the NiSP model. This is because we scaled β and γ relative to μ,
while the optimal value of μ may be zero. The specific case μ = 0 corresponds to
statistical independence (see S1 Text Sections 4.3 and 4.4). When the data are close
to being statistically independent, the estimation algorithm may diverge.

3.2 Results of fitting the two-parameter NiSP model

Results of model fitting are summarized in S4 Table; an example fit is shown in S5 Fig.
Models were fitted by maximum likelihood, with model selection done via χ2 tests
on the likelihood-ratio (Bolker, 2008) or the Akaike Information Criterion (Sakamoto
et al., 1986), depending on whether or not models were nested.

3.3 Fitting the NiDP model with specific clearance

Similarly to the NiSP model with specific clearance, estimated parameters occasion-
ally diverge in the more complex version of the NiSP model with specific clearance,
and very large numeric values of best-fitting epidemiological parameters can be ob-
tained (but a reasonable value of R0). Exploratory investigations suggested that
fitting the NiDP model with specific clearance to the malaria data was affected by
this type of identifiability issue, and so would therefore have required a specific treat-
ment. Since our purpose here was not to draw conclusions about interactions among
malaria species, but instead to show the utility of our overall approach, we did not
pursue this analysis further.
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