
Statistical analysis of observables

In this work we are interested in describing how pedestrian group behaviour is influenced
by some intrinsic features, such as purpose, relation, gender, age or height. Each feature
(or factor) may be divided into k categories (e.g., in the case of gender composition
of triads k = 4 and the categories are no females, one female, two females or three
females). Each group is coded as belonging to a specific category, so that each category
has Nk

g groups. As described in section “Materials and methods-Data set-Trajectories”,

for each group i ∈ Nk
g we can measure the value of observable o every 500 ms. We

may call these measurements oki,j with j = 1, . . . , nk
i (i.e. we have nk

i measurements, or
events, corresponding to group i in category k).

We believe that the largest amount of quantitative information regarding the de-
pendence of group behaviour on intrinsic features is included in the overall probability
distributions functions concerning all Nk =

∑

i∈Nk
g
nk
i measurements of a given observ-

able, as shown for example in Figure 3 in the main text, since from the analysis of
these figures, we can understand what is the probability of having a given value for each
observable in each category.

It is nevertheless useful to extract some quantitative information, such as average
values and standard deviations, from these distributions. Furthermore, although the
purpose of this paper is not to provide a “p-value statistical independence label” to
each feature; to compare such average values it is customary and useful to compute,
along with other statistical indicators such as effect size and determination coefficient,
the standard error of each distribution and to perform the related analysis of variance
(ANOVA). The computation of these latter statistical quantities is nevertheless based
on an assumption of statistical independence of the data, an assumption that clearly
does not hold for all our Nk observations1.

1As an extreme case, we can imagine that for a given k we were following a single group (Nk
g = 1) for

one hour (nk
1 = 7200). We will have then, if we ignore measurement noise, a perfect information regarding

the behaviour of that group in that hour and, under the strong assumption of time independence in the
group behaviour, a good statistics about the behaviour of that particular group. We still do not have any
information about how group behaviour changes between groups in the category, since that information
depends on the number of groups analysed, Nk

g . Furthermore, since in general we track a given group
only for the few seconds it needs to cross the corridor, the observations oi,j at fixed i are also strongly
time correlated.
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Average values, standard deviations and standard errors

We thus proceed in the following way, justified by having a similar number of observations
for each group2. For each observable o we compute the average over group i

Ok
i =

∑nk
i

j=1
oki,j

nk
i

, (1)

and then provide its average value in the category k as

< O >k ±εk, (2)

where < O > and the standard error ε are given by

< O >k=

∑Nk
g

i=1
Ok

i

Nk
g

, (3)

εk =
σk

√

Nk
g

, (4)

and the standard deviation is

σk =

√

√

√

√

∑Nk
g

i=1
(Ok

i )
2

Nk
g

− < O >2

k. (5)

As a rule of thumb, we may say that o assumes a different value between categories
k and j provided that

|< O >k − < O >j |≫ 2max(εk, εj). (6)

Analysis of variance

This rule of thumb is obviously related to the ANOVA analysis reported in the main
text. The ANOVA analysis proceeds as follows. We define nc as the number of categories
for a given feature,

N =
nc
∑

k=1

Nk
g , (7)

as the total number of groups, and the overall average of the observable as

< O >=

∑nc

k=1
< O >k Nk

g

N
. (8)

2An average of 49 observations with a standard deviation of 22 over 1168 groups in the dyadic
set, and an average of 32 observations with a standard deviation of 25 over 918 groups in the triadic
one. We nevertheless exclude from the following analysis groups that provided less than 10 observation
points, which has a stronger effect on the triadic set, eliminating a few groups with a small number of
observations.
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We then define the distance between < O > and < O >k as

dk =< O > − < O >k, (9)

and the degrees of freedom

γ1 = nc − 1, γ2 = N − nc. (10)

The F factor is then defined as

F =

(

∑nc

k=1
d2kN

k
g

)

(
∑nc

k=1
σ2

kN
k
g

)

γ2

γ1
. (11)

This result is reported in our tables as Fγ1,γ2 , along with the celebrated p-value, that pro-
vides the probability, under the hypothesis of independence of data, that the difference
between the distributions is due to chance [1]

p = 1−

∫ F

0

fγ1,γ1(x)dx. (12)

The f distribution has to be computed numerically [2], but a value F ≫ 1 assures a
small p-value.

Let us see how this relates to the rule of thumb for standard errors. Let us assume
we have two categories with the same number of groups for category

N1

g = N2

g = Ng. (13)

We clearly have

< O >=
< O >1 + < O >2

2
, (14)

|d1|= |d2|=
|< O >1 − < O >2 |

2
, (15)

and

F =
|< O >1 − < O >2 |

2

σ2
1
+ σ2

2

(Ng − 1). (16)

Using3

σ2

i

Ng − 1
≈ ε2i , (17)

we get the expression

F ≈
|< O >1 − < O >2 |

2

ε2
1
+ ε2

2

>
|< O >1 − < O >2 |

2

(2max(ε1, ε2))2
, (18)

so that the rule of thumb eq. 6 corresponds to have a high F -value and thus a low
p-value.

3The actual definition of the standard error uses
√

Ng − 1 but the numbers shown in the tables use

the approximate definition
√

Ng. For Ng ≈ 100 or more, as it is usually the case in this work, the
difference is at most 5%.
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Coefficient of determination

Eq. 11 says that the F factor is high if the σk are smaller than the dk, i.e. if the variation
inside the categories are smaller than outside the category, and if the total number of
observation is high. Due to the large number of data points, the F -values in appendix
S2 (where we use all the observable measurement instead of group averages) are always
very high, and the corresponding p-values very low, but the hypothesis of statistical
independence of data underlying the usual interpretation of p is obviously not valid.
There are nevertheless some statistical estimators that do not depend dramatically on
the number of observations, and that will thus have a similar value either if performed
using all the data points or if performed using only group averages.

One such estimator is the coefficient of determination

R2 = 1−

∑

i,k(o
k
i− < O >k)

2

∑

i,k(o
k
i− < O >)2

, (19)

which can also be computed as from the F factor as

R2 =
Fγ1

Fγ1 + γ2
, (20)

and provides an estimate of how much of the variance in the data is “explained” by the
category averages.

Effect size

The R2 coefficient may attain low values if two or more category distribution functions
are very similar, as it is usually the case in our work. To point out the presence of at
least one distribution that is clearly different from the others we may use the following
definition of the effect size δ (δ-value). We first define [3]

δk,l =
< O >k − < O >l

σ
, σ =

√

(ñk − 1)σ2

k + (ñl − 1)σ2

l

ñk + ñl − 2
, (21)

where ñk, ñl are the number of points used for computing the averages and standard
deviations4, and then we consider the maximum pairwise effect size

δ = max
k,l

|δk,l|. (22)

While a p-value tells us about the significance of the statistical difference between two
distributions, the difference may be often so small that it can be verified only if a large
amount of data are collected. But if we have also δ ≈ 1, then the two distributions are
different enough to be distinguished also using a relatively reduced amount of data.

4I.e., ñk = N
k
g if we are using group averages, ñk = N

k if we are using overall distributions.
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Multi-factor cross analysis

We refrain from applying the machinery of two way or n way ANOVA to our data, since
our ecological data set is unbalanced, and it is unbalanced for the very reason that our
“factors” are not independent variables5.

It is nevertheless useful to analyse the interplay between the different features, and we
do that in appendix S3 by performing a statistical analysis similar to the one described
above of a given feature A while keeping fixed the value of another feature B to a
category k.6 Sometimes this analysis is performed on a reduced number of groups, and
thus the corresponding p-value may be high. This does not imply that the analysis is
valueless, at least in our opinion, since it provides new information. The F and p-values
are, in this situation, useful to compare different observables on the given condition.
Furthermore, in these situations, an analysis of statistical indicators that do not depend
critically on the number of observations, such as the effect size, is particularly valuable.
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