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Materials and Methods

No statistical methods were used to predetermine sample size. The experiments were not
randomized. The investigators were not blinded to allocation during experiments and outcome
assessment.

Cloning and expression

On a cysteine-less (CL) background, double-cysteine mutant constructs of the mouse
orthologue of ABCB1 (Abcbla, also known as P-glycoprotein or Mdr3) were utilized and
expressed in Sf21 cells as previously described (8). Validity of mutations was confirmed by
sequencing.

Purification and spin labeling

Membrane isolation, purification and spin labeling were performed as described previously
(8). The spin-labelled Pgp was then separated from excess spin label and free micelles by size-
exclusion chromatography in Gel Filtration Buffer (50 mM Tris-HCI, 50 mM NaCl, 20%
glycerol (v/v), 0.05% p-DDM, pH 7.4 at 4 °C). Purity of Pgp was assessed by SDS-PAGE.

Reconstitution in nanodiscs

The lipids (3:2 w/w E. coli polar lipids:L-a-phosphatidylcholine) were dissolved in
chloroform, evaporated to dryness on a rotary evaporator, and desiccated overnight under
vacuum. The lipids were hydrated in Gel Filtration Buffer (50 mM Tris-HCI, 50 mM NaCl, pH
7.4 at 4 °C) to yield a final lipid concentration of 20 mM. Lipids were vortexed and subjected to
10 freeze-thaw cycles in liquid nitrogen/warm water and stored in small aliquots at —80 °C.
Membrane scaffold protein (MSP1D1E3) was expressed and purified as described previously
(11). For reconstitution into nanodiscs, purified spin-labeled proteins in 0.05% B-DDM micelles
were mixed with lipids, MSP1D1E3 and sodium cholate in the following molar ratios:
MSP1D1E3:protein, 10:1; lipid:MSP1D1E3, 110:1; B-DDM-+cholate:lipid, 5:1. Mixtures were
rocked at 4°C for one hour. The detergent was removed using four cycles of stepwise Bio-
Beads (Bio-Rad) addition (in total 0.6 g/ml), in the following sequence: first and second
additions (0.1 g/ml, one-hour incubation), third addition (0.2 g/ml, overnight), and fourth
addition (0.2 g/ml, one-hour incubation). The reconstitution solution was filtered using 0.45 um
filter to remove the Bio-Beads. Nanodiscs containing Pgp were separated from empty nanodiscs
by size-exclusion chromatography using a Superdex 200 Increase column (GE Healthcare) in the
Gel Filtration buffer with 10% glycerol (v/v). Gel filtration fractions with reconstituted Pgp were
identified by SDS-PAGE. Nanodiscs were concentrated using an Amicon Ultra-100 kDa
centrifugal filter. Concentration of spin labeled mutants in nanodiscs was determined as
described previously (37) by comparing the intensity of the integrated continuous wave electron
paramagnetic resonance (CW EPR) spectrum to that of the same mutant in detergent micelles.
Concentration of the nanodisc-reconstituted CL Pgp was determined by SDS-PAGE using a
standard curve.



DEER sample preparation

For the mixed lipid/detergent micelle sample preparation, Pgp was concentrated to about 70-
90 mM using Amicon Ultra-100 kDa centrifugal filters (Millipore). Pgp sample preparation was
as described previously with 7 min incubation at 37 °C for DEER spectroscopy (8). For mixed
micelle samples, the molar ratio of protein:lipid:detergent is 1:105:12.7. The lipids were
suspended in Tris buffer (pH 6.9) as a mixture (3:2 w/w Escherichia coli polar lipids:L-o-
phosphatidylcholine) from Avanti Polar Lipids, to a final concentration of 50 mg ml™". Protein,
extra B-DDM in gel filtration buffer and lipids were mixed until homogeneous. Nucleotides and
substrates were then subsequently mixed and incubated. The final concentrations of ATP,
vanadate, and MgSQO4, were 10 mM, 2 mM, and 10 mM, respectively. Stock solutions of
substrates and inhibitors were prepared in dimethyl sulfoxide (final concentration of DMSO was
kept less than 2%). For the mixed micelle sample preparation, the concentration of substrates and
inhibitors (tariquidar and zosuquidar) were 0.4 mM, and 0.2 mM, respectively. For the NBS2
pair 511-1043 in mixed micelles, utilized concentrations are shown in Table S1. For the
nanodiscs sample preparation, the concentration of substrates and inhibitors were 0.4 mM, and
0.1 mM, respectively. For the NBS2 pairs, 511-1043 and 511-1043-E552Q-E1197Q,
concentrations are shown in Table S2. Nanodiscs samples were first incubated with substrates or
inhibitors at 37 °C for 3 min prior to the addition of other components.

ATPase assay

The specific ATPase activity of Pgp was determined by an inorganic phosphate assay as
previously described (32) with the following modifications. For ATPase assays in mixed
micelles, 6 pug of Pgp with an equal amount (w/w) of E. coli polar lipids:L-a-phosphatidylcholine
(3:2 w/w) were incubated for 10 min at 37 °C in the basal (no substrate) or substrate-stimulated
conditions with increasing concentrations of ATP (performed in duplicate). The reaction was
stopped by adding 1 volume of 12% SDS and color was developed using a 1:1 solution of
ammonium molybdate (2% in 1 M HCI) and ascorbic acid (12% in 1 M HCI). The absorbance at
850 nm was measured on a BioTek Synergy H4 microplate reader. The amount of hydrolyzed
phosphate was determined by comparison to an inorganic phosphate standard curve. For ATPase
assays in nanodiscs, 3 pg of Pgp was first incubated with substrates or inhibitors at 37 °C for 3
min prior to the addition of ATP.

DEER spectroscopy and data analysis

DEER spectroscopy was performed on an Elexsys E580 EPR spectrometer operating at Q-band
frequency (33.9 GHz) equipped with a 10W Amp-Q amplifeier (Bruker) with the dead-time free
four-pulse sequence at 83 K (8, 33). The pulse lengths were 10 ns (z/2) and 20 ns () for the
probe pulses and 40 ns for the pump pulse. The frequency separation was 63 MHz. Primary
DEER decays were analyzed using home-written software operating in the Matlab environment
(34, 35). Briefly, the software carries out global analysis of the DEER decays obtained under
different conditions for the same spin-labeled position. The distance distribution is assumed to
consist of a sum of Gaussians, the number and population of which are determined based on a
statistical criterion. Distance distributions on the structures were predicted in silico using a
rotamer library approach by MMM 2013.2 software package (36). Rotamer calculations were
conducted using the 298 K rotamer library.
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Fig. S1. Distance distributions in the high energy post ATP-hydrolysis state (HES). (A) Ribbon
representation of the OF Pgp highlighting the positions of spin label pairs as purple spheres with the N- and
C-terminal halves colored with orange and cyan respectively. Distance distributions in (B) mixed micelles and
(C) lipid nanodiscs are shown for the apo state, basal (ADP-Vi-Basal) and substrate-coupled HES in the
presence of different substrates. In mixed micelles, vinblastine (orange) at the inhibitory concentrations of 0.4
(solid line) and 0.2 mM (dotted line) exhibits a distinct shorter distance (arrow) at the NBS1 A-loop pair
400-1156. In addition, the NBS2 A-loop pair 511-1043 exhibits distinct HES signatures for different
substrates.
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Fig. S2. Comparison of distance distributions in the HES to predicted distributions calculated from
the cryo-EM OF structure. (A) Ribbon representation of the OF Pgp highlighting the location of spin
label pairs as purple spheres. (B) Distance distributions in mixed micelles for the HES of ATP hydrolysis
in the presence of substrate verapamil (ADP-Vi-Ver) (solid lines) compared with the distributions
predicted by the OF and apo (PDB codes 6COV and 4M1M, respectively) structures (dashed lines). Note
the overlap between OF and Apo distance distributions on the extracellular side. The comparison reveals
deviations on the extracellular side and the A-loops of the NBDs as elaborated in the main text.
Specifically, the distance distributions at pairs monitoring the A-loops (400-1156 and 511-1043) are
predicted by the cryo-EM structure to be symmetric and characterized by dominant short distance
components. In the basal cycle, the two pairs have apo-like components, whereas in the presence of
substrates, they are asymmetric with apo-like NBSL pair and NBS2 displaying a short distance
component.
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Fig. S3. Catalytic glutamate substitution symmetrize the structure
of the NBSs as predicted by the cryoEM structure of the mutant. (A)
Distance distributions in nanodiscs for NBS1 (400-1156) and NBS2
(511-1043) A-loop pairs in the WT and Walker B mutations
backgrounds. The E1197Q substitution reverses the asymmetry between
the two NBSs as manifested by the short distance component in NBS1
and its absence at NBS2 (data not shown and reference §). However
neither the single nor the double E-to-Q substitution abolish the
dependence of the short component on substrates and inhibitors.
Furthermore, the inhibitory effect of vinblastine at NBS1 can be detected
in this background. Inhibitors induce a distinct conformation at the
A-loop regions (indicated by red arrows). (B) Population of the occluded
ATP conformation is plotted as a function of substrates and inhibitors.
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Fig. S4. Coupled ATP
turnover activities of
cysteine-less Pgp for
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ATP turnover assays at
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Fig. S5. Coupled ATP turnover activities of Pgp mutants in
nanodiscs. (A) Representative ATPase assays on Pgp mutants in
nanodiscs. Basal (black) and verapamil- (red) and
tariquidar-stimulated (dark yellow) ATP hydrolysis were measured
by Pi-release. The single data points represent the release rate
under vanadate trapping condition (5 mM ATP, 2 mM vanadate).
(B) The stimulation of ATPase activity for mutants with intact
NBSs and with catalytic glutamate substitutions in nanodiscs
compared to cysteine-less Pgp. Basal and substrate-coupled ATP
turnover experiments were done in triplicates and duplicates,
respectively. The average values were fit to a standard
Michaelis-Menten equation.
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Fig. S6. Coupled ATP turnover activities of cysteine-less Pgp
for different substrates and inhibitors in mixed micelles. (A)
ATP turnover assays at different concentrations of substrates. (B)
Basal and stimulated ATP turnover activities of the cysteine-less
Pgp for different substrates and inhibitors under the
concentrations utilized for DEER experiments in fig. S7D. Basal
and substrate-coupled ATP turnover experiments were done in
triplicates and duplicates, respectively. The average values were
fit to a standard Michaelis-Menten equation.
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Fig. S7. DEER data analysis for the
NBS2 A-loop pair 511-1043. (A)
Primary DEER traces along with the fits
for the ADP-Vi condition in the presence
and absence of substrates and inhibitors,
(B) the obtained distance distributions
from global analysis of the DEER
decays under different conditions, and
(C) error analysis of distributions for
each condition. Confidence bands (2o)
for distance distributions are shown
about the best fit line for each substrate.
These bands, which depict the estimated
uncertainty in  P(r), reflect error
associated with the noise and
background factor in the fitting of the
primary DEER traces (34). For each
experimental ~ condition,  Gaussian
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population. The error bars in panel D,
Fig. 2D and fig. S3B for the population
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Table S1. Kinetic parameters for ATPase assays on Cys-less Pgp in mixed

micelles.

Substrate/inhibitor

Keat [s™]

Kwm (atp) [M]

Basal '

Hoechst 33342 (50 pM)
Hoechst 33342 (200 pM) "
Doxorubicin (50 pM)
Doxorubicin (200 pM) T
Digoxin (400 pM) "
Rhodamine 123 (200 pM) "
Rhodamine 123 (400 uM)
Vinblastine (25 pM) "
Vinblastine (50 uM)
Vinblastine (100 uM)
Vinblastine (400 uM)
Tariquidar (200 pM) "
Zosuquidar (200 uM) "
Verapamil (50 uM)
Verapamil (200 uM) "
Verapamil (400 pM)
Verapamil (800 pM)

0.14 +0.02"
0.42 +0.02
0.24 +0.02
0.19 +0.02
0.24 +0.02
0.45 + 0.02
0.80 +0.02
1.25 + 0.05
1.65 + 0.05
1.32 £0.02
1.03 +0.05
0.52 + 0.02
1.39 +0.02
1.81 +0.07
2.77 £ 0.07
3.67+0.09
3.97+0.14
3.71+0.14

0.72x107°+0.16x102"
2.20x10°%+0.16x10°°
1.17x10%+ 0.15x10°°
0.62x10°%+0.18x10°°
0.65x107°+ 0.14x103
1.19x107°+ 0.14x10°°
1.02x107%+ 0.07x10°®
1.15x10 %+ 0.15x10°°
2.91x10°%+0.10x10°®
2.12x107°%+ 0.04x10°°
2.15x107°+ 0.22x102
2.17x10°%+0.13x10°°
0.68x10%+0.03x10°°
0.92x107°+0.11x102
2.21x107°+0.12x102
2.25x10°%+0.13x10°°
2.35x10%+ 0.20x10°°
2.39x10°%+0.19x10°°

* Fit errors

1 Corresponding ATPase assays and Ln (kc) values are shown in figs. S6B and S7D, respectively.
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Table S2. Kinetic parameters for ATPase assays on Cys-less Pgp in nanodiscs.

Substrate/inhibitor

Keat [s7]

Kwm atp) [M]

Basal "

Doxorubicin (5 uM)
Doxorubicin (10 uM)
Doxorubicin (20 uM)
Doxorubicin (50 uM) "
Doxorubicin (100 uM)
Doxorubicin (400 uM)
Colchicine (10 uM)
Colchicine (50 uM)
Colchicine (100 pM)
Colchicine (400 pM) "
Colchicine (800 pM)
Digoxin (10 pM)
Digoxin (50 pM)
Digoxin (100 pM)
Digoxin (400 uM) "
Digoxin (800 uM)
Rhodamine 123 (10 uM)
Rhodamine 123 (50 uM)
Rhodamine 123 (100 uM) "
Rhodamine 123 (400 uM)
Rhodamine 123 (800 uM)
Vinblastine (10 uM)
Vinblastine (20 pM) T
Vinblastine (50 uM)
Vinblastine (100 pM)
Vinblastine (200 uM)
Vinblastine (400 uM)
Verapamil (0.01 uM)
Verapamil (1 uM)
Verapamil (10 uM)
Verapamil (100 uM)
Verapamil (400 pM) "
Verapamil (800 uM)
Tariquidar (0.075 uM)
Tariquidar (0.15 uM)
Tariquidar (1.5 uM)
Tariquidar (10 uM)
Tariquidar (50 uM)
Tariquidar (100 pm)"
Tariquidar (200 uM)
Zosuquidar (0.075 uM)
Zosuquidar (0.15 uM)
Zosuquidar (1.5 uM)
Zosuquidar (10 uM)
Zosuquidar (50 uM)
Zosuquidar (100 pM) T
Zosuquidar (200 pM)

0.31+0.02"

0.49+0.02
0.56 +0.01
0.61 +0.02
0.64 +0.01
0.54 +0.02
0.45+0.01
0.40+0.02
0.42+0.01
0.52+0.01
0.85+0.02
0.96 £ 0.01
0.45+0.02
0.47 £0.02
0.54 £0.02
0.92 £0.02
1.03+0.02
0.54 £0.02
0.89 +0.02
1.13+0.01
1.46 £ 0.02
1.32+£0.02
1.58 £0.02
1.55+0.02
0.85+0.01
0.68 +0.01
0.40+0.02
0.33+0.02
0.31+0.02
0.49 £0.02
1.15+0.02
1.53+0.05
1.93+0.05
1.74+0.05
0.42+0.01
0.56 £ 0.02
0.92 £0.02
0.96 £ 0.01
1.41+0.02
1.39+0.02
1.27£0.02
0.45+0.05
0.68 +0.05
1.25+0.05
1.39+£0.02
1.65+0.02
1.67+£0.05
1.48 £ 0.05

0.51x107°+ 0.13x107%"
0.30x107°+ 0.03x10°°
0.26x107°+ 0.02x10°°
0.25x107°+ 0.04x10°°
0.39x107°+ 0.02x10°°
0.24x107°+ 0.02x10°°
0.26x107°+ 0.02x10°°
0.54x107°+ 0.10x10°°
0.52x107+ 0.03x10°°
0.54x107%+ 0.04x103
0.45x107%+ 0.06x102
0.56x107°+ 0.02x102
0.42x107%+ 0.04x102
0.44x107°+ 0.04x10°°
0.40x107%+ 0.03x102
0.37x107°+ 0.03x102
0.44x107°+ 0.01x10°°
0.44x107%+ 0.03x102
0.45x107%+ 0.02x102
0.45x107°+ 0.01x10°°
0.46x107°+ 0.02x10°°
0.48x107+ 0.03x10°°
0.39x107°+ 0.03x10°°
0.43x107°+ 0.02x10°°
0.43x107°+ 0.02x10°°
0.46x107°+ 0.01x10°°
0.44x107+ 0.03x10°°
0.50x107+ 0.06x10°°
0.66x107°+ 0.23x10°°
0.36x107°+ 0.08x10°°
0.52x107+ 0.03x10°°
0.57x107%+ 0.06x102
0.52x107%+ 0.04x103
0.51x107%+ 0.06x1072
0.20x107%+ 0.03x102
0.21x107%+ 0.03x102
0.26x107%+ 0.03x102
0.27x107%+ 0.01x102
0.34x107%+ 0.02x102
0.39x107%+ 0.02x102
0.33x107%+ 0.02x102
0.48x107°+ 0.19x10°°
0.39x107°+ 0.12x10°°
0.45x1073+ 0.07x10°°
0.38x107°+ 0.02x10°°
0.42x1073+ 0.02x10°°
0.39x107°+ 0.04x10°°
0.41x1073+ 0.06x10°°

* Fit errors

1l Corresponding Ln (k) values are shown in Fig. 2D and fig. S7D.
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Data Appendix 1. DEER data analysis for the extracellular side of the TMD. For each mutant, from left to right,
distance distributions, and the primary DEER traces along with the fits are shown. Normalized DEER traces are
shown with y-axis offsets for clarity. In addition, 500 ns at the end of DEER traces are removed (not shown) to reduce
the contribution of the artefacts at the end of the trace which could disturb data analysis.
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Data Appendix 2. DEER data analysis for the intracellular side of the TMD. For each mutant, from left to right,
distance distributions, and the primary DEER traces along with the fits are shown. Normalized DEER traces are
shown with y-axis offsets for clarity. In addition, 500 ns at the end of DEER traces are removed (not shown) to reduce
the contribution of the artefacts at the end of the trace which could disturb data analysis.
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Data Appendix 3. DEER data analysis for the nucleotide binding site 1 (NBS1). For each mutant, from left to
right, distance distributions, and the primary DEER traces along with the fits are shown. Normalized DEER traces are
shown with y-axis offsets for clarity. In addition, 500 ns at the end of DEER traces are removed (not shown) to reduce
the contribution of the artefacts at the end of the trace which could disturb data analysis.
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Data Appendix 4. DEER data analysis for the nucleotide binding site 2 (NBS2). For each mutant, from left to
right, distance distributions, and the primary DEER traces along with the fits are shown. Normalized DEER traces are
shown with y-axis offsets for clarity. In addition, 500 ns at the end of DEER traces are removed (not shown) to reduce
the contribution of the artefacts at the end of the trace which could disturb data analysis.
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Data Appendix 5. DEER data analysis for the nucleotide binding domain (NBD). For each mutant, from left to
right, distance distributions, and the primary DEER traces along with the fits are shown. Normalized DEER traces are
shown with y-axis offsets for clarity. In addition, 500 ns at the end of DEER traces are removed (not shown) to reduce
the contribution of the artefacts at the end of the trace which could disturb data analysis.
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