
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Restatement of the paper: 

This paper provides a method to impute disease heritability and disease-disease genetic and 

environmental correlations from EHR data trained against literature-derived estimates. They 

generate disease prevalence curves and disease similarity low dimension embedding, using 

electronic health record (EHR) data, as features, as well as gender, country, study type and 

methodology. They collect published 984 h2 and 1947 correlation estimations as true values. Then 

they build a machine learning model. They validate model results by hold-out validation, and 

comparing to another independent dataset. They predict the heritability and correlation for new 

“disease-study type-methodology-gender” combinations using the model. With new estimations, 

they find the negative correlation between disease onset age and disease heritability, and the 

relationship among disease dissimilarity and genetic/environmental correlations. 

 

Overall, I believe this is an exciting and novel use of EHR data that has great potential for impact 

across many fields. I have outlined some major and minor concerns below. 

 

Major concerns: 

1. Dataset bias. 

The true values of h2 are come from previous published studies, which include only 290 diseases. 

This suggests the training and evaluating processes are based only on part of the 500 diseases, 

and the data of the other part of diseases is never met by the model. Therefore, the genetic 

parameter estimation of those unseen diseases may not be valid. Also, only 51 diseases have 

female estimations, and 34 diseases have male estimations. The gender-specific heritability 

estimation may not be valid. 

In other words, because the training and testing data is limited by results of previous studies, it is 

not a random sample of the real data, which may limit the predictive power of the model. 

The major result of the paper, the negative correlation between disease onset age and heritability, 

is mainly supported by the predicted values, so this result may be lack of evidence if the prediction 

of the model is not valid. 

2. Lack of validation. 

The disease-disease genetic and environmental correlations are only validated using intra-dataset 

cross validation, but not validated using independent datasets. 

3. Unfair comparison 

When evaluating the model performance, the authors argue that the prediction of the model is 

reasonably accurate, by indicating the correlation of the predicted value and true value is 0.4 

higher than the correlation between previous published, independent estimations. But the 

calculation of correlation between previous published, independent estimations includes data from 

distinct populations or gender, which may explain the large variation, while the correlation of the 

predicted value and true value is measured using perfectly paired data. Thus, the comparison is 

not fair, and this evidence does not support the accuracy of the model. 

 

Minor concerns: 

1. Insufficient methodological detail 

a) The method of the disease low dimensional embedding is not clear enough. It would better to 

explain the embedding in a separate paragraph in Methods. 

b) How disease prevalence curve and disease low dimensional embedding translated to features of 

the model is unknown. More detail is required in the methods. 

c) How disease prevalence curves and published results are paired as features in the aspect of 

country? The country-specific prevalence curve is measured by US, Denmark and Sweden 

electronic health record (EHR) data, while the published results are come from 17 countries, 

including Australia, Japan and Vietnam. Were comparisons made between countries? Are the 

results just as accurate? 



d) How the hyperparameters of the model are tuned? It’s not clear which part of the data is used 

for hyperparameter tuning. The authors should ensure that the hyperparameters were fit using 

ONLY the training data and not the testing data. Using cross-validation within the 80-percent hold 

out may solve this issue. 

e) The term “disease mentions” is not clear in the manuscript. It seems to refer to diagnosis 

codes, but the way it’s written is ambiguous. 

f) There was limited to no discussion of acute versus chronic diseases. Is the same level of 

performance achieved for stroke as diabetes, for example? Why or why not? 

g) Was the uncertainty (or errors) in the estimates of prevalence used in the models as well? Or 

just the point estimates? 

 

 

 

Reviewer #2: 

Remarks to the Author: 

NCOMMS-19-12796 

Estimating Genetic Parameters in the Absence of Genetic Data from Country-scale Health Datasets 

 

This paper by Jia and colleagues has two major contributions. First, using large health care 

datasets, the authors computed disease prevalence curves and low dimensional disease 

embeddings which revealed similarity and dissimilarity of temporal disease trajectories across the 

disease spectrum. Second, the authors showed that disease-specific features and disease-disease 

relationships can be used to imputed unseen disease heritability and genetic correlation measures 

with high accuracy. Overall I think this is an interesting paper with many novel ideas and I applaud 

the authors for putting together very large scale health care datasets across countries. 

 

However, I'm disappointed about the writing of this paper. I think it was initially written as a short 

letter to target a different journal. As a result, introduction, results and discussion were lumped 

together; the background was not thoroughly reviewed and motivation wasn't clear; and the 

implications of the results were not discussed. More importantly, the methods section is too brief 

to provide enough details to replicate the analysis. With the level of methodological details 

presented it's difficult to assess the rigor of the methods. In addition, the authors wanted to show 

lots of analyses and results in this paper but the flow of the text was sort of poor, making it 

difficult to follow. One has to jump between the main text, methods and figure legends to figure 

out what has been done. 

 

If possible, I would suggest the authors rewrite and resubmit the paper. The paper is interesting 

but needs to be expanded and polished to more clearly present the results and methods, and to 

add background introduction and discussion. 

 



Reviewers' comments (in black) and proposed possible answers (in red): 
 
Reviewer #1 (Remarks to the Author): 
 
Restatement of the paper: 
This paper provides a method to impute disease heritability and disease-disease genetic and 
environmental correlations from EHR data trained against literature-derived estimates. They 
generate disease prevalence curves and disease similarity low dimension embedding, using 
electronic health record (EHR) data, as features, as well as gender, country, study type and 
methodology. They collect published 984 h2 and 1947 correlation estimations as true values. 
Then they build a machine learning model. They validate model results by hold-out validation, 
and comparing to another independent dataset. They predict the heritability and correlation for 
new “disease-study type-methodology-gender” combinations using the model. With new 
estimations, they find the negative correlation between disease onset age and disease 
heritability, and the relationship among disease dissimilarity and genetic/environmental 
correlations. 
 
Overall, I believe this is an exciting and novel use of EHR data that has great potential for impact 
across many fields. I have outlined some major and minor concerns below. 
 
Major concerns: 
1. Dataset bias.  
The true values of h2 are come from previous published studies, which include only 290 
diseases. This suggests the training and evaluating processes are based only on part of the 500 
diseases, and the data of the other part of diseases is never met by the model. Therefore, the 
genetic parameter estimation of those unseen diseases may not be valid. Also, only 51 diseases 
have female estimations, and 34 diseases have male estimations. The gender-specific 
heritability estimation may not be valid.  
In other words, because the training and testing data is limited by results of previous studies, it 
is not a random sample of the real data, which may limit the predictive power of the model.  
 

We very much appreciate the reviewer’s constructive suggestions and would like to address the 
concern about possible dataset bias in the following three ways: 

1) To construct the current training dataset, we searched (almost) all the major studies about 
heritability and correlations, collecting 984 h2 estimates and 1947 corr estimates from 190 
unique publications. To address the reviewer’s concerns and further enrich the training 
dataset, we iterated an additional search over the list of “missing” diseases in the current 
dataset, focused on one disease at a time, looked for disease mentions and their 
heritabilities in the PubMed database, and then read through all the relevant publications to 
confirm. In this way, we were able to identify additional 75 published h2 estimates for 49 
unique diseases. In addition, we augmented our dataset with 87 Mendelian diseases for 
which the broad-sense heritability can be assumed to be 1 (Visscher, Hill et al. 2008). 



Altogether, we managed to increase the total number of published estimates from 984 to 
1146, in which 403 unique diseases and 155 gender-specific estimates were covered in total.      

Further, using the same model-building procedure as before, we randomly selected four-
fifths of the data for training and one-fifth for validation, and repeated this process 1000 
times. As a result, the cross-validation and independent tests validated the accuracy of our 
estimator. Accordingly, we have updated Figures 3B, 3D, 4A-C, Supplemental Figures S3, S4, 
Tables 1, 2, and Supplemental Table S2. 

2) Regarding the question raised about the difficulty in using 403 measured diseases to 
estimate parameters for 493 diseases in total, we conjectured that our model should be able 
to impute missing values because it has access to country-scale disease comparison 
information, which is embedded in temporal disease prevalence curves and 20-dimensional 
disease-specific embedding vectors. This conjecture appears to be well-supported by our 
result discussed above. In addition, it is informative to observe that the relative importance 
of disease-specific features shows among all predictive features. Specifically, curve- and 
embedding-related disease features contribute towards the estimates of h2 44.6 percent and 
36.8 percent, respectively, and 81.4 percent collectively.  

3) Furthermore, we double-checked that our predictive power was not “overstretched.”  We 
were very selective in including diseases into our training and prediction sets: We only 
attempted the estimation for diseases that were reasonably covered in the training dataset 
in the first place. For instance, because the majority of previous studies on genetic 
correlation estimation were either based on EHRs-inferred pedigree information combined 
with the ACE (additive genetics, common environment, and unique environment) model, or 
SNP-based combined with the LDSC (linkage disequilibrium score regression) model, we 
limited our prediction outputs to these two settings exclusively.  

We have added these details to the Discussion section. 

 
The major result of the paper, the negative correlation between disease onset age and 
heritability, is mainly supported by the predicted values, so this result may be lack of evidence if 
the prediction of the model is not valid. 
 

Thank you for the comment. The reported negative correlation is also strongly supported by 
published (legacy) estimates, if we exclude numerous new estimates produced in our study. As 
shown in the original Supplemental Figure S4A and Table S2, disease onset age was negatively 
correlated with heritability: Spearman’s ߩ was -0.44 (p-value = 1.2 × 10-5) and the regression 
coefficient was -0.64 (p-value = 1.2 × 10-4). When we combined legacy estimates with new ones, 
the negative correlation still held for both twin/family-study-based (Figure 4B) and SNP/PRS-
study-based heritability (Supplemental Figure S4B).  

As the reviewer suggested that the negative correlation between disease onset age and 
heritability was one of our study’s main findings, we elaborated on this point in the revised 
manuscript and have moved the original Supplemental Figure S4A to the revised main Figure 4. 
Hopefully, it is now appropriately highlighted in the current revised version.   



 

 
2. Lack of validation. 
The disease-disease genetic and environmental correlations are only validated using intra-
dataset cross validation, but not validated using independent datasets.  
 

Fortunately, we were able to identify an additional, independent dataset of genetic correlations 
(Tylee, Sun et al. 2018) and reserved it exclusively for testing purposes (we used this dataset for 
neither training nor intra-dataset validation in our analysis). This test dataset was generated in 
context of genome-wide association studies and using a linkage disequilibrium score (LDSC) 
regression, we compared our predictions for the same data type and mathematical method. 
This confirmed a significantly high concordance (Pearson’s correlation = 0.73, p-value = 1.7 × 10-

14; please see Supplemental Figure S3D and Table S10 for comparison details).  

We have added these details to the Results section. 

 
3. Unfair comparison 
When evaluating the model performance, the authors argue that the prediction of the model is 
reasonably accurate, by indicating the correlation of the predicted value and true value is 0.4 
higher than the correlation between previous published, independent estimations. But the 
calculation of correlation between previous published, independent estimations includes data 
from distinct populations or gender, which may explain the large variation, while the 
correlation of the predicted value and true value is measured using perfectly paired data. Thus, 
the comparison is not fair, and this evidence does not support the accuracy of the model. 
 

We should clarify that the assessment of our model prediction quality was based on both 
repeated cross-validations and additional tests on independent datasets. We agree that the 
matching approach in our settings was favorable to our method. Therefore, we made efforts to 
improve comparison fairness in the revision: 

1) In preparation for the correlation analysis between published independent estimates, we 
actually matched not only their data types and mathematical models, but also the genders of 
studied cohorts. Therefore, the variation shall only come from distinct studies using different 
cohorts, but good estimations shall be robust against such variation and provide coherent 
estimates. We think, analogously, correlating our model predictions with the published ones 
is essentially to compare estimates from two independent studies that adopted different 
methods (our modeling approach and published conventional approaches). 

2) If our newly-predicted and published values are considered to be paired unfairly too 
perfectly, then applying the exact same criteria as we used to match between the past 
estimates, we compared our model predictions against very recently published sets of new 
estimates (Lakhani et al., 2019, which were used in neither training nor validation in our 
analysis). These new estimates still show that the concordance between two sets of new 
estimates (Pearson’s correlation 0.71, p-value = 4.8 × 10-22) is improved by 0.2, when 
compared against Pearson’s correlation value of 0.51, as seen between the past estimates 



(shown in Supplemental Figures S3A-B). In the revised manuscript, we used this as the 
supporting evidence instead.  

 

 
Minor concerns: 
1. Insufficient methodological detail 
a) The method of the disease low dimensional embedding is not clear enough. It would better 
to explain the embedding in a separate paragraph in Methods.  

Thank you for the suggestion. We expanded the description as requested. 
 

Disease embedding 

We used the word2vec algorithm, which was originally developed for natural language 
processing. In our implementation, we adjusted the algorithm in the following ways: (1) We 
used disease codes in place of natural language words; (2) We replaced sentences with a 
chronological sequence of patient-specific disease codes, and; (3) We replaced the text 
corpus with a large collection of patient-specific diagnostic histories. In a typical word2vec 
output, words are mapped into a continuous “semantic” space, so that synonymous words 
are placed nearby. Therefore, we aimed to find similarity-based disease representation. 
The formal goal of this algorithm is to build a real-valued vector representation for a 
disease ω in order to predict its context (co-occurring) diseases ߱ି given the current 
disease and vice versa. Using the logarithm of likelihood, ℒ, the cost function can be 
expressed as cost = −ℒ = −∑ logܲሺ߱|߱ିሻఠ∈࡯ , 

where ࡯ represents our “corpus” of over 121 million unique patient histories for over 500 
major diseases. We used this corpus to train a neural network model using the gensim 
package. 

As a result, each disease is represented by a 20-dimensional vector (see Figure 2 for 
snapshots of three-dimensional projections of the embedding). We justify our choice of 
dimensionality for embedding space by the following considerations: (1) The space 
dimensionality should be much smaller than the “vocabulary” size (over 500 in our case), 
but also be reasonably large enough to ensure adequate predictive power, and; (2) The 
disease embedding with 20 latent dimensions should generate a reasonable nosology, as 
judged by physicians in our team. 

 
We have added the above paragraphs as a separate section in the Methods 3, in order to 
explain disease embedding’s technical details. 
 

 
b) How disease prevalence curve and disease low dimensional embedding translated to 
features of the model is unknown. More detail is required in the methods.  



This is a very good suggestion. We have expanded the description as requested.  
 

Defining disease features for prediction 

Disease-specific features in our model included a set of derivatives from disease prevalence 
curves and disease embedding. Specifically, for heritability imputation (single-disease 
analysis), the curve-derived set comprised a collection of disease-specific counts, which we 
normalized to 1 (as defined in Analysis B of Methods 1), between ages 0 and 65 as well as 
to cumulative counts. We defined the cumulative count for age N as a sum of all 
normalized counts from age 0 until the age N, inclusively. The embedding-derived set 
included all 20 real-valued elements in the 20-dimensional embedding vector. We 
supplemented these two sets of features with a “biological system” label (a set of 21 labels 
shown in Figure 2A, plus the label “Other”), the gender bias, the carrier’s mean age, and 
the disease onset age. 

As for correlation imputation (two-disease analysis), because disease pairs were involved, 
we used the mean and difference values of the normalized counts, cumulative counts, and 
embedding elements of the interested pairs. In essence, these difference values captured 
disease-disease dissimilarities involving the comparison of single-disease features, such as 
distances between prevalence curves and between embeddings. Extending the one-disease 
supplemental features mentioned above, we also introduced disease-disease dissimilarities 
in a biological system, in the gender bias, in the mean carrier age, and in the disease onset 
age. 

For both single- and two-disease analyses, we also included categorical features to 
differentiate our predicted estimates by data type used, mathematical model, and basic 
information about the investigated cohorts (patient gender and country of origin). We used 
five data type labels (“twin study,” “family study,” “family study using EHRs,” “SNP-based 
study,” and “PRS-based study,” as categorical one-hot-encoded variables), and six distinct 
labels to account for difference in mathematical models from published estimates (“AE,” 
“ACE,” “PRS,” “SOLAR,” “GREML,” and “LDSC”). 

All training datasets for heritability and correlation imputation are available at 
https://github.com/jiagengjie/Estimating-Genetic-Parameters. 

 
We have added the descriptions above to the Methods 4. 
 

 
c) How disease prevalence curves and published results are paired as features in the aspect of 
country? The country-specific prevalence curve is measured by US, Denmark and Sweden 
electronic health record (EHR) data, while the published results are come from 17 countries, 
including Australia, Japan and Vietnam.  
 

Out of the published 1,146 h2 estimates, only 22 were from studies based on an Australian 
cohort, four were from Japan, and one was from Vietnam; thus, the total number is small. In 



order to still be able to utilize these estimates, we used dynamic prevalence curves measured 
by the US cohort as their proxies. 

 
 

Were comparisons made between countries? Are the results just as accurate? 
 

Yes, the results were still accurate, regardless of the country of analysis; country information 
has been proven not to be important in h2 prediction, only 3.7 percent (feature importance). In 
addition, to predict heritability for conditions that were never measured, e.g., diseases, genders, 
data types, and estimation methods, we only computed for the countries that were reasonably 
covered in the training dataset (e.g., US and Sweden). In the case of the countries that were not 
considerably represented in the training datasets, we only output model-simulated values for 
the exact same condition used for model training, in order to assess our model’s performance. 

We have added these details to the Discussion section. 

 

 
d) How the hyperparameters of the model are tuned? It’s not clear which part of the data is 
used for hyperparameter tuning. The authors should ensure that the hyperparameters were fit 
using ONLY the training data and not the testing data. Using cross-validation within the 80-
percent hold out may solve this issue. 
 

As the reviewer suggested, we followed the standard machine learning procedure of 
hyperparameter tuning and testing, ensuring that the testing dataset was hidden from the 
hyperparameter tuning. More specifically, we applied a grid search approach, exhaustively 
searching through a set of those hyperparameters predefined by the machine learning expert. 
We divided the whole dataset into training (80 percent) and testing (20 percent) datasets. 
Within the training dataset, we performed five-fold cross-validation (CV) to determine the best 
hyperparameters for each regression model. Then, after fixing the hyperparameters based on 
our CV result, we trained the model's parameter using all the training data, then evaluated each 
regressor’s performance on the hidden testing dataset. To ensure the robustness of our 
conclusions, we repeated the above procedures 1,000 times, which resulted in the performance 
comparison of different modeling algorithms shown in Table 1. 

 
 
e) The term “disease mentions” is not clear in the manuscript. It seems to refer to diagnosis 
codes, but the way it’s written is ambiguous.  

As requested, the term “disease mentions” was replaced with “disease diagnosis codes.” 

 
f) There was limited to no discussion of acute versus chronic diseases. Is the same level of 
performance achieved for stroke as diabetes, for example? Why or why not? 



Thank you for the thoughtful question. We checked a few examples of acute and chronic 
diseases, and confirmed that the model performance appeared to be consistent across disease 
types (we added a discussion of this observation to the revised text). As written in the original 
manuscript, we compared our estimates against very recently published sets of new estimates 
(Lakhani, Tierney et al. 2019), which were used in neither training nor validation in our analysis. 
In our revision, we revisited the comparison by selecting only the results for a list of acute and 
chronic diseases, respectively (see Supplemental Table S9). We first computed absolute errors 
(i.e., the absolute difference between model-inferred and published values), and then used the 
Wilcoxon rank sum test to determine whether the distribution of the errors seen in acute 
diseases is different from that of chronic diseases. This difference proves insignificant (p-value = 
0.18, as shown in Supplemental Figure S3C), which suggests that the accuracy of model 
predictions for acute diseases is similar to that for chronic diseases. We therefore confirm that, 
as far as the proposed model is concerned, diseases, acute or chronic, are no different. They 
both very much benefit from the rich information contained in disease trends and comorbidity 
patterns, making dissecting the genetic and environmental determinants of their pathogenesis 
possible. 
 
We have added these details to the Discussion section. 

 

 
g) Was the uncertainty (or errors) in the estimates of prevalence used in the models as well? Or 
just the point estimates? 

We used the expected prevalence (point estimates) value curves as features in our model 
building. 
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Reviewer #2 (Remarks to the Author): 
 
NCOMMS-19-12796 
Estimating Genetic Parameters in the Absence of Genetic Data from Country-scale Health 
Datasets 
 
This paper by Jia and colleagues has two major contributions. First, using large health care 
datasets, the authors computed disease prevalence curves and low dimensional disease 
embeddings which revealed similarity and dissimilarity of temporal disease trajectories across 
the disease spectrum. Second, the authors showed that disease-specific features and disease-
disease relationships can be used to imputed unseen disease heritability and genetic 
correlation measures with high accuracy. Overall I think this is an interesting paper with many 
novel ideas and I applaud the authors for putting together very large scale health care datasets 
across countries. 
 
However, I'm disappointed about the writing of this paper. I think it was initially written as a 
short letter to target a different journal. As a result, introduction, results and discussion were 
lumped together; the background was not thoroughly reviewed and motivation wasn't clear; 
and the implications of the results were not discussed. More importantly, the methods section 
is too brief to provide enough details to replicate the analysis. With the level of methodological 
details presented it's difficult to assess the rigor of the methods. In addition, the authors 
wanted to show lots of analyses and results in this paper but the flow of the text was sort of 
poor, making it difficult to follow. One has to jump between the main text, methods and figure 
legends to figure out what has been done. 
 
If possible, I would suggest the authors rewrite and resubmit the paper. The paper is interesting 
but needs to be expanded and polished to more clearly present the results and methods, and to 
add background introduction and discussion. 
 

Thank you for your feedback and thoughtful comments, we did our best to carefully revise our 
manuscript to meet this reviewer’s requests. 

 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors have significantly revised the manuscript according to my feedback. Overall, I think 

the revision is acceptable. I have a few additional minor comments. 

 

1. I would like to see the relative feature performances of the embeddings, the disease onset data, 

and the other additional covariates. I am curious wether one type of data is accounting for the 

majority of the performance at predicting h2 and dcorr. I didn't see it mentioned or a figure in the 

supplemented (although I may have missed it). 

 

2. I think it's probably worth nothing that the author's "fourth approach" is only made possible by 

the existence of the other three approaches. 

 

3. Figure 2 seems like an overly complicated visualization to me for the data being shown. I'm not 

sure the 3D shading or disks around the spheres are really adding anything. To paraphrase Edward 

Tufte, any visual element that doesn't convey information should be removed. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

NCOMMS-19-12796A 

Estimating genetic parameters in the absence of genetic data from country-scale health datasets 

Jia et al. 

 

The authors have significantly improved the paper, although overall I think the main text can be 

further polished to improve readability and clarity. I have some detailed suggestions below, most 

of them are very minor. 

 

* title: I'd suggest the author replace "genetic parameters" with "heritability and genetic 

correlations", as it's unclear what do genetic parameters refer to. 

 

* Figure 1: Can the authors clarify the dataset used to compute prevalence curve similarity and 

perform clustering analysis in Figure 1B? Did the authors use the US data only or combine multiple 

datasets? 

 

* As disease curves have been shifted along the x-axis, does it still make sense to talk about early 

vs. late-raising curves in Figure 1C? 

 

* In the main text, the predicted genetic parameters were validated using a 4:1 (training vs 

testing) cross-validation with 1000 random splits, but in the caption of Figure 3 the description 

was inconsistent (a 2:1 cross-validation and 10000 random splits). 

 

* It's difficult to make sense of the numbers on the density plots (Figure 3B-C). Would it be 

possible to normalize these numbers and make them more interpretable? 

 

* In the results section "Building estimators from disease descriptors", it'd be helpful to briefly 

describe the prediction model and predictors (features and covariates) to improve the flow of the 

text. Otherwise it's a little difficult to follow without looking into the methods section. It's also 

helpful in this section to always report the datasets (US or US & Denmark combined etc) used and 

the number of data points to compute the Pearson correlations. 

 

* In the paragraph starting on line 217, it's unclear what did the authors do when there are more 



than two previous published estimates for the same disease. 

 

* Line 422: what is the rationale of defining "disease onset age" as the maximum age among 5% 

of youngest patients carrying the disease, as opposed to something like the average age of getting 

a particular disease code for the first time? 

 

 



Reviewers' comments (in black) and proposed answers and solutions (in red): 

We thank both reviewers for their insightful suggestions. As a result of the revision the manuscript has 
been improved significantly. We are glad to polish it further and carefully according to the reviewers’ 
feedbacks below. All the new changes in the manuscript text file are highlighted in yellow.  

 

Reviewer #1 (Remarks to the Author): 

 

The authors have significantly revised the manuscript according to my feedback. Overall, I think the 
revision is acceptable. I have a few additional minor comments.  

 

1. I would like to see the relative feature performances of the embeddings, the disease onset data, and 
the other additional covariates. I am curious whether one type of data is accounting for the majority of 
the performance at predicting h2 and dcorr. I didn't see it mentioned or a figure in the supplemented 
(although I may have missed it). 

Thank you for the constructive suggestion. In Table 2 that reports the feature importance, we now have 
added a detailed breakdown of 20 embedding factors as well as other covariates, such as disease onset 
age, disease category, country of cohort, and sex of cohort used. We can see that the 20 embedding 
factors are all important, and the proportions of their contributions towards model prediction are 
similar.  

 

2. I think it's probably worth nothing that the author's "fourth approach" is only made possible by the 
existence of the other three approaches.  

We have inserted the following wording in the introduction section: 

“These accumulating legacy estimates of genetic parameters, such as heritability and genetic 
correlations, paved way for the fourth approach that we are proposing here.” 

 

3. Figure 2 seems like an overly complicated visualization to me for the data being shown. I'm not sure 
the 3D shading or disks around the spheres are really adding anything. To paraphrase Edward Tufte, any 
visual element that doesn't convey information should be removed. 

We re-generated Figure 2 without distracting discs, as suggested by the reviewer. 

 

 

 

Reviewer #2 (Remarks to the Author): 



 

NCOMMS-19-12796A 

Estimating genetic parameters in the absence of genetic data from country-scale health datasets 

Jia et al. 

 

The authors have significantly improved the paper, although overall I think the main text can be further 
polished to improve readability and clarity. I have some detailed suggestions below, most of them are 
very minor. 

 

* title: I'd suggest the author replace "genetic parameters" with "heritability and genetic correlations", 
as it's unclear what do genetic parameters refer to. 

As suggested, the new title now is “Estimating Heritability and Genetic Correlations from Country-scale 
Health Datasets in the Absence of Genetic Data” 

 

* Figure 1: Can the authors clarify the dataset used to compute prevalence curve similarity and perform 
clustering analysis in Figure 1B? Did the authors use the US data only or combine multiple datasets? 

For curve similarity computation and clustering analysis, we used datasets from two countries, i.e., US 
and Denmark, to: 

(1) pinpoint whether certain curve patterns are country-specific or consistent between the two 
countries; 

(2) analyse how country-specificity affects clustering (in Figure 1C, the third stacked bar chart 
summarizes the country compositions in each cluster, and for example, we saw US-based 
disease curves made up a larger proportion in Cluster 3, while the proportions of Denmark-
based ones were higher in Clusters 4 and 5).  

We have now explained explicitly in Methods 2 (Clustering disease prevalence curve shapes) that the 
clustering analysis was based on US and Denmark data.  

 

* As disease curves have been shifted along the x-axis, does it still make sense to talk about early vs. 
late-raising curves in Figure 1C? 

Thank you for bringing this question up. The relative shift between disease curves was local, i.e., -8 to +8 
years, and this shift would not alter the global, 65-year course of a disease, especially in terms of the 
slope and multimodality. One claim we made on Figure 1C that “Clusters 2 and 4 include early- and 
later-rising reversed L-shaped curves, respectively” is really about their slope differences. The curves in 
Cluster 2, if fitted with a linear line and compared against the curves in Cluster 4, have more gentle 
slopes and intersect the Age-axis much earlier, suggesting an earlier-rising trend.  



In the manuscript, we have changed the statement “Clusters 2 and 4 include early- and later-rising 
reversed L-shaped curves, respectively” to “Clusters 2 and 4 include reversed L-shaped curves (the 
former being early- but slow-rising, while the latter being later- but steeper-rising)”, in order to 
emphasize the global trend differences between the curves in Clusters 2 and 4.  

 

* In the main text, the predicted genetic parameters were validated using a 4:1 (training vs testing) 
cross-validation with 1000 random splits, but in the caption of Figure 3 the description was inconsistent 
(a 2:1 cross-validation and 10000 random splits). 

Thank you for pointing this out. To be consistent, we now use the same settings, i.e., a 4:1 (training vs 
testing) cross-validation with 1000 random splits to regenerate Figure 3B-C. Our claim that “the slopes 
of both linear regressions were close to 1, with negligible intercepts, indicating that our estimates were 
nearly perfectly unbiased” still holds. 

 

* It's difficult to make sense of the numbers on the density plots (Figure 3B-C). Would it be possible to 
normalize these numbers and make them more interpretable? 

We admit that there lacks an interpretation about the density plots, and thus propose the following as 
remedies. 

 

The reason why we chose the density plots has now been added in the legends of Figure 3B-C as: 

“We used these plots to visualize the joint distribution of the actual data for testing and model-
predicted values. “ 

 

The interpretation about the results has now been inserted in the main text as follows: 

“Contour plots in Figure 3B-C show our model predictions’ estimated densities against published 
estimates of corresponding parameters: in the case of h2, the density peaked around (0, 0) and (0.4, 0.4), 
indicating denser collocations of published and predicted estimates there; while as for corr, the 
estimates exhibited a unimodal distribution with a peak close to (0.05, 0.05).” 

 

The numbers on the plots indicate the density estimates, and by default, the kernel density estimates 
were already normalized. We hope the added explanations above would make the density plots more 
interpretable.  

 

* In the results section "Building estimators from disease descriptors", it'd be helpful to briefly describe 
the prediction model and predictors (features and covariates) to improve the flow of the text. Otherwise 
it's a little difficult to follow without looking into the methods section. It's also helpful in this section to 



always report the datasets (US or US & Denmark combined etc) used and the number of data points to 
compute the Pearson correlations. 

Thank you for the constructive suggestion. We have added the following snippet at the beginning of the 
respective results section: 

“Disease prevalence curves and disease embedding derived from the US dataset were used as disease-
specific descriptors for modeling. The modeling features also included specifications about predicted 
estimates (data type and mathematical model used), basic information about the investigated cohorts 
(country of origin and sex), and disease characteristics (category of biological systems that the disease 
belongs to, and the onset age). A detailed description of disease features used in the model can be 
found in Methods, part 4.” 

We have now indicated the numbers of used data points in brackets for the computation of the Pearson 
correlations. 

 

* In the paragraph starting on line 217, it's unclear what did the authors do when there are more than 
two previous published estimates for the same disease. 

“If there were more than two estimates of the same type, we used all of them, generating all possible 
comparison pairs.” 

We made this clarification in the revised manuscript by inserting the specification above in the 
paragraph starting on line 217.  

 

* Line 422: what is the rationale of defining "disease onset age" as the maximum age among 5% of 
youngest patients carrying the disease, as opposed to something like the average age of getting a 
particular disease code for the first time? 

Due to the limited time window at which we can observe individuals in the US datasets, the actual age 
of onset for each patient is unknown.  Hence, we defined an upper-bound of the earliest disease age 
onset statistically, as the age separating the youngest five percent of the disease carriers from the rest. 
The results would remain qualitatively the same if one percent or ten percent cutoff was chosen. 

 

 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

I am satisfied with this revision. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

All my comments have been addressed, and I think the current version of the paper is 

acceepatbel. That said, I'd suggest the auhors proofread carefully- there are still quite a few typos 

and grammatical errors in the text. In fact, I still think the overall writing quality can be improved 

and another round of editing for clarity would be helpful. 



REVIEWERS' COMMENTS:  

Reviewer #1 (Remarks to the Author): 

 I am satisfied with this revision.  

Thank you.  

Reviewer #2 (Remarks to the Author):  

All my comments have been addressed, and I think the current version of the paper is acceptable. 

That said, I'd suggest the authors proofread carefully- there are still quite a few typos and 

grammatical errors in the text. In fact, I still think the overall writing quality can be improved and 

another round of editing for clarity would be helpful.  

Thank you for the suggestion. We re-visited the manuscript carefully to eliminate typos and to 

improve the writing quality. 
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