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Supplementary Fig. 1 Disease curve examples which can be replicated using 
another independent cohort, the Swedish National Health Registry (related 
to Fig. 1a).  
The Swedish dataset-specific curves (shown with black-dotted and brown solid lines) 
further validate the curve similarities seen between the US and Denmark datasets. For 
example, we successfully validated all of the aligned disease curves in the five clusters 
shown in Fig. 1c and included them here: Plate a shows autism, conduct disorder, tics and 
Tourette’s, Parkinson’s disease, and cranial nerve disorder; Plate b shows parasitic 
infection; Plate c shows osteoarthritis, acute sinusitis, thyroiditis, and Kawasaki disease; 
Plate d shows general hypertension and atherosclerosis; Plate e shows congenital eye 
anomaly; Plate f shows neurofibromatosis, pancreatic cancer, multiple myeloma, and 
esophageal cancer; Plate g shows hyperlipidemia; Plate h shows type II diabetes mellitus, 
and; Plate i shows tympanic membrane disorders and osteogenesis imperfecta. A curve’s 
X-axis corresponds to the diagnosis assignment age, while the Y-axis shows the relative 
prevalence of each diagnosis in the corresponding age and sex group (the curves are 
further re-normalized so that area under the curve equals 1). Each curve is supplied with 
a 99 percent confidence interval.  
  



 
Supplementary Fig. 2 The elbow method determined the optimal number of 
shape-of-curve clusters (related to Fig. 1b).  
Based on the matrix of dissimilarity measurements between all pairs of sex- and country-
specific curves, we applied hierarchical clustering and calculated the total intra-cluster 
variation for cluster numbers ranging from 1 to 25. The Y-axis shows the total intra-cluster 
variation values and the X-axis corresponds to the total number of clusters. The five-
cluster subdivision appears optimal, because it is where the decline of the variation value 
switches from fast to slow (i.e., the elbow location). 
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Supplementary Fig. 3 Correlation within legacy estimates of h2 and between 
recently published estimates and our model predictions (related to 
Supplementary Data 3, 4, and 5).  
a From 1146 published h2 estimates, we selected 205 pairs that shared the same data type 
and modeling setup but were based on distinct populations or studies. Here, we display 
them as a scatterplot, where the X- and Y-coordinates of each point represent comparable 
h2 estimates, obtained in pairs of independent studies. We computed a best-fitting 
regression line and Pearson’s correlation coefficient (γ = 0.51, p-value was computed 
using Student’s ! test), serving as the baseline against which to benchmark. b We further 
brought in another test dataset from a very recently published study (CaTCH), which used 
EHR-inferred twin data. Our model predictions for the relevant data type are very 
consistent with theirs (γ = 0.71, see Supplementary Data 3 for comparison details), 
improving the correlation seen between legacy data (Plate a) by 0.2. c We revisit the 
comparison by only selecting the test results for a list of acute and chronic diseases, 
respectively (see Supplementary Data 4). We first compute absolute errors (i.e., the 
absolute difference between model-inferred and published values), and then use the 
Wilcoxon rank sum test to determine whether the distribution of the errors seen in acute 
diseases is different from that of chronic diseases. This difference proves to be not 



significant (p = 0.18), suggesting that the accuracy of model predictions for acute diseases 
is similar to that for chronic diseases. We therefore confirm that, as far as the proposed 
model is concerned, diseases, acute or chronic, are no different. d To validate our 
estimates of genetic correlations against an independent dataset, we found an additional 
dataset of genetic correlations and reserved it exclusively for testing purposes. 
Benchmarking against this test dataset that was generated based on genome-wide 
association studies and using linkage disequilibrium score (LDSC) regression, we 
compared our predictions for the same data type and mathematical method, again 
confirming a significantly high concordance (γ = 0.73, see Supplementary Data 5 for 
comparison details). 
  



 
Supplementary Fig. 4 Relationships between disease onset age and 
SNP/PRS-based h2 estimates (related to Fig. 4a-c).  
We compared two types of h2 estimates: One based on twin/family data (see Fig. 4a-c), 
and the other utilizing SNP/PRS data. Plate a includes analyses based on the previously-
published estimates of SNP/PRS-type h2 only, suggesting the scarcity of the legacy data. 
Plates b and c show analyses in which we also included new SNP/PRS-type estimates 
from our predictive model. Plate b shows that after we analyzed all five disease curve types 
jointly, we found a significantly negative correlation between disease onset age and the 
corresponding h2 estimates. Plate c demonstrates the hidden heterogeneity across curve 
shape clusters underlying the overall linear relationship, which became apparent when 
we conducted the same analysis in a cluster-specific manner. For instance, the linear 
relationship in Cluster 1 (in red) is stronger than that in Clusters 2 and 3 (in yellow and 
green, respectively), showing a steeper slope of its best fitting line.    
  



 
Supplementary Fig. 5 Regressing curve dissimilarity measure Dsoc on 
estimates of rg , re, and rg⋅re (related to Supplementary Data 6)  
Our analysis, described in this study, added hundreds of thousands of new rg and re 
estimates. A simple Dsoc regression on these correlation estimates in a disease-category-
specific manner helped us interpret the relationship between inter-disease genetic and 
environmental correlations and the (dis)similarity of their prevalence curves. Similar to 
the analysis of the whole shape dissimilarities collection (described in the main text), we 
repeated the computation for all disease pairs sampled from distinct disease categories, 
generating three, upper triangular matrices of regression coefficients (for each type of 
correlation, and p-values were computed using Student’s ! test). The resulting plot shows 
only coefficients with Benjamini-Hochberg-adjusted p-values less than 0.05. We 
annotated the rows and columns with the 13 disease categories. The diagonal entries 
summarize the results for intra-category disease pairs and the off-diagonal for inter-
category pairs.  
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Supplementary Fig. 6 Population pyramid comparing sex-specific age group 
proportions between the MarketScan data and the 2016 US national census.  
The two datasets’ pyramid shapes closely resemble each other, suggesting that the 
MarketScan database has a reasonable representation of all age groups, although the 
proportion younger than 54 years old is marginally larger. To generate this plot for the 
MarketScan dataset, we counted each individual only once, at their database entrance age 
(for the years from 2003 to 2013); this alleviates artifacts of variable patient visibility in 
the insurance claims.  
  



 
Supplementary Fig. 7 Disease curves for the year 2008’s enrollment of 
several disease groups (related to Fig. 1a).  
We computed the original curves based on enrollment years from 2003 to 2013 (the blue-
dotted and red solid lines), and we compare these original curves with those constructed 



using only one enrollment year, 2008, as an example (the green-dotted and purple solid 
lines). These old and new curves are practically identical, demonstrating the curve 
computation’s robustness against the enrollment year. Three groups are shown, including 
a neurodevelopmental and psychiatric; b infectious, and; c inflammatory, autoimmune, 
and other. Each group here includes 12 diseases (labeled at the top). The X-axis 
corresponds to the age of diagnosis assignment, and the Y-axis shows the relative 
diagnosis-based prevalence (for ease of comparison of curves across countries, each curve 
is re-normalized to sum to 1). This also includes a 99 percent confidence interval for each 
curve. 
  



 
Supplementary Fig. 8 Disease curves of newborns for the same three groups 
of diseases as shown in Supplementary Fig. 7 (related to Fig. 1a).  
We reproduced curves using only data for newborns visible in the MarketScan database 
(the green-dotted and purple solid lines). Same as Supplementary Fig. 7, each group 



consists of 12 diseases (labeled at the top). The X-axis shows the diagnosis assignment 
age, and the Y-axis corresponds to the diagnosis-based prevalence (the expected number 
of diagnoses per 1,000 random samples). The 99 percent confidence interval is shown as 
a semi-transparent area in the matching color around each curve.  
  



Supplementary Table 1. Feature Importance using Gradient Boosting 
Regression Method (related to Table 1). 
 

Features derived 
from 

95% CI of feature 
importance for h2 

prediction 

95% CI of feature 
importance for corr 

prediction 

Curves 44.6%	 ± 	0.16% 41.2%	 ± 	0.11% 

20 embedding 
factors (overall) 

 

Individual breakdowns 

E1 E2 E3 E4 

E5 E6 E7 E8 

E9 E10 E11 E12 

E13 E14 E15 E16 

E17 E18 E19 E20 
 

 

36.8%	 ± 	0.14% 

 
1.9%	 2.2% 1.9% 2.0% 

1.4%	 1.7% 2.2% 2.6% 

2.7%	 1.5% 1.6% 1.4% 

1.7%	 1.5% 1.2% 1.9% 

1.5%	 1.7% 2.1% 2.0% 
 

 

30.7%	 ± 	0.10% 

 
2.0%	 1.1% 1.6% 2.1% 

1.5%	 1.5% 0.8% 1.5% 

1.5%	 1.9% 0.3% 0.8% 

0.7%	 2.9% 1.6% 1.5% 

2.5%	 2.4% 1.8% 0.5% 
 

Data type and Math 
model 8.3%	 ± 	0.05% 9.0%	 ± 	0.06% 

Country of cohort 3.7%	 ± 	0.03% 4.7%	 ± 	0.05% 

Sex of cohort 1.1%	 ± 	0.02% 1.0%	 ± 	0.02% 

Disease category 1.1%	 ± 	0.02% 1.1%	 ± 	0.01% 

Disease onset age 1.0%	 ± 	0.02% 2.7%	 ± 	0.03% 

 
  



Supplementary Table 2. Correlation and Regression Analysis between 
Disease Onset Age and Diagnosis Count (related to Fig. 3f-g). 
 

Different 
stratifications 

Spearman’s 0 

(p-value) 

123456 = 89 + ; 

8 

(p-value) 
; 

(p-value) 

All 
0.32 

(< 10>?@) 
3.0×10>C 
(< 10>?@) 

5.1 
(< 10>?@) 

Cluster 1 
9.7×10>C 
(DE	a) 

7.4×10>C 
(1.3×10>C) 

4.8 
(< 10>?@) 

Cluster 2 
0.28 

(5.2×10>F) 
4.8×10>C 
(3.4×10>G) 

4.5 
(< 10>?@) 

Cluster 3 
0.16 

(1.6×10>H) 
2.6×10>C 
(2.8×10>H) 

5.3 
(< 10>?@) 

Cluster 4 
0.51 

(1.6×10>C) 
9.2×10>C 
(7.4×10>I) 

2.2 
(DE) 

Cluster 5 
0.22 
(DE) 

0.17 
(6.9×10>I) 

4.4 
(< 10>?@) 

 

        a	DE :  p-value > 0.05   
 



Supplementary Table 3. Correlation and Regression Analysis between Disease Onset Age and Published h2 without or with Model-inferred Values 
(related to Fig. 4a-c and Supplementary Fig. 4). 
 

Different 
strat. 

Published h2 only Published and model-inferred h2 

Twin/Family-type SNP/PRS-type Twin/Family-type SNP/PRS-type 

# 
values 

Spearman’s 
!	(p-value) 

#$$% = '( + * 
# 

values 
Spearman’s 
!	(p-value) 

#$$% = '( + * 
# 

values 
Spearman’s 
!	(p-value) 

#$$% = '( + * 
# 

values 
Spearman’s 
!	(p-value) 

#$$% = '( + * 

' 
(p-value) 

* 
(p-value) 

' 
(p-value) 

* 
(p-value) 

' 
(p-value) 

* 
(p-value) 

' 
(p-value) 

* 
(p-value) 

All 93 
−0.44 
(1.2
×1056) 

−0.64 
(1.2
×1059) 

57 
(< 105=>) 9 

0.47 
(?@	a)	

2.4
×105A 
(?@) 

0.12 
(?@) 884 

−0.46 
(< 105=>) 

−0.42 
(< 105=>) 

51 
(< 105=>) 881 

−0.46 
(< 105=>) 

−0.44 
(< 105=>) 

24 
(< 105=>) 

Cluster 1 11 
−0.24 
(?@) 

−1.4 
(?@) 

67 
(1.1
×1059) 

1 − − − 152 
−0.11 
(?@) 

−0.69 
(1.6
×105A) 

54 
(< 105=>) 152 

−0.19 
(2.1×105A) 

−1.0 
(1.5
×105C) 

29 
(< 105=>) 

Cluster 2 18 
−3.5×105A 

(?@) 
25 
(?@) 

3081 
(?@) 4 

0.80 
(?@) 

0.14 
(?@) 

−3.8 
(?@) 194 

−0.25 
(3.8
×1059) 

−0.36 
(1.7
×1059) 

50 
(< 105=>) 193 

−0.30 
(3.1×1056) 

−0.35 
(1.3
×1056) 

23 
(< 105=>) 

Cluster 3 46 
−0.43 
(3.2
×105C) 

−136 
(2.7
×105C) 

6312 
(5.2
×105=6) 

2 − − − 461 
−0.25 
(8.4
×105D) 

−0.38 
(1.0
×105>) 

48 
(< 105=>) 459 

−0.21 
(5.1×105>) 

−0.35 
(7.8
×105E) 

20 
(< 105=>) 

Cluster 4 5 
0.20 
(?@) 

0.71 
(?@) 

9.2 
(?@) 2 − − − 22 

0.23 
(?@) 

0.58 
(?@) 

12 
(?@) 22 

−0.38 
(?@) 

−0.46 
(?@) 

30 
(2.1
×105A) 

Cluster 5 13 
0.15 
(?@) 

0.66 
(?@) 

57 
(1.7
×1059) 

0 − − − 55 
−9.7×105A 

(?@) 
−0.61 
(?@) 

62 
(< 105=>) 55 

−0.27 
(5.0×105A) 

−1.5 
(1.2
×105A) 

39 
(< 105=>) 

 

 a	?@ :  p-value > 0.05    



Supplementary Table 4. Selected List of Representative h2 Estimation 
Studies Used for Model Training. 
 

Authors, 
Year 

(Database) 
Key Features Data 

Type 
Math 

Model 
# Values 
Used in 
Model 

Polderman et 
al., 2015 
(MaTCH) 1 

Meta-analysis on 17,804 traits from 2,748 
publications 

Twin 
study ACE 88 

Cole et al., 
2009 2 

Hyperactivity/inattention and mood in 645 
twin pairs aged from 5 to 17 years in UK 

Twin 
study 

AE, 
ACE 8 

Muñoz et al., 
2016 3 

12 complex diseases study based on 
1,555,906 individuals of white ancestry 
from UK Biobank 

Family 
study ACE 20 

Czene et al., 
2002 4 

15 common cancers study using 9.6 million 
individuals in Sweden 

Family 
study ACE 14 

Polubriagino
f et al., 2018 
(RIFTEHR) 5 

500 phenotypes study based on identified 
7.4 million familial relationships in US 
database  

Family 
study 
using 
EHRs 

AE, 
ACE 256 

Wang et al., 
2017 6 

149 diseases study using 128,989 families in 
US 

Family 
study 
using 
EHRs 

ACE 148 

Canela-
Xandri et al., 
2018 7 
 

Study of 118 non-binary and 599 binary 
traits using UK Biobank (408,455 
participants with over 30 million imputed 
SNPs)  

SNP-
based 

GREM
L 123 

Abbott et al., 
2017 8  

Study of over 2,000 traits using about 0.5 
million individuals in UK Biobank 

SNP-
based LDSC 81 

Porcu et al., 
2013 9 

Meta-analysis of thyroid-related traits 
through GWAS in 26,420 and 17,520 
individuals 

PRS-
based PRS 2 

Berndt et al., 
2013 10 

Meta-analysis of anthropometric traits with 
two stages, including 168,267 and 109,703 
individuals of European ancestry, 
respectively 

PRS-
based PRS 2 

 
 
1. Polderman, T.J. et al. Meta-analysis of the heritability of human traits based on 
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3. Munoz, M. et al. Evaluating the contribution of genetics and familial shared 
environment to common disease using the UK Biobank. Nat Genet 48, 980-3 
(2016). 
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of cancer among 9.6 million individuals in the Swedish family-cancer database. 
International Journal of Cancer 99, 260-266 (2002). 

5. Polubriaginof, F.C.G. et al. Disease Heritability Inferred from Familial 
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6. Wang, K., Gaitsch, H., Poon, H., Cox, N.J. & Rzhetsky, A. Classification of 
common human diseases derived from shared genetic and environmental 
determinants. Nature Genetics 49, 1319-+ (2017). 

7. Canela-Xandri, O., Rawlik, K. & Tenesa, A. An atlas of genetic associations in UK 
Biobank. Nature Genetics 50, 1593-+ (2018). 

8. Abbott, L. et al. Heritability of >2,000 traits & disorders in UK Biobank. (2017). 
9. Porcu, E. et al. A Meta-Analysis of Thyroid-Related Traits Reveals Novel Loci and 

Gender-Specific Differences in the Regulation of Thyroid Function. Plos Genetics 
9(2013). 

10. Berndt, S.I. et al. Genome-wide meta-analysis identifies 11 new loci for 
anthropometric traits and provides insights into genetic architecture. Nature 
Genetics 45, 501-U69 (2013). 

 
 
 
 
Names and Legends for other Supplementary Data files (uploaded as 
separate files) are as follows: 
 
Supplementary Data 1. A list of previously-published and our model-
predicted heritability values. 
 
Supplementary Data 2. A list of previously-published and our model-
predicted correlation values. 
 
Supplementary Data 3. Comparison of heritability estimates from an 
independent study and from our model prediction. 
 
Supplementary Data 4. Separate comparisons of heritability estimates for 
acute and chronic diseases, from an independent study and from our model 
prediction. 
 
Supplementary Data 5. Comparison of genetic correlation estimates from 
an independent study and from our model prediction. 
 



Supplementary Data 6. Multi-variable Regression Analysis between Shape-
of-cure Dissimilarity (Dsoc) and Correlation Estimates of rg and re, as well as 
Their Interaction Term (related to Fig. 4d and Supplementary Fig. 5):   Dsoc 
= A rg + B re + C rg • re + D0 
 
Supplementary Data 7. A List of Disease Phenotypes, Grouped into Disease 
Categories (Underlined Bold Texts) and Sorted in Alphabetical Order 
 
 


