

Supplemental material

Roy et al., https://doi.org/10.1083/jcb.201810172

%JCB

Figure S1. Effect of the basic patch mutation on Glc7 recruitment, SAC silencing, and cell cycle kinetics. Related to Fig. 1 and 2. (A) Serial dilutions of yeast cells of the indicated genotype on rich medium (YPD) and medium containing benomyl. YEF473 is the parent strain for nearly all the strains constructed in this study. WT refers to a WT strain expressing Spc105^{222:GFP} (GFP inserted at amino acid 222 in Spc105). (B) Quantification of the fluorescence due to Spc105^{222:GFP} and Spc105^{222:GFP,BPM} in metaphase kinetochore clusters (data are shown as mean ± SEM; n = 102 for WT and 104 for BPM, pooled from two technical replicates; P = 0.1605 using unpaired t test). (C) Left: TIRF micrographs showing the interaction of polystyrene beads coated with recombinant Spc105 phosphodomain (red, amino acid residues 1-455, containing either WT or mutant basic patches) with X-rhodamine labeled, taxol-stabilized microtubules (green). Scale bar: ~3.2 μm. Middle: Quantification of the average amount of protein conjugated per bead (data are shown as mean ± SD; n = 108 from two experiments; P = 0.24 using unpaired t test). Right: Number of interactions observed for the respective phosphodomain (n = 259 and 4 for WT and BPM, respectively, from two experiments). (D) Representative images of metaphase cells expressing the indicated protein. The asterisk in the merged image denotes a nuclear Mad1-mCherry aggregate that forms in the absence of the nuclear pore protein Nup60 (Scott et al., 2005). Scatter plots: Quantification of Bub3mCherry and Mad1-mCherry recruitment by bioriented kinetochores in metaphase-arrested cells of the indicated genotype. Data are presented as mean + SD (n = 62, 95, and 68 for WT, ABPM, and BPM, respectively, pooled from two experiments in Bub3-mCherry intensity measurement, and n = 103, 165 and 100 for WT, ABPM, and BPM, respectively, pooled from two assays in Mad1-mCherry intensity measurement; P < 0.0001 [***] and 0.1622 for Bub3 and Mad1, respectively, using t test). Scale bar: ~3.2 μm. (E) Replicate data related to Fig. 2 A. Here, the loading volumes were adjusted to equalize the amount of Spc105 coprecipitating with Dsn1-Flag to make it possible to visually assess the amount of Glc7-3xGFP coprecipitation. (F) Graph depicting quantification of the evolution of optical density at 600 nm (OD₆₀₀) for strains expressing Spc105^{WT} and Spc105^{BPM} as measured by a 96-well plate reader (three technical replicates were used; data for each time point are presented as mean + SEM). n.s., not significant.

%JCB

Figure S2. **The basic patch mutation improves chromosome segregation in benomyl-containing medium independently of Sgo1.** Related to Figs. 3 and 4. **(A)** Left: Representative micrographs showing the localization of Sgo1-GFP and Spc105^{222:mCherry} in prometaphase (single kinetochore cluster) and metaphase (two distinct kinetochore clusters) cells. The designations used for scoring cell populations is indicated on the righthand side (KT, kinetochore-colocalized; KT+CEN, Sgo1 colocalizes with both kinetochores and the centromeric region in between the two kinetochore clusters; inner CEN, Sgo1 localized mainly in the centromeric region, positioned between two sister kinetochore foci). Scale bar: ~3.2 µm. Right: Scoring shown in the bar graph on the right. The numbers above represent the number of cells we examined for this assay (n = 67 and 209 for WT and BPM, respectively, pooled from two experiments; P < 0.0084 for KT and KT+CEN and 0.6037 for inner CEN by Fisher's exact test). **(B)** Flow cytometry-based evaluation of SAC signaling activity in strains that lack Sgo1 or express Bub1^{Δkinase}. **(C and D)** Benomyl spotting assay of the indicated strains. **(E)** Quantification of DNA content (G1), whereas the second peak corresponds to cells with 2n DNA content (G2/M). In cells with an inactive SAC (*mad2*), cells fail to arrest in M and shift to the 4n peak (tetraploid). **(F, i)** Right: Grouped bar graph shows the scoring of anaphase cells based on segregation of *CENIV* in benomyl. Data are shown as mean + SEM, where n = 1,424 and 1,173 for WT and BPM, respectively, pooled from at least three technical repeats. Two-way ANOVA revealed that P = 0.001 (**) and 0.0224 (*) for anaphase cells with proper segregation and missegregation, respectively. Left: Representative images of cells showing proper and improper segregation of chromosome IV. Scale bar: ~3.2 µm. **(F, ii)** Graph depicting the OD measurements of strains expressing Spc105^{WT} and Spc105^{BPM} at the indicated time points as measured by a 96-well plate r

SJCB

Figure S3. **Fusion of GL7 to the N-terminus of Spc105 impairs chromosome biorientation.** Related to Fig. 5. **(A)** Top: Flow chart describes the workflow to tether GL7 to the N-terminus of Spc105 in the presence of nocodazole. Bottom, left: Representative images of FRB-GFP-Spc105, Bub3-mCherry and merged in unattached kinetochores of control and rapamycin-treated cells. Scale bar: \sim 3.2 µm. Bottom, right: Scatter plot showing Bub3-mCherry intensities in unattached kinetochores of rapamycin-treated and untreated control cells (mean ± SEM; P = 0.0585 by unpaired *t* test). Kinetochores analyzed for this assay: *n* = 71 and 78 for control and rapamycin-treated cells, respectively, pooled from two experiments performed using two biological replicates. **(B)** Scatter plot showing spindle pole body (SPB)–KT distances in untreated control and rapamycin-treated cells. Data are presented as mean ± SEM (*n* = 87 for both control and rapamycin-treated cells; data were pooled from three experimental repeats; ****, P < 0.0001 with unpaired *t* test). **(C)** Comparative characterization of the kinetics of kinetochore biorientation in the strain expressing the chimeric molecule Glc7-Spc105^{RASA} (constructed by Rosenberg et al. (2011); workflow shown at the top). Bottom, left: Bar graph displays the frequency of the indicated phenotypes. Kinetochores analyzed for this assay: *n* = 122 and 118 for WT and Glc7-RASA, respectively, at 30 min, and 118 and 94 for WT and Glc7-RASA at 45 min, pooled from two experiments performed using two biological replicates. Scale bar: \sim 3.2 µm. Bottom, right: Spotting assay indicates that the *GLC7-spc105^{RASA}* strain is sensitive to benomyl. n.s., not significant.

Table S1. Strains used in this study, which were constructed in the Joglekar laboratory

Strain (AJY#)	Genotype	Used in figure	
5199	MATa, trp1Δ63 leu2Δ-1 ura3-52 his3Δ200 lys2-8Δ1, TetR-GFP (LEU2); SPC29-mCherry-HIS3, TetO-CENIV (URA3), spc105Δ::TRP1::Spc105 ^{222::mCherry} (KAN)	1 C and S2 F, i	
5201	МАТа, trp1Δ63 leu2Δ-1 ura3-52 his3Δ200 lys2-8Δ1, TetR-GFP (LEU2); SPC29-mCherry-HIS3, TetO-CENIV (URA3), spc105Δ::TRP1::Spc105 ^{222:mCherry,101–104,340–340::AAAA} (KAN)	1 C and S2 F, i	
5078	MATa trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP} (LEU2), SPC97- mcherry-HYG, prMET3-CDC20 (URA3)	1 D	
5080	MATa trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP,101–104,340–343::AAAA} (LEU2), SPC97-mcherry-HYG, prMET3-CDC20 (URA3)	1 D	
3635	МАТа trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP} (LEU2), BUB3- mcherry-HYG, prMET3-CDC20-URA3	1 E, S1 B, S1 D	
3637	МАТа trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: spc105 ^{222::GFP,101–104::AAAA} (LEU2), BUB3-mcherry-HYG, prMET3-CDC20 (URA3)	1 E, S1 D	
3638	MATa trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP,101–104,340–343::AAAA} (LEU2), BUB3-mcherry-HYG, prMET3-CDC20 (URA3)	1 E, S1 B, S1 D	
3797	MATa trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP} (LEU2), MAD1- mCherry-HYG, nup60Δ::TRP1, prMET3-CDC20 (URA3)	1 E and S1 D	
3798	MATa trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP,101–104,340–343::AAAA} (LEU2), MAD1-mCherry-HYG, nup60Δ::TRP1, prMET3-CDC20 (URA3)	1 E and S1 D	
3939	MatA, trp1∆63 ura3-52 his3∆200 lys2-8∆1, spc105∆::NAT, Spc105 222::GFP (LEU2) 101-104::AAAA, nup60∆:: Trp1, Mad1-mcherry:hyg, prMET3-Cdc20 (URA3)	1 E and S1 D	
5176	MATa trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: BP(Spc105 ^{79–145})-Spc105 ^{222::GFP,} ^{101–104::AAAA} (LEU2), BUB3-mCherry-HYG	1 F, i	
5177	MATα trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: BP(Spc105 ⁷⁹⁻¹⁴⁵)-Spc105 ^{222::GFP,} ^{101–104::AAAA} (LEU2), BUB3-mCherry-HYG	1 F, i	
5384	MATα trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: EBP2(Spc105 ^{55–145})-Spc105 ^{222::GFP,} ^{101–104::AAAA} (LEU2), BUB3-mCherry-HYG	1 F, i	
3606	MATa trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP} (LEU2), BUB3-mCherry-HYG	1 F, i; 2 B; S1 A	
3627	MATa trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP,101–104,340–340::AAAA} (LEU2), BUB3-mCherry-HYG	1 F, i; 2 B; S1 A	
4650	MATa trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, Spc105 ^{222::GFP} (LEU2), Bub1-ymCherry-Hyg	1 F, ii; 4 B; 5 C; S1 F; S2 F, ii	
4651	MATα trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, Spc105 ^{222::GFP} (LEU2), Bub1-ymCherry-Hyg	1 F, ii; 4 B; 5 C	
4652	MATα trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, Spc105 ^{101–104,340–343::AAAA} 222::GFP (LEU2), Bub1-ymCherry-Hyg	1 F, ii; 4 B; 5 C; S1 F; S2 F, ii	
4653	MATa trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, Spc105 ^{101–104,340–343::AAAA} 222::GFP (LEU2), Bub1-ymCherry-Hyg	1 F, ii; 4 B; 5 C	
5732	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, RVSF+BP (Spc105 ^{55–145})-Spc105 ^{222::GFP 101–104} (LEU2), BUB1-ymCherry-HYG	1 F, ii	
5733	MATα, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, RVSF+BP (Spc105 ^{55–145})-Spc105 ^{222::GFP 101–104} (LEU2), BUB1-ymCherry-HYG	1 F, ii	
4214	MatA, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, TOG2-Spc105 ^{222::GFP} (LEU2), Bub3-mCherry-Hyg, prMET3-Cdc20 (URA3)	1 G	
4215	 Matα, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, TOG2-Spc105 222::GFP 101-104::AAAA (LEU2), 1 G Bub3-mCherry-Hya, prMET3-Cdc20 (URA3)		
5523	MATa, trp1Δ63 ura3-52 his3Δ200 leu2Δ-1, can1, spc105Δ::NAT, SPC10 ^{222::mCherry} (LEU2), Glc7-3XGFP-HIS3, 2 A and S1 E Dsn1-HIS-FLAG (URA3)		
5524	MATa, trp1Δ63 ura3-52 his3Δ200 leu2Δ-1, can1, spc105Δ::NAT, SPC105 ^{101–104,340–343::AAAA 222::mCherry} (LEU2), Glc7-3XGFP-HIS3, Dsn1-HIS-FLAG (URA3)	2 A and S1 E	
3626	MATa trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP, 101–104::AAAA} (LEU2), BUB3-mCherry-HYG	2 B	
3133	MATa trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP} (LEU2)	S1 A; 2, C and D; 3, i-vi; 4, C, E, and F; 5 D; S2, B-E	

Table S1.	Strains used in this study, which w	vere constructed in the	Joglekar laboratory (Continued)

Strain (AJY#)	Genotype	Used in figure
3448	MATa trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP, 101–104,340–340::AAAA} (LEU2)	S1 A; 2, C and D; 3, i-iii, v, and vi
4384	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP,101–104,340–340::AAAA} (LEU2), bub1ΔK-mCherry-HYG	3 i, S2 D, 4 C, S2 B
4385	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP,101–104,340–340::AAAA} (LEU2), bub1ΔK-mCherry-HYG	3 i
4415	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP} (LEU2), bub1ΔK- mCherry-HYG	3 i; 4, C and F; S2, B and D
4416	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP} (LEU2), bub1ΔK- mCherry-HYG	3 i
4485	MATa, trp1Δ63 leu2Δ-1 ura3-52 his3Δ200 lys2-8Δ1, BUB1-mCherry-HYG	3 i
4203	ΜΑΤα, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP} (LEU2), sgo1Δ::Kan	3 ii, 4 F, 5 D, S2 B
4204	ΜΑΤα, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP} (LEU2), sgo1Δ::Kan	3 ii
4205	МАТа, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP,101–104,340–340::AAAA} (LEU2), sgo1Δ::Kan	3 ii and S2 B
4206	МАТа, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP,101–104,340–340::AAAA} (LEU2), sgo1Δ::Kan	3 ii
4233	MATa, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP} (LEU2), rts1Δ::Kan	3 iii
4234	МАТа, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP} (LEU2), rts1Δ::Kan	3 iii
4235	MATa, trp1Δ63 leu2Δ-1 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP,101-104,340-340::} ^{AAAA} (LEU2), rts1Δ::Kan	3 iii
4236	MATa, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP,101–104,340–340::AAAA} (LEU2), trp1Δ63 leu2Δ-1 ura3-52 his3Δ200 lys2-8Δ1, rts1Δ::Kan	3 iii
4022	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105-6A (LEU2)	3, ii, iii, and iv
4338	trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP} (LEU2), ipl1Δ::TRP1, ipl1-2 (H352Y, CEN, URA3)	3 iv
4339	trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP} (LEU2), ipl1Δ::TRP1, ipl1-2 (H352Y, CEN, URA3)	3 iv
4340	trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP,101–104,340–340::AAAA} (LEU2), ipl1Δ::TRP1, ipl1-2 (H352Y, CEN, URA3)	3 iv
4341	trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP,101–104,340–340::AAAA} (LEU2), ipl1Δ::TRP1, ipl1-2 (H352Y, CEN, URA3)	3 iv
4357	trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP} (LEU2), ipl1Δ::TRP1, IPL1 (CEN, URA3)	3 iv
4362	trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP,101–104,340–340::AAAA} (LEU2), ipl1Δ::TRP1, IPL1 (CEN, URA3)	3 iv
4712	MATa trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP} (LEU2), ndc80Δ:: TRP1:: 3 v ndc80-6A-12MYC (KAN)	
4713	Matα trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP} (LEU2), ndc80Δ:: TRP1:: 3 v ndc80-6A-12MYC (KAN)	
4714	MATa trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP,101–104,340–340::AAAA} 3 v (LEU2), ndc80Δ:: TRP1:: ndc80-6A-12MYC (KAN)	
4715	MAΤα trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP,101–104,340–340::AAAA} 3 v (LEU2), ndc80Δ:: TRP1:: ndc80-6A-12MYC (KAN)	
4920	MATα trp1Δ63 leu2Δ-1 ura3-52 his3Δ200 lys2-8Δ1, dam1Δ::TRP1::dam1(S257A S265A S292A) (KAN) 3 vi and 5 D	
4921	MATα trp1Δ63 leu2Δ-1 ura3-52 his3Δ200 lys2-8Δ1, dam1Δ::TRP1::dam1(S257A S265A S292A) (KAN)	3 vi
4904	MATa trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP,101–104,340–340::AAAA} (LEU2), dam1Δ::TRP1::dam1(S257A S265A S292A) (KAN)	3 vi
4905	MATa trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP,101–104,340–340::AAAA} (LEU2), dam1Δ::TRP1::dam1(S257A S265A S292A) (KAN)	3 vi
4964	MATa trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, dam1Δ::TRP1::dam1(S257A S265A S292A) (KAN), ndc80Δ:: TRP1:: ndc80-6A-12MYC (KAN), NSL1-GFP-HIS3	3 vi

%JCB

Table S1.	Strains used in this study.	which were constructed in the	loglekar laboratory (Continued)
10010 011			Joguenan and en accer y (commune)

Strain (AJY#)	Genotype	Used in figure		
4965	MATa trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, dam1Δ::TRP1::dam1(S257A S265A S292A) (KAN), ndc80Δ:: TRP1:: ndc80-6A-12MYC (KAN), NSL1-GFP-HIS3	3 vi		
5000	MATa trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, dam1Δ::TRP1::dam1 (S257A S265A S292A) (KAN), ndc80Δ:: 3 vi TRP1:: ndc80-6A-12MYC (KAN), NSL1-GFP-HIS3, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::} ^{mCherry,101–104,340–340::AAAA} (LEU2)			
5273	MATa, trp1Δ63 leu2Δ-1 ura3-52 his3Δ200 lys2-8Δ1, TetR-GFP (LEU2); SPC29-mCherry-HIS3, TetO-CENIV (URA3), spc105Δ::TRP1::Spc105 ^{222::mCherry} (KAN), sgo1Δ::TRP1	4 A		
5267	MATa, trp1Δ63 leu2Δ-1 ura3-52 his3Δ200 lys2-8Δ1, TetR-GFP (LEU2); SPC29-mCherry-HIS3, TetO-CENIV 4 A (URA3), spc105Δ::TRP1::Spc105 ^{222::mCherry,101–104,340–340::AAAA} (KAN), sgo1Δ::TRP1			
5756	MATa, trp1Δ63 leu2Δ-1 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, Spc105 ^{222::GFP,21–24} (^{GILK)::AAAA} (LEU2), BUB1-mCherry-HYG	4 B		
5757	MATa, trp1Δ63 leu2Δ-1 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, Spc105 ^{222::GFP,21–24} (^{GILK)::AAAA} (LEU2), BUB1-mCherry-HYG	4 B		
5778	MATα, trp1Δ63 leu2Δ-1 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2:Spc105 ^{222::GFP GILK:AAAA,101–104::AAAA} (LEU2), BUB1-mCherry-HYG	4 B		
5825	MATa, trp1Δ63 leu2Δ-1 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2:Spc105 ^{222::GFP} 21-24 (GILK):: ^{AAAA,101–104::AAAA} (LEU2), BUB1-mCherry-HYG	4 B		
5764	ΜΑΤα, trp1Δ63 leu2Δ-1 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2:Spc105 ^{222::GFP,21-24} (GILK):: ^{AAAA,101–104::AAAA} (LEU2), bub1-ΔK-mCherry-HYG	4 C		
5765	MATα, trp1Δ63 leu2Δ-1 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, Spc105 ^{222::GFP,21-24} (GILK)::AAAA (LEU2), 4 C bub1ΔK-mCherry-HYG			
5840	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1::Spc105 ^{222::GFP} (LEU2), Spc97-mCherry-HYG, mad3Δ::KAN	4 D		
5841	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1::Spc105 ^{222::GFP} (LEU2), Spc97-mCherry-HYG, mad3Δ::KAN	4 D		
5842	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1::Spc105 ^{222::GFP,RASA} (V76,F78::A) (LEU2), 4 D Spc72-mCherry-HYG, mad3Δ::URA3			
5843	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1::Spc105 ^{222::GFP,RASA} (V76,F78::A) (LEU2), 4 D Spc72-mCherry-HYG, mad3Δ::URA3			
4555	MATa trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP} (LEU2), mad2Δ::TRP1	4 E, S1 A, S2 E		
4556	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP} (LEU2), mad2Δ::TRP1	4 E		
4557	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1::Spc105 ^{222::GFP,101–104,340–340::AAAA} (LEU2), mad2Δ::TRP1	4 E and S2 E		
4558	MATa trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP,101-104,340-340::AAAA} 4 E (LEU2), mad2Δ::TRP1			
4949	MATa trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT1, leu2Δ-1:: Spc105 ^{222::GFP,RASA (V76,F78::A)} (LEU2), 4 E mad2Δ::TRP1			
4950	MATα, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT1, leu2Δ-1:: Spc105 ^{222::GFP,RASA} (V76,F78::A) (LEU2), 4 E mad2Δ::TRP1			
4951	leu2Δ-1 trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, mad2Δ::TRP1	4 E		
5007				
5009	MATa, trp1Δ63 leu2Δ-1 his3Δ200 lys2-8Δ1, spc105Δ::NAT1, ura3-52:: Spc105 ^{222::GFP,RASA (V76,F78::A)} (URA3), 4 E bub3Δ::KAN			
5010	MATa, trp1Δ63 leu2Δ-1 his3Δ200 lys2-8Δ1, spc105Δ::NAT1, ura3-52:: Spc105 ^{222::GFP,RASA (V76,F78::A)} (URA3), 4 E bub3Δ::KAN			
4682	MATa, trp1Δ63 leu2Δ-1 his3Δ200 lys2-8Δ1, spc105Δ::NAT, Spc105 ^{222::GFP} (LEU2), bub3Δ::KAN	4 E		
4683	MATa, trp1Δ63 leu2Δ-1 his3Δ200 lys2-8Δ1, spc105Δ::NAT, Spc105 ^{222::GFP} (LEU2), bub3Δ::KAN	4 E		
4737	trp1Δ63 leu2Δ-1 his3Δ200 lys2-8Δ1, spc105Δ::NAT,Spc105 ^{101–104,340–343::AAAA 222::GFP} (LEU2), bub3Δ::KAN	4 E		
4738	trp1Δ63 leu2Δ-1 his3Δ200 lys2-8Δ1, spc105Δ::NAT,Spc105 ^{101–104,340–343::AAAA 222::GFP} (LEU2), bub3Δ::KAN	4 E		
5699	MATα, trp1Δ63 leu2Δ-1 his3Δ200 lys2-8Δ1, bub1ΔK-mCherry-HYG, mad2Δ::TRP1 4 F			

\$JCB

······································	Table S1.	Strains used in this study,	which were constructed in	the Joglekar	laboratory (Continued)
--	-----------	-----------------------------	---------------------------	--------------	------------------------

Strain (AJY#)	Genotype	Used in figure	
5635	MATa, trp1Δ63 leu2Δ-1 his3Δ200 lys2-8Δ1, spc105Δ::NAT, Spc105 ^{101–104,340–343::AAAA 222::GFP} (LEU2), mad2Δ::TRP1, bub1ΔK-mCherry-HYG	4 F	
5636	MATa, trp1Δ63 leu2Δ-1 his3Δ200 lys2-8Δ1, spc105Δ::NAT, Spc105 ^{101–104,340–343::AAAA 222::GFP} (LEU2), mad2Δ::TRP1, bub1ΔK-mCherry-HYG	4 F	
5637	MATa, trp1Δ63 leu2Δ-1 his3Δ200 lys2-8Δ1, spc105Δ::NAT, Spc105 ^{RASA (V76,F78::A)} ^{222::GFP} (LEU2), mad2Δ:: TRP1, bub1ΔK-mCherry-HYG	4 F	
5638	MATa, trp1Δ63 leu2Δ-1 his3Δ200 lys2-8Δ1, spc105Δ::NAT, Spc105 ^{RASA (V76,F78::A) 222::GFP} (LEU2), mad2Δ:: TRP1, bub1ΔK-mCherry-HYG	4 F	
4979	trp1Δ63 leu2Δ-1 ura3-52 his3Δ200 lys2-8Δ1, mad2Δ::TRP1, sgo1Δ::KAN	4 F	
4980	ΜΑΤα, trp1Δ63 leu2Δ-1 ura3-52 his3Δ200 lys2-8Δ1, mad2Δ::TRP1, sgo1Δ::KAN	4 F	
4981	MATα, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT1, leu2Δ-1:: Spc105 ^{222::GFP,RASA (V76,F78::A)} (LEU2), mad2Δ::TRP1, sgo1Δ::KAN	4 F	
4982	MATα, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT1, leu2Δ-1:: Spc105 ^{222::GFP,RASA (V76,F78::A)} (LEU2), mad2Δ::TRP1, sgo1Δ::KAN	4 F	
4978	MATα, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT1, leu2Δ-1:: Spc105 ^{222::GFP,RASA (V76,F78::A)} (LEU2), mad2Δ::TRP1, sgo1Δ::KAN	4 F	
5698	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, fpr1Δ, FRB-GFP-Spc105 (LEU2), Spc72-mCherry-HYG, Glc7-1XFKBP12-HIS3, prMet3-Cdc20 (URA3)	5 A and S3 B	
5495	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, leu2Δ-1:: FRB-GFP-Spc105 (LEU2), Glc7-1XFKBP-HIS3, SPC72-mCherry-HYG, prMET3-CDC20 (URA3)	5 B	
4733	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, Spc105 ^{222::GFP 105–107::EEE,S109E} (LEU2), Bub1-ymCherry-Hyg	5 C	
4734	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, Spc105 ^{222::GFP 105-107::EEE,S109E} (LEU2), 5 C Bub1-ymCherry-Hyg		
4778	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP,101–104::AAAA} (LEU2), 5 D sgo1Δ::Kan		
5087	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT1, leu2Δ-1:: Spc105 ^{222::GFP,105–107::EEE,S109E} (LEU2), sgo1Δ::KAN	5 D	
5088	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT1, leu2Δ-1:: Spc105 ^{222::GFP,105–107::EEE,S109E} (LEU2), sgo1Δ::KAN	5 D	
5548	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, Spc105 ^{222::GFP 105–107::EEE,S109E} (LEU2), dam1Δ:: TRP1::dam1(S257A S265A S292A)::KAN-MX	5 D	
5549	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, Spc105 ^{222::GFP 105-107::EEE,S109E} (LEU2), dam1Δ:: 5 D TRP1::dam1(S257A S265A S292A)::KAN-MX		
5186	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT1, leu2Δ-1:: Spc105 ^{222::GFP,101-104::AAAA} (LEU2), 5 D and S sqo1Δ::KAN		
5187			
5188	МАТа, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT1, leu2Δ-1:: Spc105 ^{222::GFP,S77D} (LEU2), sgo1Δ:: 5 D KAN		
5162			
5163	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT1, leu2Δ-1:: Spc105 ^{222::GFP,S77D,105–107::EEE,S109E} 5 D (LEU2), sgo1Δ::KAN		
3442	MATa trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP, 101–104::AAAA} (LEU2)	S1 A	
4526	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: spc105 ^{222::mCherry,101–104,340–340::AAAA} (LEU2), SG01-GFP-HIS3	S2 A	
4527	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1,spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::mCherry} (LEU2), SG01-GFP-HIS3	S2 A	
4528	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::mCherry} (LEU2), SG01-GFP-HIS3	S2 A	
5086	MATa, spc105Δ::NAT, leu2Δ-1:: Spc105 ^{222::GFP,340-343::AAAA} (LEU2), sgo1Δ::KAN S2 C		

S8

\$JCB

Strain (AJY#)	Genotype	Used in figure	
5381	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: BP (Spc105 ^{79–145})-Spc105 ^{222::} ^{GFP,101–104,340–340::AAAA} (LEU2), bub1ΔK-mCherry-HYG	S2 D	
5382	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: BP (Spc105 ⁷⁹⁻¹⁴⁵)-Spc105 ^{222::} ^{GFP,101–104,340–340::AAAA} (LEU2), bub1ΔK-mCherry-HYG	S2 D	
5389	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: RVSF+BP (Spc105 ⁵⁵⁻¹⁴⁵)-Spc105 ^{222::} ^{GFP,101-104,340-340::AAAA} (LEU2), bub1ΔK-mCherry-HYG	S2 D	
5390	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, leu2Δ-1:: RVSF+BP (Spc105 ⁵⁵⁻¹⁴⁵)-Spc105 ^{222::} ^{GFP,101–104,340–340::AAAA} (LEU2), bub1ΔK-mCherry-HYG	S2 D	
5749	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, RVSF (Spc105 ^{55–145,101–104::AAAA})+Spc105 222:: GFP 101-104::AAAA (LEU2),bub1ΔK-mCherry-HYG	S2 D	
5750	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, spc105Δ::NAT, RVSF (Spc105 ^{55–145,101–104::AAAA})+Spc105 222:: GFP 101-104::AAAA (LEU2),bub1ΔK-mCherry-HYG	S2 D	
5505	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, fpr1Δ, FRB-GFP-Spc105 (LEU2), Glc7-1XFKBP12-HIS3, Bub3-ymCherry-HYG	S3 A	
5506	MATa, trp1Δ63 ura3-52 his3Δ200 lys2-8Δ1, fpr1Δ, FRB-GFP-Spc105 (LEU2), Glc7-1XFKBP12-HIS3, Bub3-ymCherry-HYG	S3 A	
5817	MATa, trp1Δ63 ura3-52 his3Δ200 leu2Δ-1, can1, Nsl1-GFP-NAT, Spc72-mCherry-HYG	S3 C	
5818	MATa, trp1Δ63 ura3-52 his3Δ200 leu2Δ-1, can1, Nsl1-GFP-NAT, Spc72-mCherry-HYG S3 C		
5819	MATa, trp1Δ63 ura3-52 his3Δ200 leu2Δ-1, can1, Nsl1-GFP-NAT, Spc72-mCherry-HYG, lys2::LYS2-GAL-HO S Glc7-spc105 ^{RASA} (V76,F78::A)		
5820	MATa, trp1Δ63 ura3-52 his3Δ200 leu2Δ-1, can1, Nsl1-GFP-NAT, Spc72-mCherry-HYG, lys2::LYS2-GAL-HO S3 C Glc7-spc105 ^{RASA} (V76,F78::A)		
3380	MATa, trp1Δ63 ura3-52 his3Δ200 leu2Δ-1, can1	S3 C	
2675	MATa, trp1Δ63 ura3-52 his3Δ200 leu2Δ-1, can1, lys2::LYS2-GAL-HO Glc7-spc105 ^{RASA} (V76,F78::A) S3 C		

Table S1. Strains used in this study, which were constructed in the Joglekar laboratory (Continued)

Table S2. Plasmids used in this study

Plasmid	Origin	Parent	Description
pAJ108	Joglekar laboratory	pSK954	ndc80-6A (T21A, S37A, T54A, T71A, S95A, S100A)-12Myc (KAN)
pSB148	Biggins laboratory	pRS316	prIPL1+IPL1+trIPL1 (CEN, URA3)
pSB617	Biggins laboratory		dam1(S257A S265A S292A), (KAN)
pAJ449	This study	pRS305	prSPC105+Spc105 ^{222::GFP} +trSPC105 (LEU2)
pAJ492	This study	pRS305	prSPC105+Spc105 ^{222::GFP,340-343::AAAA} +trSPC105 (LEU2)
pAJ521	This study	pET28a+MBP	HIS(X6)-MBP-Spc105 ^{222::GFP} (1-455)
pAJ525	This study	pRS305	prSPC105+Spc105 ^{222::GFP,101-104::AAAA} +trSPC105 (LEU2)
pAJ526	This study	pRS305	prSPC105+Spc105 ^{222::GFP,101-104,340-343::AAAA} +trSPC105 (LEU2)
pAJ528	This study	pET28a+MBP	HIS(X6)-MBP-Spc105 ^{222::GFP,101-104,340-343::AAAA} (1-455)
pAJ603	This study	pRS305	prSPC105+FRB-GFP-Spc105+trSPC105 (LEU2)
pAJ632	This study	pRS305	prSPC105+TOG2 (Stu2 ³¹¹⁻⁵⁵⁰)+ Spc105 ^{222::GFP} +trSPC105 (LEU2)
pAJ633	This study	pRS305	prSPC105+TOG2 (Stu2 ³¹¹⁻⁵⁵⁰)+ Spc105 ^{222::GFP,101-104::AAAA} +trSPC105 (LEU2)
pAJ671	This study	pRS316	prIPL1+ipl1-2 (H352Y)+trIPL1 (CEN, URA3)
pAJ689	This study	pRS305	prSPC105+Spc105 ⁷⁹⁻¹⁴⁵ (BP)+Spc105 ^{222::GFP,101-104::AAAA} +trSPC105 (LEU2)
pAJ695	This study	pRS305	prSPC105+Spc105 ^{222::mCherry} +trSPC105 (LEU2)
pAJ696	This study	pRS305	prSPC105+Spc105 ^{222::mCherry,101,104,340-343::AAAA} +trSPC105 (LEU2)
pAJ743	This study	pRS305	prSPC105+Spc105 ^{222::GFP,105-107::EEE,S109E} +trSPC105 (LEU2)
pAJ775	This study	pRS305	prSPC105+Spc105 ^{222::GFP,RASA (V76,F78::A)} +trSPC105 (LEU2)
pAJ805	This study	pRS305	prSPC105+Spc105 ^{222::GFP,S77D} +trSPC105 (LEU2)
pAJ806	This study	pRS305	prSPC105+Spc105 ^{222::GFP,S77D,105-107::EEE,S109E} +trSPC105 (LEU2)
pAJ817	This study	pSK954	prSPC105+Spc105 ^{222::mCherry,101–104::AAAA,340–343::AAAA} +trSPC105 (KAN)
pAJ818	This study	pSK954	prSPC105+Spc105 ^{222::mCherry} +trSPC105 (KAN)
pAJ840	This study	pRS305	prSPC105+Spc105 ⁵⁶⁻¹⁴⁵ (RVSF+BP)+Spc105 ^{222::GFP,101-104::AAAA} +trSPC105 (LEU2)
pAJ885	This study	pRS305	prSPC105+Spc105 ^{56-145,101-104::AAAA} (RVSF)+Spc105 ^{222::GFP,101-104::AAAA} +trSPC105 (LEU2)
pAJ887	This study	pRS305	prSPC105+Spc105 ^{222::GFP,GILK::AAAA} +trSPC105 (LEU2)
pAJ890	This study	pRS305	prSPC105+Spc105 ^{222::GFP,GILK::AAAA,101-104::AAAA} +trSPC105 (LEU2)

References

Scott, R.J., C.P. Lusk, D.J. Dilworth, J.D. Aitchison, and R.W. Wozniak. 2005. Interactions between Mad1p and the nuclear transport machinery in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell. 16:4362–4374. https://doi.org/10.1091/mbc.e05-01-0011 Rosenberg, J.S., F.R. Cross, and H. Funabiki. 2011. KNL1/Spc105 recruits PP1 to silence the spindle assembly checkpoint. Curr. Biol. 21:942–947. https://doi.org/

10.1016/j.cub.2011.04.011