Immunity, Volume 51

Supplemental Information

Vaccination with Glycan-Modified HIV NFL Envelope

Trimer-Liposomes Elicits Broadly Neutralizing

Antibodies to Multiple Sites of Vulnerability

Viktoriya Dubrovskaya, Karen Tran, Gabriel Ozorowski, Javier Guenaga, Richard Wilson, Shridhar Bale, Christopher A. Cottrell, Hannah L. Turner, Gemma Seabright, Sijy O'Dell, Jonathan L. Torres, Lifei Yang, Yu Feng, Daniel P. Leaman, Néstor Vázquez Bernat, Tyler Liban, Mark Louder, Krisha McKee, Robert T. Bailer, Arlette Movsesyan, Nicole A. Doria-Rose, Marie Pancera, Gunilla B. Karlsson Hedestam, Michael B. Zwick, Max Crispin, John R. Mascola, Andrew B. Ward, and Richard T. Wyatt

Figure S1. Biophysical characterization of immunogens, related to Figure 1 and Table S1. (A) Thermostability of glycan-deleted trimers compared to parental (WT), as determined by differential scanning calorimetry. Tm values are summarized in the table to the right. (B) Antigenicity of the glycan-deleted trimers compared to parental (WT), as determined by His-capture ELISA. (C) Relative binding affinity of the NFL trimers to a panel of CD4bs-directed mAbs, as determined by BLI. GE136, which is non-neutralizing and does not bind to well-folded trimers, was used as a negative control. (D) Site-specific glycan analysis of all immunogens. Glycans are colored by oligomannose content. CD4bs is marked in yellow for reference.

Figure S2. Characterization of vaccine-elicited neutralizing responses reveals cross-neutralization in multiple subjects, related to Figure 2. (A) Geometric mean IgG titers (GMT, \pm SD; n = 6) are shown above for Post 4 to Post 6 immunizations, as measured by His-capture ELISA to the different WT immunogens. Below, anti-His binding responses directed against HA-His protein from Post 6 sera, as measured by ELISA with animal numbers from each group as indicated. The sera were also assessed against 16055 NFL trimer with the average response for each group shown as a gray dashed line for reference. (B) Post 6 sera neutralizing titers (ID₅₀, sera-fold dilution at which 50% neutralization is achieved) are indicated against the panel of viruses used to derive the sequential Env trimer immunogens. (C) Crossneutralization of purified IgG (IC₅₀, µg/ml) from the Post 5 time point against a panel of representative (tier 2) clinical HIV-1 isolates across different clades. (D) The trimer-specific PGT145 bNAb served as a positive control for the solidphase adsorption assay using a 16055 NFL TD CC+ trimer affinity column to deplete Env binding Abs prior to neutralization assessment against virus TRO.11. A PBS-immersed (media) blank lectin column was used as a negative control. (E) Differential adsorption of virus entry. Left, PGT145 or VRC13 (CD4bs-directed bNAb) were pre-incubated at a fixed concentration with culture medium (no inhibitor) or titrating amounts of WT or the CD4bs knockout (368/474) 16055 gp120 TriMut proteins prior to assessing neutralization against virus TRO.11 as negative and positive controls. Right, purified IgG from C3 anti-sera (Post 5) was pre-incubated at a fixed concentration with medium or titrating amounts of the TriMut proteins prior to assessing neutralization against viruses 16055 and X2278. All assays were performed at least twice with representative data shown.

8

8

5

6

WT 0.96 0.05 0.03 N234A >50 >50 >50 N234Q >50 >50 ND >50 (T/S)236A >50 ND N276A 0.04 0.03 ND N360A 0.35 ND ND 0.99 N463A ND ND 295N 1.95 ND ND 339N 2.31 ND ND 355N 0.74 ND ND

	ZM249M	JRFL							
WT	>50	>50							
K236T	2.33	>50							
N27	N276 Deletion								
	001428	IAVIC22	92TH021						
WT	>50	>50	2.13						
N276A	0.012	0.46	0.018						

Figure S3. Isolation and characterization of two mAbs from rabbit C3 that can cross-neutralize HIV clinical isolates, related to Figures 2-3 and Table S2-S4. (A) FACs plots showing the gating strategy used for sorting single, dual Env+ B cells from rabbit C3 samples collected two weeks after the sixth immunization. (B) Binding of isolated cross-neutralizing rabbit mAbs, 1C2 and E70, against the WT immunogens used in the study by His-capture ELISA. (C) Summary Table of E70 and 1C2 features based on currently available information in the IMGT database. *, max SHM% calculated based on putative gene assignments. (D) Cross-competition ELISA of E70 against a panel of representative bNAbs targeting different Env epitopes: PGT145 (V2), 2G12 (N332 glycan supersite), CD4bs (VRC03, PGV04, VRC13), 3BC315 (gp120:gp41 interface). (E) EM 2D class averages of E70 Fab bound to BG505 NFL CC+ trimer with the Fourier shell correlation graph shown. (F) Neutralization assessment of E70 against a panel of N-glycan mutants (deleted or restored) to determine N-glycan sensitivity. IC_{50} (µg/ml) values shown.

Figure S4. Epitope analysis reveals the CD4bs-directed E70 recognizes a chimeric N-glycan polypeptide epitope, related to Figure 4 and Table S5. (A) Fourier shell correlation (FSC) and orientation angle distribution of C3 symmetric reconstruction of BG505 NFL CC+ in complex with E70 Fab. (B) E70 Fab interactions with N234 glycan are primarily with the D1 arm. A complete Man9 glycoform is modeled (data supported sugars colored green; idealized model sugars colored dark red) to demonstrate that the D2 and D3 arms can be accommodated but do not contribute to the Ab epitope. Glycan N276 (grey) below is not involved in binding. (C) Additional E70 peptide contacts include C3 and V5 of gp120. (D) Amino acid contacts within the E70 epitope with conservation shown as a percentage. (E) Env binding angle comparison between E70 and non-VRC01 class Abs CH103 (PDB 4JAN) and CH235 (5F9W). (F) Overlap of contact residues between E70, VRC01, and PGV19. Asparagine residues marked with a star (*) denote that the contact is with a sugar molecule and not the amino acid side chain. Analysis based on a 4.0 Å distance cutoff between Fab and gp120 (VRC01 based on PDB 5FYK; PGV19 based on PDB 6B0N). Residues listed are of BG505 NFL TD CC+ (HXBc2 numbering). (G) Differences in glycan interactions between CD4bs-directed mAbs. VRC01 based on PDB 6B0N.

Figure S5. 1C2 binds the gp120:gp41 interface and destabilizes the Env trimer, related to Figure 5. (A) Cross-competition ELISA between rabbit mAb, 1C2, against a panel of human mAbs targeting different Env sites [CD4bs (VRC01, VRC13), V2-apex (PGT145), 35O22 (gp120:gp41)]. (B) Binding of 1C2 to 16055 gp140 monomer (left) compared to gp120 monomer (right) by ELISA. PGT145 (trimer-specific) and GE136 (monomer-specific) were used as negative and positive controls. (C) Antibodies noted on the left were pre-incubated with JRFL or BG505 virus for various times as indicated and then added to TZM-bl cells to test for infectivity. IC₅₀ (µg/ml) values are noted with fold changes in IC₅₀ values over time calculated relative to the standard 1-hr incubation time. (D) 1C2 Fab was pre-incubated for the indicated times with soluble 16055 NFL TD CC+ or 2CC+ trimers prior to separation by blue-native PAGE. (E) Left, EM 3D reconstruction model of 1C2 Fab (purple) bound to 16055 NFL TD 2CC+ trimer with the Fourier shell correlation graph shown below. Right, another gp120:gp41-directed bNAb, ACS202 (EMD-8299) is docked into the 1C2:16055 NFL TD 2CC+ model for comparison. (F) Cross-competition ELISA between 1C2 and VRC34 (FP-directed) and 3BC315 (gp120:gp41).

Figure S6. Epitope analysis and high resolution cryoEM structure of 1C2 bound-Env trimer reveals complex interface recognition, related to Figure 6 and Tables S5-S6. (A) ~3.9 Å resolution reconstruction of 16055 NFL TD 2CC+ trimer in complex with 1C2 Fab, colored by local resolution according to the key. One Fab is boxed for reference. To the right, the Fourier shell correlation (FSC) and orientation angle distribution of C3 symmetric reconstruction of 16055 NFL TD 2CC+ in complex with 1C2 Fab are shown. (B) Crystal structure of unliganded 1C2 Fab. Heavy (green) and light (cyan) chains are shown in ribbon representation. The CDRs are highlighted. (C) Comparison of the N88 glycan conformation between the 1C2-bound 16055 NFL TD 2CC+ structure (green) and other published HIV-1 trimer structures with near atomic resolution (< 4.5 Å) that have modeled N88 glycans (n = 42). Subset comparisons between 35O22-bound Env trimers, FP-directed mAbs (vFP20.01, PDB 6CDE; vFP16.02, PDB 6CDI; VRC34, PDB 518H) with the N88 from the PGT128-bound Env (PDB 5ACO) shown as a reference, and gp120 Env-only structures are presented. (D) Neutralization sensitivity of gp120:gp41-directed mAbs against a panel of JRFL N-glycan mutants around the interface. VRC01 (CD4bs-directed) is included as a negative control. IC50 (µg/ml) values are shown. (E) 1C2 binding to cell surface expressed WT BG505 Env compared to that with the N88 and N625 PNGS genetically removed (Δ N88/N625), as assessed by FACs. PGT145 and 2G12 binding were included as trimer expression controls. (F) Comparison of Env (gp120, light grey; gp41 dark grey) recognition by 1C2 (blue) and the vaccine-elicited FP targeting mAb DFPH-a.15 (orange; PDB 6N1W). Interaction with a single protomer is shown for clarity with the FP highlighted in red.

Virus ID	Clade	102	38C315	Virus ID	Clade	102	3BC315	Virus ID	Clade	102	38C315	Virus ID	Clade	102	38C315
0260.v5.c36	A	7.8500	>200	CNEE	AE	12.4000	6.7400	QH0515.01	В	61.1000	38.8000	CAP244.D	3 0	0.5870	>200
0330.v4.c3	A	1.4200	3.9200	M02138	AE	0.4570	0.8490	QH0692.42	В	11.9000	32.1000	CAP256.206.C	9 C	>200	>200
0439.v5.c1	A	18.4000	>200	R1166.c1	AE	7.3800	7.6700	REJO.67	В	6.8800	9.1800	CAP45.G	3 C	25.1000	47.4000
3365.v2.c20	A	17.6000	>200	R2184.c4	AE	7.0600	>200	RHPA.7	B	4.7500	2.3800	Ce1176.A	3 C	5.9700	#######
3415.v1.c1	A	41.8000	>200	R3265.ce	AE	9.1200	>200	SC422.8	В	13.2000	19.5000	CE/03010217.B		9.7000	>200
3718.v3.c11	A	35.1000	24.8000	TH023.6	AE	0.0020	0.0120	SF162.LS	В	6.9400	11.3000	CNE3	D C	10.7000	######
398-F1.F6.20	A	7.7200	7.2100	1H966.8	AE	24.4000	4.7200	\$\$1196.01	в	51.7000	>200	CNE3		18.2000	>200
BB201.B42	A	4.7400	6.8500	TH976.17	AE	6.1700	>200	THRO.18	В	6.8400	#######	CNE5	3 C	10.6000	2.1700
BB539.2B13	A	3.5100	1.3300	235-47	AG	15.1000	57.7000	TRJO.58	В	5.1700	23.0000	CNE5	B C	7.1800	82.3000
BG505.W6M.C2	A	8.9300	8.9200	242-14	AG	6.1100	>200	TRO.11	В	5.4700	3.4300	DU123.0	6 C	2.6600	#######
BI369.9A	Α	7.5700	12.6000	263-8	AG	4.4500	0.4170	WITO.33	В	5.5600	>200	DU151.0	2 C	3.4500	2.7500
BS208.B1	A	0.2370	0.3100	269-12	AG	0.9310	>200	X2278.C2.B6	В	>200	>200	DU156.1	2 C	>200	>200
KER2008.12	Α	5.6900	2.5000	271-11	AG	33.6000	>200	YU2.DG	В	7.6300	5.2900	DU172.1	7 C	>200	>200
KER2018.11	Α	16.8000	20.8000	928-28	AG	12.4000	>200	BJOX002000.03.2	BC	22.0000	32.9000	DU422.0	1 C	4.3800	6.8900
KNH1209.18	Α	14.0000	>200	DJ263.8	AG	1.8700	#######	CH038.12	BC	>200	>200	MW965.2	6 C	0.1710	>200
MB201.A1	Α	3.3400	7.8500	T250-4	AG	11.3000	>200	CH070.1	BC	>200	#######	SO18.1	B C	20.8000	>200
MB539.2B7	А	26.6000	3.5800	T251-18	AG	6.0300	>200	CH117.4	BC	4.0200	>200	TV1.2	9 C	#######	39.7000
MI369.A5	Α	14.2000	33.7000	T253-11	AG	40.8000	>200	CH119.10	BC	2.5700	>200	TZA125.1	7 C	>200	>200
MS208.A1	А	0.7190	0.8710	T255-34	AG	3.0100	>200	CH181.12	BC	51.2000	61.1000	TZBD.0	2 C	>200	>200
Q23.17	А	10.7000	14.7000	T257-31	AG	>200	16.4000	CNE15	BC	21.5000	9.1700	ZA012.2	9 C	6.2300	>200
Q259.17	Α	15.3000	5.7000	T266-60	AG	>200	>200	CNE19	BC	2.1000	>200	ZM106.	9 C	6.9800	5.8400
Q769.d22	Α	2.2000	0.7100	T278-50	AG	2.5000	>200	CNE20	BC	1.5200	>200	ZM109.	4 C	4.5800	1.1900
Q769.h5	А	15.0000	2.8000	T280-5	AG	18.4000	16.4000	CNE21	BC	6.1000	>200	ZM135.10	a C	5.7100	94.0000
Q842.d12	Α	10.8000	28.2000	T33-7	AG	19.6000	>200	CNE40	BC	0.3900		ZM176.6	6 C	12.7000	43.6000
QH209.14M.A2	А	3.6700	3.6900	3988.25	в	3.5700	4.8200	CNE7	BC	12.0000	>200	ZM197.	7 C	3.1400	3.1100
RW020.2	А	17.1000	>200	5768.04	В	34,5000	30,8000	286.36	С	24.0000	5.3200	ZM214.1	5 C	10.5000	33.8000
UG037.8	A	25,8000	80 8000	6101.10) В	0.6710	1.0300	288.38	С	7 2500	1 8400	ZM215.	вс	2 8300	5 2700
246-F3.C10.2	AC	2.4500	0.5400	6535.3	В	0.7800	>200	0013095-2.11	С	8 0500	11 7000	7M233	5 C	2.0500	>200
3301 v1 c24	AC	2.4300	80.1000	7165.19	B	9.7800	>200	001/128-2 / 2	- -	8.9300	2.5600	7M249	1 0	2.8500	14 2000
3589 v1 c4	AC	9.1000	>200	45 01d65	B	9.5500	18 1000	001428 2.42	c	4.4200	2.5600	ZM245.		>200	>200
6540 v4 c1	AC	27 6000	15 0000	896.00	B	2 6700	>200	00836-2.5	c	12 4000	6 2800	ZM55.28		28 0000	6 5 700
6546.v4.c1		27.0000	13.3000	AC10.30		2.0700	>200	0021 v2 c14	C C	13.4000	0.2800	2226 v4 c		28.5000	0.3700
0345.04.01	~~	10.9000	10.0000	AC10.23		4.1600	7.1800	0521.02.014		27.2000	21.5000	5520.04.0		38.0000	>200
0815.v3.c3	ACD	11.3000	6.9600	ADA.DG	в	28.8000	>200	16055-2.3	C	5.8500	42.9000	3337.v2.c	5 CD	7.2200	>200
6095.v1.c10	ACD	0.3170	>200	Bal.01	В	14.2000	12.7000	16845-2.22	С	>200	>200	3817.v2.c5	9 CD	65.1000	>200
3468.v1.c12	AD	37.9000	>200	BaL.26	в	19.0000	13.7000	16936-2.21	С	4.6400	>200	191821.E6.	1 D	27.8000	62.7000
Q168.a2	AD	14.5000	8.2300	BG1168.01	B	9.5500	11.3000	25710-2.43	С	1.5900	0.7520	231965.c0	1 D	57.0000	>200
Q461.e2	AD	>200	>200	BL01.DG	в	20.1000	14.0000	25711-2.4	С	12.8000	>200	247-2	3 D	51.5000	7.5600
620345.c1	AE	31.5000	>200	BR07.DG	В	5.7300	3.6200	25925-2.22	С	4.9000	22.8000	3016.v5.c4	5 D		7.0900
BJOX009000.02.4	AE	16.4000	14.3000	BX08.16	Б	5.7900	2.8400	26191-2.48	С	42.6000	94.5000	57128.vrc1	5 D	8.2400	>200
BJOX010000.06.2	AE	10.6000	37.2000	CAAN.A2	B	6.5400	>200	3168.v4.c10	С	4.9000	>200	6405.v4.c3	4 D	4.5400	6.4200
BJOX025000.01.1	AE	6.1600	78.3000	CNE10) В	7.0000	3.9200	3637.v5.c3	С	62.9000	92.3000	A03349M1.vrc4	a D	6.0200	>200
BJOX028000.10.3	AE	7.3500	>200	CNE12	B	10.3000	9.6400	3873.v1.c24	С	>200	99.4000	A07412M1.vrc1	2 D	11.2000	74.1000
C1080.c3	AE	3.7700	28.2000	CNE14	В	30.6000	#######	426c	С	11.9000	7.8200	NKU3006.ec	1 D	11.9000	>200
C2101.c1	AE	5.8600	>200	CNE4	В	5.8100	>200	6322.v4.c1	С	6.6300	4.9100	UG021.1	6 D	6.9400	2.8900
C3347.c11	AE	>200	>200	CNE57	В	7.8500	6.8200	6471.v1.c16	С	>200	>200	UG024.	2 D	5.2100	2.9900
C4118.09	AE	9.1400	>200	HO86.8	В	4.0400	11.1000	6631.v3.c10	С	#######	>200	P0402.c2.1	1 G	33.3000	>200
CM244.ec1	AE	26.3000	15.5000	HT593.1	В	2.2100	0.9390	6644.v2.c33	с	0.0630	0.0690	P1981.C5.	3 G	0.8600	>200
CNE3	AE	30.4000	63.8000	HXB2.DG	в	16.4000	>200	6785.v5.c14	С	29.5000	>200	X1193.c	1 G	39.1000	>200
CNE5	AE	46.9000	>200	JRCSF.JE	В	34.5000	50.5000	6838.v1.c35	С	7.6700	>200	X1254.c	3 G	#######	>200
CNE55	AE	7.3400	4.1400	JRFL.JE	В	10.8000	19.0000	96ZM651.02	С	1.7400	9.2000	X1632.S2.B1	G	32.3000	>200
CNE56	AE	30.9000	3.5600	MN.3	В	0.2950	0.3860	BR025.9	С	4.3600	14.1000	X2088.c	9 G	8.9300	57.8000
CNE59	AE	0.0840	0.0940	PV0.04	В	25.2000	>200	CAP210.E8	С	8.2000	99.8000	X2131.C1.B	5 G	5.8900	>200
								I L				SIVmac251 30 SG		> 200	> 200

	1	C2	3BC	315
# Viruses Neutralized	#	%	#	%
IC50 <200ug/ml	192	92	127	61
IC50 <50ug/ml	181	87	102	49
IC50 <10ug/ml	105	50	63	30
IC50 <1.0ug/ml	14	7	12	6
IC50 <0.1ug/ml	3	1	3	1
IC50 <0.01ug/ml	1	0	0	0
Total # Viruses		20)8	
Median IC50	8.93	10.00		
Geometric Mean	8.03	10.05		

*Median and Geometric Mean titers calculated only for samples with IC50 <50ug/ml

Figure S7. 1C2 neutralization breadth is broader than the human bNAb 3BC315, related to Figure 6. Neutralization IC_{50} (µg/ml) values shown for 1C2 and 3BC315 against a diverse 208-virus panel.

Table S1. Site-specific glycan analysis of N-glycan deleted trimers compared to WT, related to Figure 1. Percentage point differences in glycan abundances for glycan-deleted constructs compared to WT. A decrease in glycan abundance greater than 10 percentage points is highlighted in increasing shades of red, whereas an increase in abundance is highlighted in green. Knocked-out glycans are highlighted in blue.

16055																		
∆Gly1	88	160	187D	197	262	276	301	332	360	386	442	448	463	625	637	-		
M9	-0.3	0.7	-0.2	-5.1	-13.2	K/O	-6.1	-9.6	-13.4	-15.4	-14.4	-11.4	-0.2	-0.4	-15.1			
M8	-0.6	5.7	-0.7	1.2	4.0		-2.6	6.9	4.5	11.7	5.1	1.1	-0.3	-0.4	-0.3			
M7	-0.7	-3.9	-0.7	0.4	2.5		-6.7	2.2	1.2	6.5	4.1	1.9	0.0	-0.5	-3.2			
M6	-3.1	3.6	-0.4	0.2	3.1		3.5	-0.1	1.1	1.3	1.7	0.9	-0.1	-0.4	-0.9			
M5	3.4	-5.3	-6.1	-1./	3.7		-0.1	-0.2	4.0	0.2	2.6	-0.6	-0.3	-0.4	0.2			
∆Glv2	88	160	187D	197	262	276	301	332	360	386	442	448	463	625	637	-		
M9	0.0	-0.6	-0.1	-4.9	-16.2	K/O	-2.9	-15.3	-40.1	-17.4	-20.1	-17.2	K/O	-0.1	-16.5			
M8	0.6	1.8	0.2	0.7	7.1		-16.6	6.8	9.0	11.0	2.9	-7.2		0.5	-0.4			
M7	-0.1	-2.4	0.0	0.5	3.7		5.3	3.2	6.2	5.9	3.6	4.5		0.4	-2.4			
M6	-2.7	2.7	0.2	0.0	0.0		3.9	0.4	3.2	0.0	1.5	0.7		0.0	-1.0			
M5	0.7	-1.3	-2.8	0.6	5.4		8.5	0.1	10.8	0.0	4.5	0.0		-1.4	2.7			
∆Gly4	88	160	187D	197	262	276	301	332	360	386	442	448	463	625	637	-		
M9	0.2	-13.0	-0.2	-6.8	-8.0	K/O	K/O	-29.9	K/O	-23.8	-42.5	-23.2	K/O	0.5	N.D.	-		
M8	0.8	-1.5	1.3	-2.0	1.5			9.7	-	9.3	-19.0	0.7		1.1	N.D.			
M7	1.3	1.7	1.0	1.2	1.7			5.3		6.0	9.9	8.0		1.5	N.D.			
M6	-0.5	4.7	0.3	0.3	1.5			1.0		0.0	25.9	2.7		0.5	N.D.			
M5	-5.5	7.4	-6.8	2.1	3.2			0.3		0.0	16.7	1.1		4.3	N.D.			
JRFL																		
∆Gly1	88	156	160	241	262	276	295	332	339	356	362	386	448	463	616	625	637	-
M9	0.0	4.1	-1.5	-6.5	-24.3	K/O	-9.0	-11.8	-3.4	-0.1	-38.7	-5.7	-18.2	-0.4	-0.1	-0.1	0.8	-
M8	0.1	2.6	1.2	0.3	15.3		9.0	1.0	-13.6	0.0	27.3	7.3	4.2	-0.7	-0.1	0.1	-10.4	
M7	0.7	-2.7	-0.2	-2.9	2.4		0.0	-0.2	-8.9	0.3	6.5	0.0	2.0	-0.4	0.0	0.4	-17.8	
M6	1.5	-1.8	0.3	-0.9	0.0		0.0	-0.1	-0.7	0.1	1.6	0.0	1.0	0.2	0.0	0.6	-8.7	
M5	4.0	-1.7	1.0	2.9	6.5		0.0	3.8	1.7	0.8	2.1	0.0	1.5	3.1	1.6	4.7	-0.4	
∆Gly2	88	156	160	241	262	276	295	332	339	356	362	386	448	463	616	625	637	-
M9	0.0	4.2	-4.8	-4.7	-28.0	K/O	-4.0	-15.3	-3.7	-0.1	-42.3	-7.0	-27.4	K/O	-0.1	-0.1	0.0	_
M8	0.0	1.1	-3.7	-4.6	21.1		4.0	-6.0	-17.1	0.0	12.8	5.3	-1.2		0.1	0.3	-11.6	
M7	0.3	-2.8	0.4	-8.9	2.9		0.0	0.3	-12.7	0.3	10.5	0.0	3.7		0.3	0.7	-20.1	
MG	-1.0	-1.6	0.5	-2.2	0.8		0.0	-0.4	-4.3	0.2	8.1	0.0	1.6		0.2	0.7	-9.9	
CIVI	2.0	-0.3	3.1	5.7	1.2		0.0	5.0	-1.0	1.4	5.5	0.0	2.1		3.0	2.0	1.5	
BG505																		
∆Gly1	88	160	190	197	234	262	276	295	332	339	355	363	386	448	462	611	618	637
M9	0.0	-29.0	-0.1	-14.9	-55.5	-36.9	K/O	-21.4	-33.8	-23.7	-0.2	-28.1	-24.7	-38.4	0.0	0.0	0.0	-1.1
M8	-0.4	14.7	-0.7	2.7	27.0	17.9		14.8	11.7	7.0	-0.4	13.9	17.7	6.2	-0.3	-1.5	0.0	-15.7
M7	-0.3	7.4	-0.3	4.1	12.9	5.2		4.1	10.7	4.0	-0.9	6.3	4.8	10.3	-0.3	0.0	0.0	-32.1
M6	-1.1	4.3	-0.1	6.1	10.4	13.3		2.5	2.2	1.2	-0.6	4.4	0.0	7.2	-0.1	0.3	0.0	-14.4
IVI5	-1.7	2.6	-1.2	-0.7	5.0	0.5		0.0	-0.1	0.3	-14.1	2.5	0.0	4.8	-0.1	3.4	1.0	20.1
∆Gly2	88	160	190	197	234	262	276	295	332	339	355	363	386	448	462	611	618	637
M9	0.0	-35.4	-0.1	-21.0	-69.1	-44.0	K/O	-36.1	-38.7	-32.5	-0.2	-37.1	-52.6	-45.3	K/O	0.0	0.0	-1.1
M8	-0.2	15.9	-0.3	-3.0	35.0	20.9		13.6	6.8	4.7	-0.3	19.5	41.7	-1.9		-0.4	0.0	-15.7
M7	-0.2	7.9	-0.6	3.0	16.7	8.6		5.0	6.0	4.8	-1.0	3.2	9.7	7.9		0.7	0.0	-29.5
M6	-0.7	4.8	0.1	5.3	12.1	13.4		3.1	1.9	1.8	-0.8	7.9	0.0	8.6		1.8	0.0	-14.4
CIVI	-2.3	4./	-0.0	2.2	2.0	1.1		0.0	-0.1	0.4	-19.8	4.0	0.0	ö.ö	_	12.5	-0.1	14.9

Table S2. mAbs cloned from rabbit C3, related to Figures 3, 5, S3, and Table S3 and S4. Env binding (+), # of mAbs with positive binding to Env by ELISA. Neutralizing, # of mAbs capable of neutralizing \geq 1 HIV-1 strains.

Set#	Probes	#Cells Sorted	#mAbs Cloned	Productive	Env Binding (+)	Neutralizing
1	16066 gp120+	176	15	13	13	5
	16055 gp120 368R/474A-					
2	16055 gp120+ 16055 gp120 368R-	88	12	2	2	0
3	16066 ap120+	88	2	1	1	1
5	SC422 NFL TD CC+	00	2	I		I
4	16055 NFL TD CC+	121	3	2	2	2
	JRFL NFL TD14					
5	16055 NFL TD CC+	14	10	1	0	0
	16055 gp120 ∆Gly4					
6	16055 NFL TD CC+	118	10	7	4	4
7	16055 gp120	70	11	4	2	1
	16055 gp120 ∆Gly4					
8	16055 NFL TD CC+	116	36	20	19	8
	1086 NFL TD CC+					
	Total	791	99	50	43	21

Table S3. Rabbit single-cell PCR primers, related to Figures 3, 5, S3 and Tables S2 andS4. Supplemental primers to those reported in McCoy et al., 2016.

PCR step	Primer Name	5'-3' sequence
Kappa PCR 1	KFOut1	GRACAYGAGGGCCCCCACTCAG
Kappa PCR 1	KFOut2	CYAGSCAGGACCCAGCATG
Kappa PCR 1	KROut1	CATCCACCTCCCAGGTGACGG
Kappa PCR 1	KROut2	CATCCACCTTCCAGGTGACGGT
Kappa PCR 1	KROut3	CATCCACCTGCCAGGTGACGG
Kappa PCR 2	KFIn1	GMTGGGGCTCCTRCTGC
Kappa PCR 2	KRIn2	CACACGATGGTGACTGTTTCAGTTG
Kappa PCR 2	KRIn3	CACACGATGGTGGCTGTTCC
Heavy PCR 1	HForOut	GGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTC
Heavy PCR 1	HROut1	GATCATGCAGGTCAGGCTGACCGACCTGC
Heavy PCR 1	HROut2	GGCTTCTGCAGAGCTCCCGACTCCTGTC
Heavy PCR 1	RH1OutR	GACACACCCAGCTCCACGGTGAC
Heavy PCR 2	RH1inR	GCCAGTGGGAAGACTGAYGGAG
Heavy PCR 2	HVForIn	GCTGTGCTCAAAGGTGTCCAGTGTC
Heavy PCR 2	HVRevIn	CAGTGGGAAGACTGAYGGAGCCTTAG

Table S4. Profile of neutralizing mAbs cloned from rabbit C3, related to Figures 3, 5, S3, and Tables S2-S3. Tissue refers to the tissue sample from which the B cell were sorted; LN, lymph nodes, PBMCs, peripheral blood mononuclear cells. (+) indicates positive binding to Env by ELISA. Neutralization IC₅₀ (µg/ml) values are indicated and colored by potency.

				Env	Tier 1	Viruses		Tier 2 Virus	es
#	mAb	Tissue	Probes	Binding	MN.3	HXBc2	16055	Ce1176	TRO.11
1	A44			+	>50	>50	19.11	>50	>50
2	A147		16055 gp120+	+	0.001	>50	>50	>50	>50
3	A163	Spleen	16055 gp120 368R/474A-	+	0.05	>50	>50	>50	>50
4	A170			+	0.01	>50	>50	>50	>50
5	A174			+	>50	0.41	>50	>50	>50
6	E70	Spleen	16055 gp120/SC422 NFL TD CC+	+	>50	>50	0.454	0.15	3.551
7	F5	Spleen		+	>50	>50	5.57	>50	>50
8	G70	Spleen	16055 NFL TD CC+	+	0.018	0.08	>50	>50	>50
9	2D5	LN		+	0.48	>50	26.82	>50	>50
10	B5			+	1.88	>50	>50	>50	>50
11	D4	LN		+	0.13	>50	>50	>50	>50
12	F4	LIN	10055 NFL 1D CC+	+	0.09	>50	>50	>50	>50
13	H2			+	0.5	>50	>50	>50	>50
14	1C2			+	0.3	17.04	4.56	4.46	21.38
15	1D1			+	1.8	>50	>50	>50	>50
16	1D6		16055 NFL 1D CC+	+	13.02	6.31	>50	>50	>50
17	1G9	LN		+	0.61	0.22	>50	>50	>50
18	1F4			+	6.09	>50	>50	>50	>50
19	2A6		1086 NFL TD CC+	+	0.18	>50	>50	>50	>50
20	2C5			+	0.02	>50	21.38	>50	>50
21	A10	PBMcs	16055 gp120/16055 gp120 ∆Gly4	+	1.23	0.76	>50	>50	>50

Table S5. CryoEM data collection and processing statistics, related to Figures 4, 6, S4, and S6.

Мар	E70 Fab:BG505 NFL CC+	1C2 Fab:16055 NFL TD 2CC+
Data collection		
Microscope	FEI Titan Krios	FEI Talos Arctica
Voltage (kV)	300	200
Detector	Gatan K2 Summit	Gatan K2 Summit
Recording mode	Counting	Counting
Nominal magnification	29,000	36,000
Movie micrograph pixelsize (Å)	1.03	1.15
Dose rate (e ⁻ /[(camera pixel)*s])	5.04	5.10
Number of frames per movie	48	50
micrograph	-0	50
Frame exposure time (ms)	250	250
Movie micrograph exposure time (s)	12.0	12.5
Total dose (e ⁻ /Ų)	57	48
Defocus range (µm)	-0.5 to -2.0	-0.7 to -2.5
EM data processing		
Number of movie micrographs	870	1,690
Number of molecular projection	49,635	23,702
Symmetry	C3	C3
Man resolution (ESC 0 143: Å)	3 57	3 94
Local resolution range $(Å)^1$	3 4-5 2	37-55
Map sharpening B-factor (Å ²)	-138	-111
Structure Building and Validation		
Number of atoms in deposited model	12 000	12 000
	13,029	13,209
	5,061	5,295
giycans Mal Drahity again	1,113	1,815
MolProbily score	1.13	0.95
	1.09	1.75
	0.82	0.81
EIVIRINGER SCORE	3.69	2.11
RIVISD from Ideal	0.00	0.00
Bond length (A)	0.02	0.02
Bond angles ()	1.83	1.84
	05.44	07.04
Favored (%)	95.41	97.94
	4.59	2.06
Outliers (%)	0.00	0.00
Side chain rotamer outliers (%)	0.15	0.44

¹In modeled regions of map; based on Relion 3.0 Local Resolution function

Table S6. Crystallization data collection and refinement statistics for 1C2 Fab, related to Figures 6 and S6.

	1C2 unliganded
Data collection	
Space group	P22,2,
Cell dimensions	
a, b, c (Å)	71.80, 98.60, 162.98
α, β, γ (°)	90, 90, 90
Resolution (Å)	50-2.30 (2.34-2.30)*
$R_{_{ m sym}}$ or $R_{_{ m merge}}$	0.071 (0.723) *
l/s/	12.4 (1.4)*
Completeness (%)	88.0 (80.4)*
Redundancy	3.7 (2.8)*
CC _{1/2}	0.998 (0.686)*
Refinement	
Resolution (Å)	35.44-2.296 (2.378-2.296)*
No. reflections	42,972
R _{work} /R _{free}	21.92/25.42 (29.74/33.57)*
No. atoms	6753
Protein	6475
Water	268
Ligand	10
B-factors (Å ²)	41.64
Protein	41.71
Water	38.54
Ligand	78.05
R.m.s deviations	
Bond lengths (Å)	0.004
Bond angles (°)	0.72
Ramachadran Favored %	95.35
Ramachadran Outliers %	0.23
MolProbity all-atoms	1.96